

RADIO TESTREPORT

S

5

Report No: STS1711253W01

Issued for

SHENZHEN SHENGLAI TECHNOLOGY CO., LIMITED

ROOM 709, BLOCK B, XINTIAN CENTURY BUSINESS CENTRE, FUMING ROAD, FUTIAN DISTRICT, SHENZHEN, CHINA

Product Name:	Bluetooth Headphones
Brand Name:	S.LAI
Model Name:	VF50013BT
Series Model:	BH-8130
FCC ID:	2AL9B-VF50013BT
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented the sample VAL

Page 2 of 49

Report No.: STS1711253W01

TEST RESULT CERTIFICATION

Applicant'sname	SHENZHEN SHENGLAI TECHNOLOGY CO., LIMITED
Address	ROOM 709, BLOCK B, XINTIAN CENTURY BUSINESS CENTRE, FUMING ROAD, FUTIAN DISTRICT, SHENZHEN, CHINA
Manufacture's Name	SHENZHEN SHENGLAI TECHNOLOGY CO., LIMITED
Address	ROOM 709, BLOCK B, XINTIAN CENTURY BUSINESS CENTRE, FUMING ROAD, FUTIAN DISTRICT, SHENZHEN, CHINA
Product description	
Product Name:	Bluetooth Headphones
Brand Name	S.LAI
Model Name:	VF50013BT
Series Model	BH-8130
Test Standards	FCC Part15.247
Test procedure	: ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests : 23 Nov. 2017~28 Nov. 2017

Date of Issue: 29 Nov. 2017

Test Result Pass

Technical Manager : Authorized Signatory : Seaw She (Sean she) Makim. hou (Hakim.hou)

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 3 of 49

Report No.: STS1711253W01

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	10
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF SUPPORT UNITS	12
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 RADIATED EMISSION MEASUREMENT	18
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
4.1 REQUIREMENT	30
4.2 TEST PROCEDURE	30
4.3 TEST SETUP	30
4.4 EUT OPERATION CONDITIONS	30
4.5 TEST RESULTS	31
5. NUMBER OF HOPPING CHANNEL	35
5.1 APPLIED PROCEDURES / LIMIT	35
5.2 TEST PROCEDURE	35
5.3 TEST SETUP	35
5.4 EUT OPERATION CONDITIONS	35
5.5 TEST RESULTS	36
6. AVERAGE TIME OF OCCUPANCY	37
6.1 APPLIED PROCEDURES / LIMIT	37
6.2 TEST PROCEDURE	37
6.3 TEST SETUP	37
6.4 EUT OPERATION CONDITIONS	37
6.5 TEST RESULTS	38
7. HOPPING CHANNEL SEPARATION MEASUREMEN	40
7.1 APPLIED PROCEDURES / LIMIT	40

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 4 of 49

Report No.: STS1711253W01

Table of Contents	Page
7.2 TEST PROCEDURE	40
7.3 TEST SETUP	40
7.4 EUT OPERATION CONDITIONS	40
7.5 TEST RESULTS	41
8. BANDWIDTH TEST	43
8.1 APPLIED PROCEDURES / LIMIT	43
8.2 TEST PROCEDURE	43
8.3 TEST SETUP	43
8.4 EUT OPERATION CONDITIONS	43
8.5 TEST RESULTS	44
9. OUTPUT POWER TEST	46
9.1 APPLIED PROCEDURES / LIMIT	46
9.2 TEST PROCEDURE	46
9.3 TEST SETUP	46
9.4 EUT OPERATION CONDITIONS	46
9.5 TEST RESULTS	47
10. ANTENNA REQUIREMENT	48
10.1 STANDARD REQUIREMENT	48
10.2 EUT ANTENNA	48

=#

Page 5 of 49

Report No.: STS1711253W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	29 Nov. 2017	STS1711253W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: DA 00-705

FCC Part 15.247,Subpart C						
Standard Section	Lest Item					
15.207	Conducted Emission	N/A				
15.247(a)(1)	Hopping Channel Separation	PASS				
15.247(a)(1)&(b)(1)	Output Power	PASS				
15.247(c)	Radiated Spurious Emission	PASS				
15.247(d)	Conducted Spurious & Band Edge Emission	PASS				
15.247(a)(iii)	Number of Hopping Frequency	PASS				
15.247(a)(iii)	Dwell Time	PASS				
15.247(a)(1)	Bandwidth	PASS				
15.205	Restricted Band Edge Emission	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

Page 7 of 49

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power, conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions,radiated (9KHz-30MHz)	±3.02dB
6	All emissions, radiated (30MHz-200MHz)	±3.80dB
7	All emissions,radiated (200MHz-1000MHz)	±3.97dB
8	All emissions,radiated(>1G)	±3.03dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	Bluetooth Headphones
Trade Name	S.LAI
Model Name	VF50013BT
Series Model	BH-8130
Model Difference	All are the same except the color
Channel List	Please refer to the Note 2.
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps)
Battery	Battery(rating): Rated Voltage: 3.7V Capacity :160mAh
Hardware version number	V1.2
Software version number	V2.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. The BT function will be disabled (not transmitting) when the EUT is charging, for radiated emission, a PC is used to Fixed frequency.

Page 9 of 49

2.

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
08	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	S.LAI	VF50013BT	PCB Antenna	N/A	0	BT Antenna

F

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

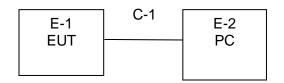
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V,50/60Hz is shown in the report

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Test software Version	Test program: Bluetooth			
Frequency	2402 MHz 2441 MHz 2480 MHz			
(Power control software) Parameters(1Mbps)	Power class: 1 M rate:4:27	Power class: 1 M rate:4:27	Power class: 1 M rate:4:27	



Page 11 of 49

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Radiated Spurious EmissionTest

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	PC	HP	N/A	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable shielded line	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

enit				
Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
R&S	ESW	101535	2017.06.01	2018.05.31
TESEQ	CBL6111D	34678	2017.03.24	2018.03.23
Schwarzbeck	BBHA 9120D	9120D-1343	2017.03.06	2018.03.05
BBHA 9170	SCHWARZBECK	BBHA9170367	2017.05.02	2018.05.01
HH660	Mieo	N/A	2017.10.15	2018.10.14
HH660	Mieo	N/A	2017.10.15	2018.10.14
EM	EM330	60538	2017.03.12	2018.03.11
Agilent	8449B	60538	2017.10.15	2018.10.14
MINI-CIRCUITS	AP-040G	1382501	2017.05.15	2018.05.14
ETS	6512	00165355	2017.03.06	2018.03.05
EM	R01	N/A	2017.03.12	2018.03.11
EM	R06	N/A	2017.03.12	2018.03.11
SCHWARZBECK	R04	N/A	2017.03.12	2018.03.11
SCHWARZBECK	R02	N/A	2017.03/12	2018.03.11
Changling	966	N/A	2017.10.15	2018.10.14
EM	SC100_1	60531	N/A	N/A
EM	SC100	N/A	N/A	N/A
MF	MFA-440H	N/A	N/A	N/A
	Manufacturer R&S TESEQ Schwarzbeck BBHA 9170 HH660 HH660 EM Agilent Agilent MINI-CIRCUITS ETS ETS ETS EM SCHWARZBECK SCHWARZBECK SCHWARZBECK	ManufacturerType No.R&SESWTESEQCBL6111DSchwarzbeckBBHA 9120DBBHA 9170SCHWARZBECKHH660MieoHH660MieoHH660MieoAgilent8449BAgilent8449BMINI-CIRCUITSAP-040GETS6512EMR01EMR06SCHWARZBECKR04SCHWARZBECKR02Changling966EMSC100_1EMSC100	ManufacturerType No.Serial No.R&SESW101535TESEQCBL6111D34678SchwarzbeckBBHA 9120D9120D-1343BBHA 9170SCHWARZBECKBBHA9170367HH660MieoN/AHH660MieoN/AEMEM33060538Agilent8449B60538MINI-CIRCUITSAP-040G1382501ETS651200165355EMR01N/ASCHWARZBECKR04N/ASCHWARZBECKR02N/AChangling966N/AEMSC100_160531EMSC100N/A	Manufacturer Type No. Serial No. Last calibration R&S ESW 101535 2017.06.01 TESEQ CBL6111D 34678 2017.03.24 Schwarzbeck BBHA 9120D 9120D-1343 2017.03.06 BBHA 9170 SCHWARZBECK BBHA9170367 2017.05.02 HH660 Mieo N/A 2017.10.15 HH660 Mieo N/A 2017.10.15 EM EM330 60538 2017.03.12 Agilent 8449B 60538 2017.03.12 MINI-CIRCUITS AP-040G 1382501 2017.03.12 ETS 6512 00165355 2017.03.12 EM R01 N/A 2017.03.12 SCHWARZBECK R04 N/A 2017.03.12 SCHWARZBECK R02 N/A 2017.03.12 Changling 966 N/A 2017.03.12 Changling 966 N/A 2017.03.12 Changling 966 N/A 2017.03.12

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2017.03.12	2018.03.11
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

Page 14 of 49

Report No.: STS1711253W01

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	E4407B	MY50140340	2017.03.11	2018.03.10
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 15 of 49

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

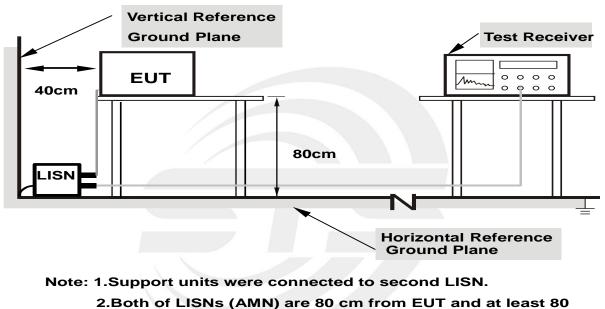
	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Shenzhen STS Test Services Co., Ltd.

Page 16 of 49

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

from other units and other metal planes

Report No.: STS1711253W01

3.1.5 TEST RESULT

Temperature:	26.5 ℃	Relative Humidity:	68%
Pressure:	1010hPa	Phase:	N/A
Test Voltage:	AC 120V/60Hz	Test Mode:	N/A

Note: The BT function will be disabled (not transmitting) when the EUT is charging, the test is not available.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted		
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz	

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Start/Stop Frequency	Lower Band Edge: 2300 to 2403 MHz	
	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz	

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 19 of 49

Report No.: STS1711253W01

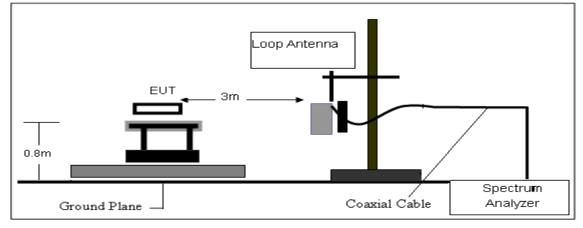
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

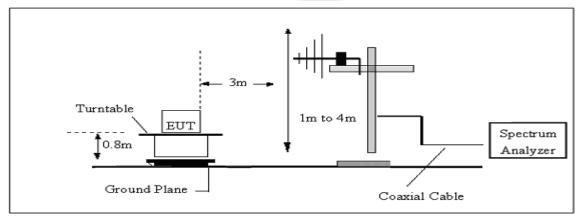
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

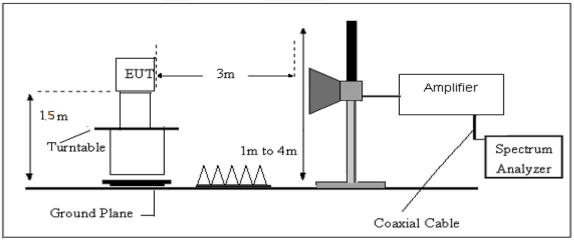
3.2.3 DEVIATION FROM TEST STANDARD


No deviation

Page 20 of 49



3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 22 of 49

Report No.: STS1711253W01

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	22.4℃	Relative Humidity:	52.5%
Pressure:	1010hPa	Test Mode:	TX Mode
Test Voltage:	DC 3.7V		

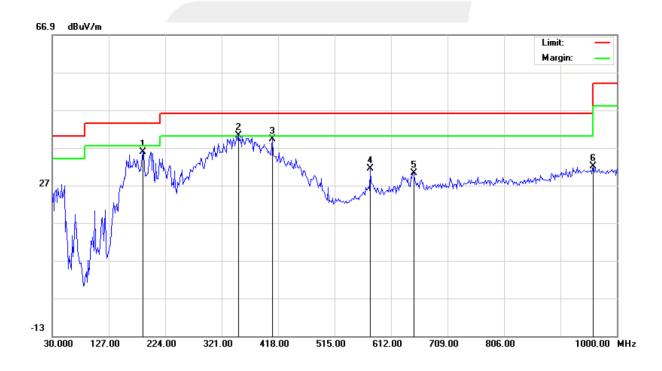
Freq.			State	Toot Dooult	
(MHz)			(dB)	P/F	Test Result
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

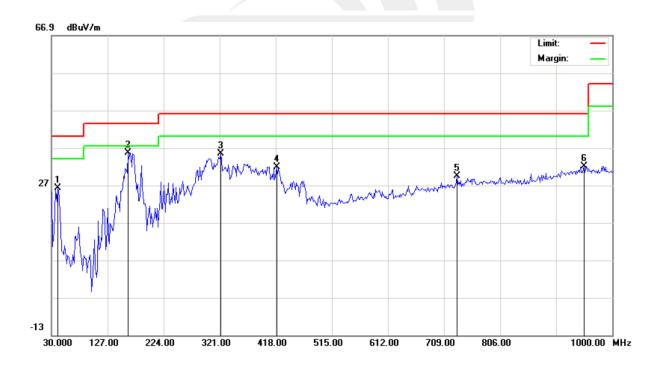
Limit line = specific limits(dBuv) + distance extrapolation factor.


Shenzhen STS Test Services Co., Ltd.

(30MHz-1000MHz)

Temperature:	22.4 ℃	Relative Humidity:	52.5%
Pressure:	1010hPa	Phase:	Horizontal
Test Voltage:	DC 3.7V		Mode 1/2/3 (Mode 1-1M worst mode)

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		185.2000	24.43	11.31	35.74	43.50	-7.76	peak
2	*	350.1000	21.38	18.74	40.12	46.00	-5.88	peak
3		408.3000	19.93	19.32	39.25	46.00	-6.75	peak
4		576.4333	8.35	23.14	31.49	46.00	-14.51	peak
5		650.8000	6.31	23.87	30.18	46.00	-15.82	peak
6		959.5833	2.13	29.91	32.04	46.00	-13.96	peak



Page 24 of 49

Report No.: STS1711253W01

Temperature:	22.4 ℃	Relative Humidity:	52.5%
Pressure:	1010hPa	Phase:	Vertical
Test Voltage:	DC 3.7V		Mode 1/2/3 (Mode 1-1M worst mode)

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		41.3167	17.30	8.81	26.11	40.00	-13.89	peak
2	*	162.5667	20.40	15.17	35.57	43.50	-7.93	peak
3		322.6167	18.54	16.92	35.46	46.00	-10.54	peak
4		419.6167	12.23	19.67	31.90	46.00	-14.10	peak
5		731.6333	3.23	26.10	29.33	46.00	-16.67	peak
6		951.5000	2.04	29.99	32.03	46.00	-13.97	peak

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

(1GHz~25GHz) Restricted band and Spurious emission Requirements

GFSK Low Channel

				Antenna	Corrected	Emission						
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
	Low Channel (2402 MHz)											
3264.63	48.31	44.70	6.70	28.20	-9.80	38.51	74.00	-35.49	PK	Vertical		
3264.63	38.26	44.70	6.70	28.20	-9.80	28.46	54.00	-25.54	AV	Vertical		
3264.82	49.05	44.70	6.70	28.20	-9.80	39.25	74.00	-34.75	PK	Horizontal		
3264.82	38.16	44.70	6.70	28.20	-9.80	28.36	54.00	-25.64	AV	Horizontal		
4804.47	58.56	44.20	9.04	31.60	-3.56	55.00	74.00	-19.00	PK	Vertical		
4804.47	39.05	44.20	9.04	31.60	-3.56	35.49	54.00	-18.51	AV	Vertical		
4804.35	58.61	44.20	9.04	31.60	-3.56	55.05	74.00	-18.95	PK	Horizontal		
4804.35	38.46	44.20	9.04	31.60	-3.56	34.90	54.00	-19.10	AV	Horizontal		
5359.88	46.03	44.20	9.86	32.00	-2.34	43.69	74.00	-30.31	PK	Vertical		
5359.88	38.42	44.20	9.86	32.00	-2.34	36.08	54.00	-17.92	AV	Vertical		
5359.60	46.43	44.20	9.86	32.00	-2.34	44.09	74.00	-29.91	PK	Horizontal		
5359.60	37.95	44.20	9.86	32.00	-2.34	35.61	54.00	-18.39	AV	Horizontal		
7205.79	51.41	43.50	11.40	35.50	3.40	54.81	74.00	-19.19	PK	Vertical		
7205.79	32.75	43.50	11.40	35.50	3.40	36.15	54.00	-17.85	AV	Vertical		
7205.77	51.65	43.50	11.40	35.50	3.40	55.05	74.00	-18.95	PK	Horizontal		
7205.77	32.60	43.50	11.40	35.50	3.40	36.00	54.00	-18.00	AV	Horizontal		

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 26 of 49

Report No.: STS1711253W01

GFSK Mid Channel

				Antenna	Corrected	Emission					
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment	
Mid Channel (2441 MHz)											
3264.72	48.44	44.70	6.70	28.20	-9.80	38.64	74.00	-35.36	PK	Vertical	
3264.72	38.73	44.70	6.70	28.20	-9.80	28.93	54.00	-25.07	AV	Vertical	
3264.65	48.29	44.70	6.70	28.20	-9.80	38.49	74.00	-35.51	PK	Horizontal	
3264.65	38.33	44.70	6.70	28.20	-9.80	28.53	54.00	-25.47	AV	Horizontal	
4882.35	58.83	44.20	9.04	31.60	-3.56	55.27	74.00	-18.73	PK	Vertical	
4882.35	38.25	44.20	9.04	31.60	-3.56	34.69	54.00	-19.31	AV	Vertical	
4882.58	59.04	44.20	9.04	31.60	-3.56	55.48	74.00	-18.52	PK	Horizontal	
4882.58	38.62	44.20	9.04	31.60	-3.56	35.06	54.00	-18.94	AV	Horizontal	
5359.76	45.41	44.20	9.86	32.00	-2.34	43.07	74.00	-30.93	PK	Vertical	
5359.76	37.12	44.20	9.86	32.00	-2.34	34.78	54.00	-19.22	AV	Vertical	
5359.63	45.33	44.20	9.86	32.00	-2.34	42.99	74.00	-31.01	PK	Horizontal	
5359.63	37.09	44.20	9.86	32.00	-2.34	34.75	54.00	-19.25	AV	Horizontal	
7313.96	51.11	43.50	11.40	35.50	3.40	54.51	74.00	-19.49	PK	Vertical	
7313.96	32.61	43.50	11.40	35.50	3.40	36.01	54.00	-17.99	AV	Vertical	
7313.74	50.90	43.50	11.40	35.50	3.40	54.30	74.00	-19.70	PK	Horizontal	
7313.74	33.01	43.50	11.40	35.50	3.40	36.41	54.00	-17.59	AV	Horizontal	

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

GFSK High Channel

				Antenna	Corrected	Emission						
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
	High Channel (2480 MHz)											
3264.64	49.30	44.70	6.70	28.20	-9.80	39.50	74.00	-34.50	PK	Vertical		
3264.64	38.44	44.70	6.70	28.20	-9.80	28.64	54.00	-25.36	AV	Vertical		
3264.67	49.10	44.70	6.70	28.20	-9.80	39.30	74.00	-34.70	PK	Horizontal		
3264.67	38.11	44.70	6.70	28.20	-9.80	28.31	54.00	-25.69	AV	Horizontal		
4960.40	59.06	44.20	9.04	31.60	-3.56	55.50	74.00	-18.50	PK	Vertical		
4960.40	38.82	44.20	9.04	31.60	-3.56	35.26	54.00	-18.74	AV	Vertical		
4960.58	59.46	44.20	9.04	31.60	-3.56	55.90	74.00	-18.10	PK	Horizontal		
4960.58	38.18	44.20	9.04	31.60	-3.56	34.62	54.00	-19.38	AV	Horizontal		
5359.76	45.01	44.20	9.86	32.00	-2.34	42.67	74.00	-31.33	PK	Vertical		
5359.76	37.97	44.20	9.86	32.00	-2.34	35.63	54.00	-18.37	AV	Vertical		
5359.66	45.07	44.20	9.86	32.00	-2.34	42.73	74.00	-31.27	PK	Horizontal		
5359.66	37.10	44.20	9.86	32.00	-2.34	34.76	54.00	-19.24	AV	Horizontal		
7439.98	50.84	43.50	11.40	35.50	3.40	54.24	74.00	-19.76	PK	Vertical		
7439.98	33.09	43.50	11.40	35.50	3.40	36.49	54.00	-17.51	AV	Vertical		
7439.71	51.17	43.50	11.40	35.50	3.40	54.57	74.00	-19.43	PK	Horizontal		
7439.71	33.83	43.50	11.40	35.50	3.40	37.23	54.00	-16.77	AV	Horizontal		

Note:

3)

1) Scan with GFSK, the worst case is GFSK Mode

2) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Band edge Requirements

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					GFSK					
2390.00	68.18	43.80	4.91	25.90	-12.99	55.19	74.00	-18.81	PK	Vertical
2390.00	54.15	43.80	4.91	25.90	-12.99	41.16	54.00	-12.84	AV	Vertical
2390.00	69.23	43.80	4.91	25.90	-12.99	56.24	74.00	-17.76	PK	Horizontal
2390.00	52.32	43.80	4.91	25.90	-12.99	39.33	54.00	-14.67	AV	Horizontal
2483.50	70.35	43.80	5.12	25.90	-12.78	57.57	74.00	-16.43	PK	Vertical
2483.50	53.10	43.80	5.12	25.90	-12.78	40.32	54.00	-13.68	AV	Vertical
2483.50	69.64	43.80	5.12	25.90	-12.78	56.86	74.00	-17.14	PK	Horizontal
2483.50	52.73	43.80	5.12	25.90	-12.78	39.95	54.00	-14.05	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

Only show he worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

Page 29 of 49

Hopping Band edge

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					GFSK					
2390.00	67.54	43.80	4.91	25.90	-12.99	54.55	74.00	-19.45	PK	Vertical
2390.00	53.18	43.80	4.91	25.90	-12.99	40.19	54.00	-13.81	AV	Vertical
2390.00	69.37	43.80	4.91	25.90	-12.99	56.38	74.00	-17.62	PK	Horizontal
2390.00	52.91	43.80	4.91	25.90	-12.99	39.92	54.00	-14.08	AV	Horizontal
2483.50	69.81	43.80	5.12	25.90	-12.78	57.03	74.00	-16.97	PK	Vertical
2483.50	53.30	43.80	5.12	25.90	-12.78	40.52	54.00	-13.48	AV	Vertical
2483.50	69.61	43.80	5.12	25.90	-12.78	56.83	74.00	-17.17	PK	Horizontal
2483.50	52.71	43.80	5.12	25.90	-12.78	39.93	54.00	-14.07	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

Only show he worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

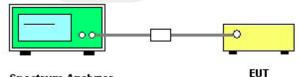
Shenzhen STS Test Services Co., Ltd.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE


Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Froguency	Lower Band Edge: 2300– 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

Remark : Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

4.3 TEST SETUP

Spectrum Analyzer

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage:	DC 3.7V
Test Mode:	GFSK(1Mbps)-00/39/78 CH		

00 CH

	D Q AC	SENSE:P	ULSE	ALIGN AUTO		04:18:16 PM Nov 28,
Freq 30.0000	P		rig: Free Run atten: 22 dB	Avg Type: Avg Hold: 6	Log-Pwr 4/100	TRACE 1 2 3 TYPE M MAN DET P N N
/div Ref 10.6	7 dBm				N	lkr1 2.402 G -5.241 dl
<mark>\</mark> 1						
						-25.2
	\bigcirc^2 \bigcirc^3					
<u> </u>				. In and the second second	La mark frequence	when the second second second
had her and the second	- hur marella	- manual weather	Nagara and a second second	and the second second		
t 30 MHz s BW 100 kHz	_	#VBW 3	00 kHz		Sweep	Stop 25.00 (2.386 s (1001
IODE TRC SCL	× 2.402 GHz	-5.241 dBm		FUNCTION WIDTH	FUNCTI	DN VALUE
N 1 f N 1 f	4.799 GHz 7 196 GHz	-39.453 dBm -38.921 dBm				
N 1 f	4.799 GHz 7.196 GHz	-39.453 dBm -38.921 dBm				
N 1 f N 1 f						
N 1 f N 1 f						
N 1 f N 1 f						

39 CH

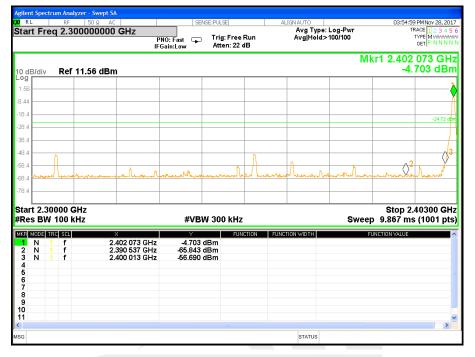
RL RF 50	Swept SA	SENSE:PU	cr.			04-00-44 PMN
tart Freq 30.0000	00 MHz	0:East 🕞 Tri	g: Free Run :en: 22 dB	ALIGN AUTO Avg Type: Avg Hold: 4		04:20:44 PM Nov 28, 20 TRACE 1 2 3 4 TYPE M WWWW DET P N N N
dB/div Ref 10.67	7 dBm					Mkr1 2.452 GH -6.779 dB
570 1						
33						
.3						
.3						-26.78
.3	\bigcirc^2 \bigcirc^3					
.3						
.3						
3 Low Mander Low Mar	manumenter		man and the second	water and the state		
.3						
art 30 MHz Res BW 100 kHz		#VBW 30	0 kHz		Swee	Stop 25.00 Gl p 2.386 s (1001 pt
R MODE TRC SCL	× 2.452 GHz	-6.779 dBm	FUNCTION	FUNCTION WIDTH	FUN	ICTION VALUE
NI 4 6	4.874 GHz	-42.545 dBm				
2 N 1 f						
N 1 f N 1 f	7.321 GHz	-42.343 dBm				
2 N 1 f 3 N 1 f 4		-42.343 dBm				
2 N 1 f 3 N 1 f 4 5 5		-42.343 dBm				
2 N 1 f 3 N 1 f 5		-42.343 dBm				
N 1 f		-42.343 dBm				
2 N 1 f 3 N 1 f 4		-42.343 dBm				•

Shenzhen STS Test Services Co., Ltd.

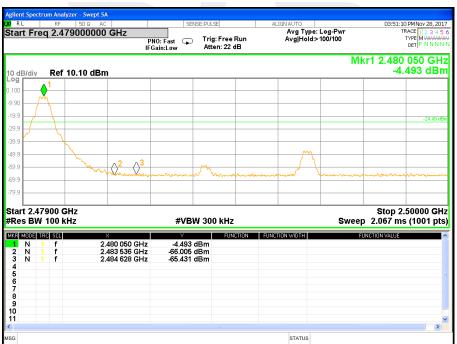
78 CH

ent Spectrum Analyzer R L RF	r - Swept SA 50 Ω AC			ALIGNAUTO		
play Line -25.		PNO: Fast	NSE:PULSE	ALIGNAUTO Avg Type: Avg Hold:	: Log-Pwr 75/100	04:10:29 PMNov 28, 20 TRACE 1 2 3 4 TYPE M WWWW
		IFGain:Low	Atten: 18 dB			DET P N N N
dB/div Ref 6.4	1 dBm					Mkr1 2.477 GF -5.016 dB
6						
6						-25.02 c
6	2	∕/ <mark>3</mark>				
6	Y	1				
6						and the second second second second
6 Juli human hall have	man and a second and a second		where the months always	- Marken Marken -	and the star of the second	
6						
nter 12.52 GHz			^			Span 24.97 Gi
es BW 100 kHz	:	#VB	W 300 kHz		Sweep	2.386 s (1001 pt
MODE TRC SCL	× 2.477 GH	z -5.016	FUNCTION	FUNCTION WIDTH	FUNC	TION VALUE
N 1 f	4.949 GH 7.446 GH	z -42.571	dBm			
	7.440 GH	2 -45.210	ubili			
						>

=


Shenzhen STS Test Services Co., Ltd.

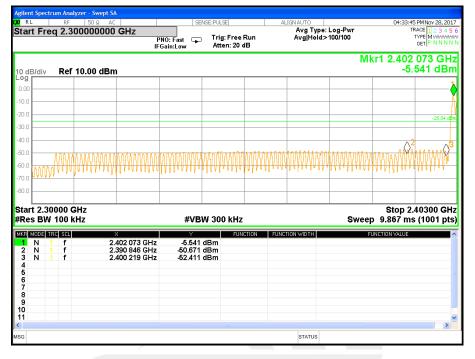
1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



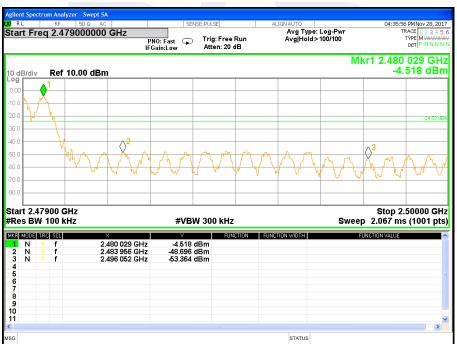
For Band edge

00 CH

78 CH



Page 34 of 49



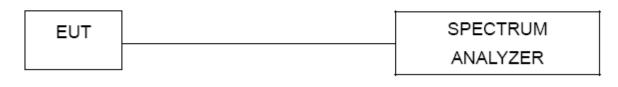
For Hopping Band edge

00 CH

78 CH

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES / LIMIT


FCC Part 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	100KHz
VB	100KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1015 hPa	Test Voltage:	DC 3.7V
Test Mode:	Hopping Mode		

Number of Hopping Channel

79

RL	RF	50 Q AC	SENSE:PULSE	ALIGN AUTO	04:30:09 PMNov 28, 2
art Free	q 2.4000	DOODOO GHZ PNC IFGa	: Fast 😱 Trig: Free Run in:Low Atten: 20 dB	Avg Type: Log-Pwr Avg Hold>100/100	TRACE 1 2 3 4 TYPE M WWW DET P N N N
) dB/div	Ref 10.	00 dBm		м	kr2 2.479 742 5 GI -5.309 dB
					2
	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
tart 2.40 Res BW	000 GHz 1.0 MHz		#VBW 1.0 MHz	Sw	Stop 2.48350 G eep 1.000 ms (1001 p
KR MODE TH	f	× 2.402 087 5 GHz	-4.958 dBm	FUNCTION WIDTH	FUNCTION VALUE
2 N 1 3	f	2.479 742 5 GHz	-5.309 dBm		
4 5					
6					
8 9					
0					

#### Hopping channel

Shenzhen STS Test Services Co., Ltd.



# 6. AVERAGE TIME OF OCCUPANCY

## 6.1 APPLIED PROCEDURES / LIMIT

	FCC Part 15.247,Subpart C				
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

#### 6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- $\tilde{h}$ . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So he dwell time is the time duration of the pulse times  $5.06 \times 31.6 = 160$  within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times  $10.12 \times 31.6 = 320$  within 31.6 seconds.

#### 6.3 TEST SETUP



### 6.4 EUT OPERATION CONDITIONS

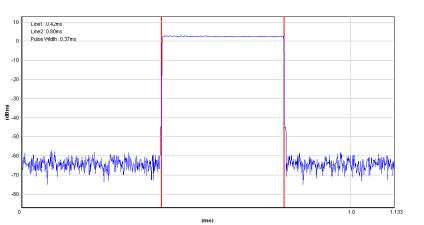
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



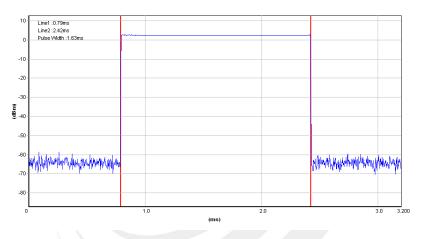
6.5 TEST RESULTS

Temperature:	<b>25</b> ℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage:	DC 3.7V
Test Mode:	GFSK(1Mbps)-DH1/DH3/DH5		

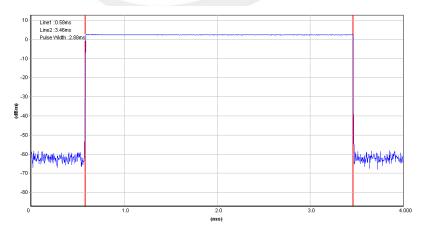
Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)
DH1	2441 MHz	0.370	0.118	0.4
DH3	2441 MHz	1.630	0.261	0.4
DH5	2441 MHz	2.880	0.307	0.4




Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com




### CH39-DH1







CH39-DH5



F

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

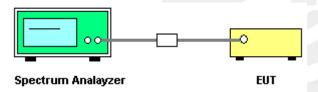
 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com





# 7. HOPPING CHANNEL SEPARATION MEASUREMEN

## 7.1 APPLIED PROCEDURES / LIMIT


Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace Max Hold	
Sweep Time Auto	

### 7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

### 7.3 TEST SETUP



# 7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



Report No.: STS1711253W01

## 7.5 TEST RESULTS

Temperature:	<b>25</b> ℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage:	DC 3.7V
Test Mode:	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)		

Frequency	Ch. Separation (MHz)	Limit	Result
2402 MHz	1.002	0.957	Complies
2441 MHz	0.999	0.956	Complies
2480 MHz	1.146	0.988	Complies

For GFSK: Ch. Separation Limits: > 20dB bandwidth

# CH00 -1Mbps

ent Spectrum Analyzer - Swept SA RL RF 50 Ω AC		SENSE:PULSE	ALIGNAUTO	04:01:51 PMNov 28, 2017	
nter Freq 2.40250000	PNO: Wide	Trig: Free Run Atten: 22 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 11.92 dBm	IFGalliLluw	Autori, LE dib	Mkr2	2.402 872 GHz -5.190 dBm	Auto Tur
8	And	~~~~,	2		Center Fr 2.402500000 Gi
					Start Fro 2.401000000 GI
1					<b>Stop Fr</b> 2.404000000 G
nter 2.402500 GHz es BW 30 kHz	#VBW 1		-	Span 3.000 MHz 200 ms (1001 pts)	CF Sto 300.000 k Auto M
	01 870 GHz	5.117 dBm -5.190 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
					Freq Offs



#### Page 42 of 49

#### CH39 -1Mbps



#### CH78 -1Mbps



 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 8. BANDWIDTH TEST

# 8.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 15.247,Subpart C				
Section Test Item Limit FrequencyRange (MHz)				Result	
	15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)	
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

#### 8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b. Spectrum Setting : RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

### 8.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

### 8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



## 8.5 TEST RESULTS

Temperature:	<b>25</b> ℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage:	DC 3.7V
Test Mode:	GFSK(1Mbps)CH00 / CH39 / C78		

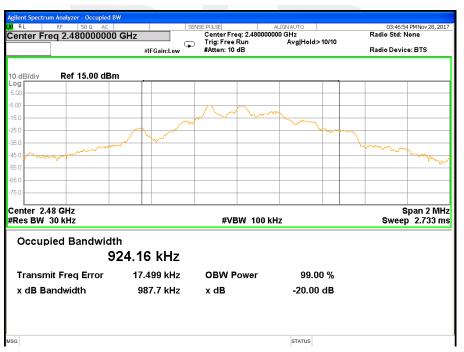
Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	0.957	PASS
2441 MHz	0.956	PASS
2480 MHz	0.988	PASS

# CH00 -1Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### CH39 -1Mbps



#### CH78 -1Mbps



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 9. OUTPUT POWER TEST

# 9.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1)&(b)(1)	Output Power	1 W or 0.125W if channel separation > 2/3 bandwidthprovided	2400-2483.5	PASS	
		thesystems operatewith an output power no greater than125 mW(20.96dBm)			

#### 9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

#### 9.3 TEST SETUP

EUT		, Y
EUI	Power meter	

### 9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



Report No.: STS1711253W01

# 9.5 TEST RESULTS

Temperature:	<b>25</b> ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage:	DC 3.7V

GFSK(1Mbps)							
Test Channel	Frequency	Conducted Output Power		LIMIT			
	(MHz)	Peak (dBm)	AVG (dBm)	dBm			
CH00	2402	4.16	0.13	30			
CH39	2441	3.27	-0.71	30			
CH78	2480	3.61	-0.35	30			

Note: the channel separation > bandwidth



Shenzhen STS Test Services Co., Ltd.



## 10. ANTENNA REQUIREMENT

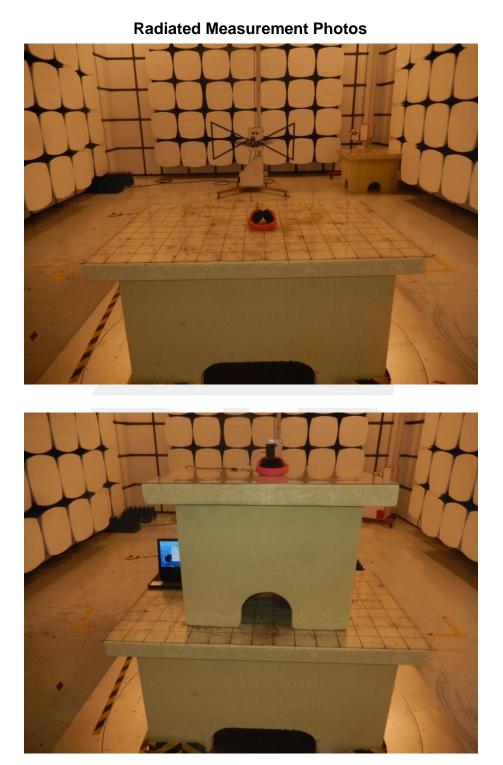
### **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

## 10.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.




Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 49 of 49

# **APPENDIX-PHOTOS OF TEST SETUP**



* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com