

Compliance Certification Services (Kunshan) Inc.

Report No.: KSEM201200152701 Page: 1 of 31

TEST REPORT

Application No.:	KSEM20012001527CR
FCC ID:	2AL8S-0235C4SJ
IC:	25987-0235C4SJ
Applicant:	Zhejiang Uniview Technologies Co., Ltd.
Address of Applicant:	88 Jiangling Road, Xixing Town, Binjiang District, Hangzhou City
Manufacturer:	Zhejiang Uniview Technologies Co., Ltd.
Address of Manufacturer:	88 Jiangling Road, Xixing Town, Binjiang District, Hangzhou City
Equipment Under Test (EU	Т):
EUT Name:	Face Recognition Access Control Terminal
Model No.:	OET-231KH,OET-231K1H, OET-231H,OET-231H-NB,OET-231K1H- NB,OET-231KH-NB,OET-231H-xxxxxxx-yyyyyyyy-zzz,OET-231K1H- xxxxxxx-yyyyyyyy-zzz,OET-231KH-xxxxxxx-yyyyyyyy-zzz(x,y,z are variables, can be "0-9", "A-Z","a-z" or blank, the differences of the basic function. "-" is optional)¤
¤	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Standard(s):	47 CFR Part 15, Subpart C 15.225
	RSS-210 Issue 10 December 2019
	RSS-Gen Issue 5, March 2019 Amendment 1
Date of Receipt:	2020-12-01
Date of Test:	2020-12-01 to 2020-12-09
Date of Issue:	2020-12-10
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Ena fri

Eric Lin EMC Lab Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions. A trention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faislification of the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com

No.10、Weye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 2 of 31

For IC Model: OET-231H, OET-231K1H, OET-231KH

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 3 of 31

	Revision Record			
Version	Description	Date	Remark	
00	Original	2020-12-10	/	

Authorized for issue by:			
	Damon zhou		
	Damon Zhou / Project Engineer	_	
	Enie fri		
	Eric Lin / Reviewer	-	

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 4 of 31

2 Test Summary

Radio Spectrum Technical Requirement				
Item	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.225	N/A	RSS-210 Issue 10 December 2019	Customer Declaration

Radio Spectrum Matt	Radio Spectrum Matter Part				
ltem	FCC Requirement	IC Requirement	Method	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.2	Pass	
20dB Bandwidth	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.9	Pass	
Emission Mask	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.4	*Pass	
Frequency tolerance	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.8	Pass	
Radiated Emissions(9kHz- 30MHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.4&6.5	Pass	
Radiated Emissions(30MHz- 1GHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.4&6.5	Pass	
99% Bandwidth	-	RSS-210 Issue 10 December 2019	RSS-Gen Section 6.7	Pass	

Remark *: The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

Declaration of EUT Family Grouping:

Note 1: There are series models mentioned in this report, and they are the similar in electrical and electronic characters. Only the model OET-231KH,OET-231K1H was tested since their differences were the model number and appearance.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 5 of 31

3 Contents

		Page
1	COVER PAGE	1
2	2 TEST SUMMARY	4
3	CONTENTS	5
4	GENERAL INFORMATION	6
	 4.1 DETAILS OF E.U.T. 4.2 DESCRIPTION OF SUPPORT UNITS. 4.3 MEASUREMENT UNCERTAINTY. 4.4 TEST LOCATION . 4.5 TEST FACILITY . 4.6 ABNORMALITIES FROM STANDARD CONDITIONS. 	
5		
6		
7	6.1 ANTENNA REQUIREMENT RADIO SPECTRUM MATTER TEST RESULTS	
-	 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30) 7.2 20DB BANDWIDTH	0MHz)
8	TEST SETUP PHOTOGRAPHS	31
9	EUT CONSTRUCTIONAL DETAILS	

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 6 of 31

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 12V by adapter
Serial Number:	OET-231KH: 210235C4SP
	OET-231K1H: 320A000005
Firmware Version:	OET-231KH: B2212.1.0.LJ02
	OET-231K1H: B2212.1.2
Test voltage:	AC 120V/60Hz
Operation Frequency	13.56MHz
Modulation Technique:	ASK
Antenna Type:	Loop antenna
Number of Channel:	1

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Adapter	CHANNEL WELL	KPL-040F-VI	/
Parameter of Adapter:			

Adaptar	Rated Input	AC100V-240V 50/60Hz 1700mA
Adapter	Rated Output	12V,3,33A

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±8.4 x 10 ⁻⁸
2	Timeout	±2s
3	Duty cycle	±0.37%
4	Occupied Bandwidth	±3%
5	RF conducted power	±0.6dB
6	RF power density	±2.84dB
7	Conducted Spurious emissions	±0.75dB
0		±4.6dB (Below 1GHz)
8	RF Radiated power	±4.1dB (Above 1GHz)
		±4.2dB (Below 30MHz)
0		±4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	±4.8dB (1GHz-18GHz)
		±5.2dB (Above 18GHz)
10	Temperature test	±1°C
11	Humidity test	±3%
12	Supply voltages	±1.5%
13	Time	±3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 7 of 31

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

All measurement facilities used to collect the measurement data are located at No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

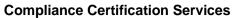
Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED (CAB Identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development (ISED) Canada as an accredited testing laboratory.

CAB Identifier: CN0072.


• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively. None

4.6 Abnormalities from Standard Conditions

None

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 8 of 31 Page:

Equipment List 5

ltem	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
Con	ducted Emission at Mains Termin	als (150kHz-30MHz	z)			
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
2	LISN	R&S	ENV216	101604	10/19/2020	10/18/2021
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/19/2020	10/18/2021
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021
RF	Conducted Test					
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	04/22/2020	04/21/2021
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	10/19/2020	10/18/2021
3	Signal Generator	Agilent	E8257C	MY43321570	10/10/2020	10/18/2021
4	Vector Signal Generator	Agilent	N5182A	MY50142015	09/25/2020	09/24/2021
5	Universal Radio Communication Tester	R&S	CMU200	109525	10/19/2020	10/18/2021
6	Universal Radio Communication Tester	R&S	CMW500	159275	10/19/2020	10/18/2021
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
8	Switcher	CCSRF	FY562	KS301219	10/19/2020	10/18/2021
9	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
10	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
11	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
12	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
13	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
14	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
15	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RF R	adiated Test		•	•		
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/10/2020	10/18/2021
3	Loop Antenna	COM-POWER	AL-130R	10160008	04/29/2019	04/28/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	10/26/2020	10/25/2022
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	10/19/2020	10/18/2021
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS		2	N.C.R	N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz \sim 5350 MHz $)$	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16	Filter (885 MHz \sim 915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz \sim 860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
18	Filter (1745 MHz \sim 1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
19	Filter (1922 MHz \sim 1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21	Filter (1532 MHz \sim 1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
23	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021
24	Spectrum Analyzer	Keysight	N9020A	MY53420174	09/25/2020	09/24/2021

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 9 of 31

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is loop antenna integrated on the main PCB and no consideration of replacement.

Antenna location: Refer to Appendix (Internal Photos)

(Kunshan) Inc.

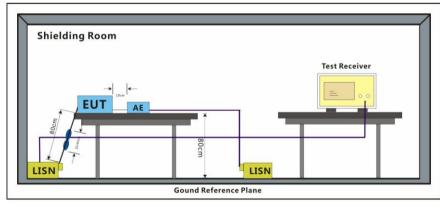
Report No.: KSEM201200152701 Page: 10 of 31

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.207 ANSI C63.10 (2013) Section 6.2

Li	mit (dBuV)	
Quasi-peak	Average	
66 to 56*	56 to 46*	
56 46		
60 50		
	Quasi-peak 66 to 56* 56	


* Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:	23 °C Humidity: 45 % RH Atmospheric Pressure: 1001 mbar
Pre scan mode:	a : TX mode_Keep the EUT in transmitting with modulation mode with Temperature module 1.
	b: TX mode_Keep the EUT in transmitting with modulation mode with Temperature module 2.
The final Test mode	a: TX mode_Keep the EUT in transmitting with modulation mode with Temperature module 1.

7.1.2 Test Setup Diagram

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 11 of 31

7.1.3 Measurement Procedure and Data

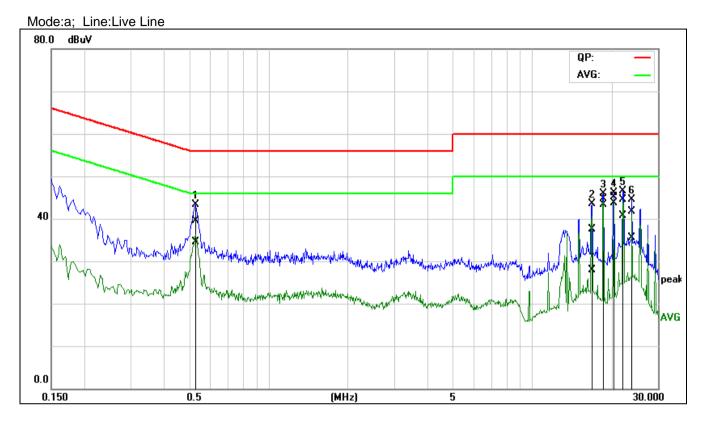
1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


1. LISN=Read Level+ Cable Loss+ LISN Factor

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 12 of 31

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.5280	19.96	15.00	19.47	39.43	34.47	56.00	46.00	-16.57	-11.53	Pass
2	16.8859	17.24	7.73	20.17	37.41	27.90	60.00	50.00	-22.59	-22.10	Pass
3	18.6476	24.40	23.04	20.21	44.61	43.25	60.00	50.00	-15.39	-6.75	Pass
4*	20.4315	24.79	23.50	20.26	45.05	43.76	60.00	50.00	-14.95	-6.24	Pass
5	22.2007	24.26	20.29	20.32	44.58	40.61	60.00	50.00	-15.42	-9.39	Pass
6	23.9952	21.40	15.21	20.37	41.77	35.58	60.00	50.00	-18.23	-14.42	Pass

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 13 of 31

80.0 dBuV QP: AVG: 40 W. M. M. THE HAMPY bea "hallow year Man many 410 M.M AVG 0.0 0.150 0.5 (MHz) 5 30.000

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.5298	20.22	15.19	19.45	39.67	34.64	56.00	46.00	-16.33	-11.36	Pass
2	16.5866	6.69	1.67	20.15	26.84	21.82	60.00	50.00	-33.16	-28.18	Pass
3	18.3954	4.42	-0.48	20.20	24.62	19.72	60.00	50.00	-35.38	-30.28	Pass
4	20.1310	3.74	-1.25	20.24	23.98	18.99	60.00	50.00	-36.02	-31.01	Pass
5	21.9301	7.26	2.54	20.30	27.56	22.84	60.00	50.00	-32.44	-27.16	Pass
6	23.7333	8.86	4.37	20.36	29.22	24.73	60.00	50.00	-30.78	-25.27	Pass

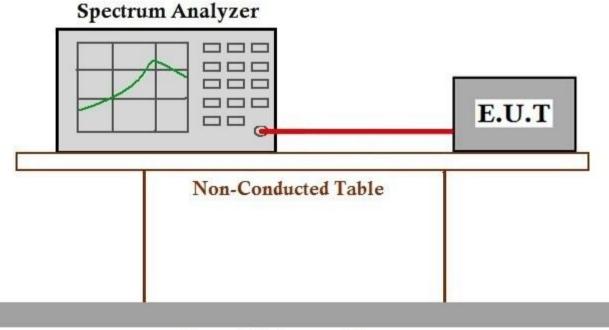
Mode:a; Line:Neutral Line

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 14 of 31

7.2 20dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode with Temperature
module 1.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 15 of 31

20dB bandwidth (kHz)	F∟ (MHz)	Fн (MHz)	Limit(MHz)	Result
4.815	13.5582	13.5630	13.110 – 14.010	Pass

Test plot as follows:

Spectrum					
Ref Level 86.00 d	ВµV 👄	RBW 100 Hz			
Att 0) dB 🧼 SWT 100 ms 🐵	VBW 300 Hz Mo	de Sweep		
1Pk Max					
			D3[1]		-0.18 di
80 dBµV					4.81500 kH
70 dBuV			M1[1]		43.42 dBµ\
			M2	1 1	13.55822200 MH:
60 dBuV					
50 dBµV					
01.424	60 dBµV			-	3
40 dBµV	en asha				and and a second s
30 dBµV					
20 dBµV					
10 dBuV					
10 dBµV					
o dBuV					
-10 dBuV					
CF 13.56 MHz		1001 pt	<u> </u>	1	Span 10.0 kHz
larker		1001 pr	-		
Type Ref Trc	X-value	Y-value	Function	Funct	ion Result
M1 1	13.558222 MHz	43.42 d8µV			
M2 1	13.560629 MHz	63.26 dBµV			
D3 M1 1	4.815 kHz	-0.18 dB			

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 16 of 31

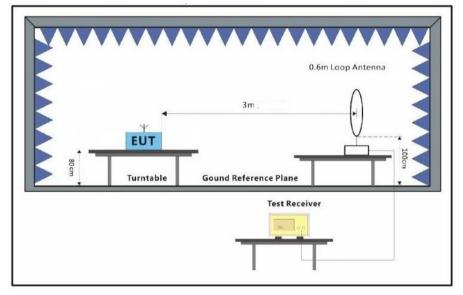
7.3 Emission Mask

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.225(a)&(b)&(C) ANSI C63.10 (2013) Section 6.4

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15.848 microvolts/meter at 30 meters.

- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.


7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea : TX mode_Keep the EUT in transmitting with modulation mode with
Temperature module 1.

b: TX mode_Keep the EUT in transmitting with modulation mode with Temperature module 2.

7.3.2 Test Setup Diagram

7.3.3 Measurement Procedure and Data

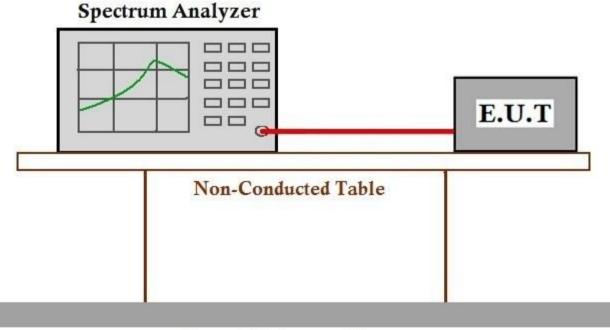
For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Note: The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 17 of 31

7.4 Frequency tolerance


Test Requirement	47 CFR Part 15, Subpart C 15.225(e)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	1.356kHz

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode with Temperature
module 1.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 18 of 31

Test Co	onditions	Test Result	Deviation	Limit	Deck
Temp (℃)	Volt (V AC)	(MHz)	(kHz)	(kHz)	Result
T _{nom} (-20)	V _{nom} (120)	13.560629	0.629		Pass
T _{nom} (-10)	V _{nom} (120)	13.560628	0.628		Pass
T _{nom} (0)	V _{nom} (120)	13.560637	0.637		Pass
T _{nom} (10)	V _{nom} (120)	13.560630	0.630		Pass
T _{nom} (20)	V _{nom} (120)	13.560628	0.628	±0.01%	Pass
T _{nom} (30)	V _{nom} (120)	13.560639	0.639	(1.3560kHz)	Pass
T _{nom} (40)	V _{nom} (120)	13.560629	0.629		Pass
T _{nom} (50)	V _{nom} (120)	13.560633	0.633		Pass
T (20)	V _{min} (102)	13.560625	0.625		Pass
T _{nom} (20)	V _{max} (138)	13. 560634	0.634		Pass

Nominal Operation Frequency: 13.56MHz

Note: Deviation (kHz) = (Test Result-13.56MHz)*1000

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 19 of 31

7.5 Radiated Emissions(9kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.225(d) & 15.209								
Test Method:	ANSI C63.10 (20 ⁻	13) Section 6.4	&6.5					
Limit:								
	Field strength	Limit	Detector	Measurement Distance				
Frequency(MHz)	(microvolts/meter)	(dBuV/m)	Delector	(meters)				
0.009-0.490	2400/F(kHz)	-	-	300				
0.490-1.705	24000/F(kHz)	-	-	30				
1.705-30	30	-	-	30				
30-88	100	40.0	QP	3				
88-216	150	43.5	QP	3				
216-960	200	46.0	QP	3				
960-1000	500	54.0	QP	3				
Above 1000	500	54.0	AV	3				

NOTE:

(1) For test distance other than what is specified, but fulfilling the requirements of section 15.31(f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).

So the Distance Extrapolation Factor in dB is $40*\log (D_{TEST} / D_{SPEC})$ where $D_{TEST} = Test$ Distance and $D_{SPEC} = Specified$ Distance.

Field strength limit $(dB\mu V/m)@$ test distance= Field strength limit $(dB\mu V/m)@$ specified distance +Distance Extrapolation Factor

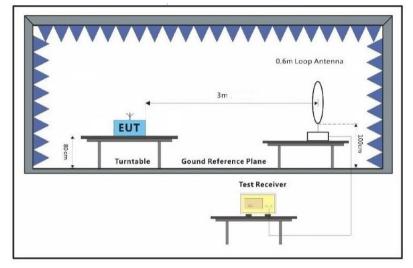
(2) The lower limit shall apply at the transition frequencies.

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C ⊦	Humidity: 50	% RH	Atmospheric Pressure:	1002 mbar
Test mode:	a : TX mode_Kee Temperature mod	•	ansmitting w	ith modulation mode with	I
	b: TX mode_Keep Temperature mod	•	ansmitting wi	th modulation mode with	

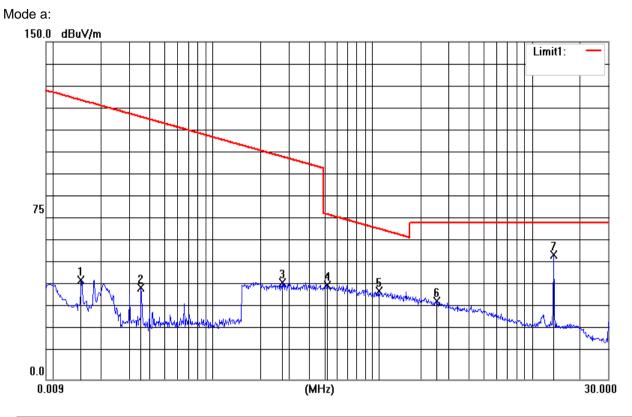
No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com


Member of the SGS Group (SGS SA)

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 20 of 31

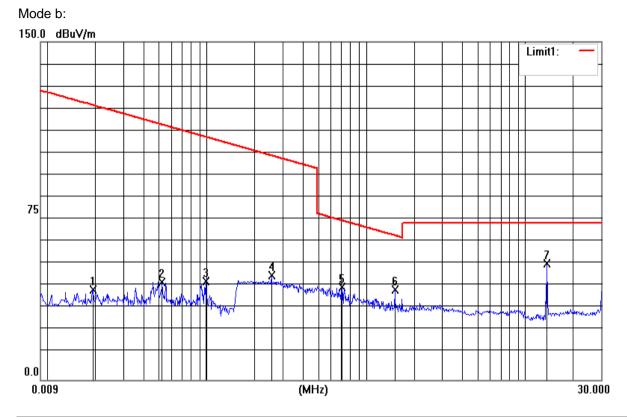
7.5.2 Test Setup Diagram


7.5.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 21 of 31


No.	Frequency	Reading Level	Correct	Result Level@3m	Result Level@SPEC	Limit Line@SPEC	Over Limit	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0150	28.92	15.13	44.05	-35.95	44.07	-80.02	QP
2	0.0354	25.76	15.11	40.87	-39.13	36.61	-75.74	QP
3	0.2701	27.89	15.20	43.09	-36.91	18.97	-55.88	QP
4	0.5237	26.65	15.23	41.88	1.88	33.22	-31.34	QP
5	1.0881	23.76	15.37	39.13	-0.87	26.89	-27.76	QP
6	2.5133	19.14	15.56	34.70	-5.30	29.50	-34.80	QP
7	13.6220	39.85	15.49	55.34	15.34	29.50	-14.16	PK

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 22 of 31

Item	Freq.	Read Level	Antenna Factor	Result Level@3m	Result Level@SPEC	Limit Line@SPEC	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0193	24.4	15.59	39.99	-40.01	41.88	-81.89	QP
2	0.0522	28.81	14.64	43.45	-36.55	33.24	-69.79	QP
3	0.0985	29.08	14.5	43.58	-36.42	27.73	-64.15	QP
4	0.2535	31.27	15.17	46.44	-33.56	19.52	-53.08	QP
5	0.7046	25.81	15.07	40.88	0.88	30.65	-29.77	QP
6	1.5113	24.58	15.53	40.11	0.11	24.04	-23.93	QP
7	13.6227	36.09	15.49	51.58	11.58	29.5	-17.92	PK

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

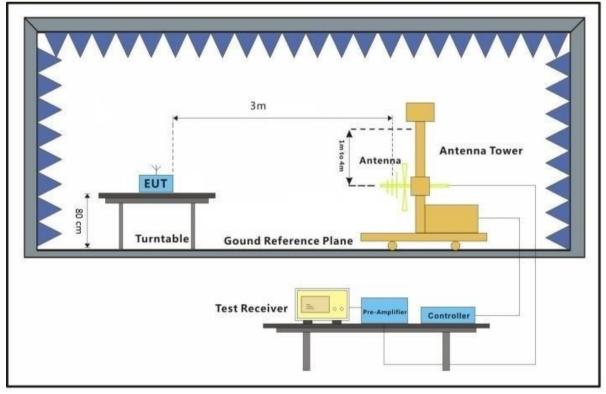
Report No.: KSEM201200152701 Page: 23 of 31

7.6 Radiated Emissions(30MHz-1GHz)

Test Requirement
Test Method:
Limit:

47 CFR Part 15, Subpart C 15.225(d) & 15.209 ANSI C63.10 (2013) Section 6.4&6.5

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3


7.6.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest mode:a: TX mode_Keep the EUT in transmitting with modulation mode with
Temperature module 1.

b: TX mode_Keep the EUT in transmitting with modulation mode with Temperature module $\ensuremath{\mathsf{2}}$

7.6.2 Test Setup Diagram

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 24 of 31

7.6.3 Measurement Procedure and Data

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground for below 1GHz at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

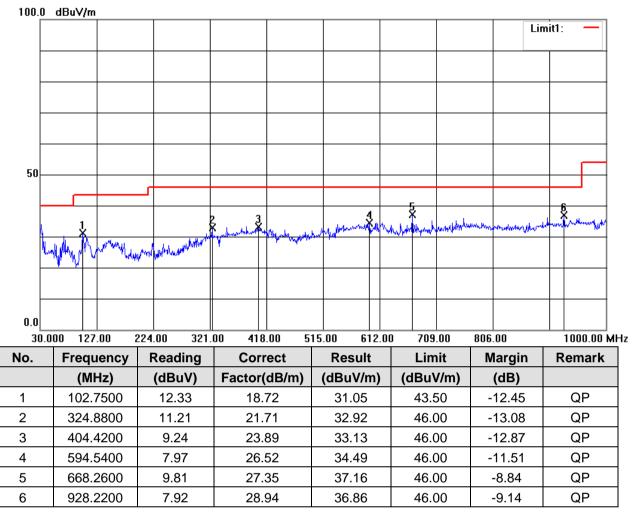
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

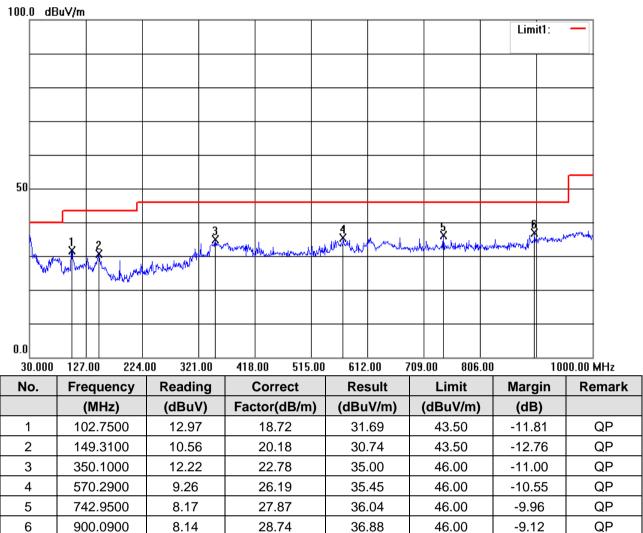
Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 25 of 31

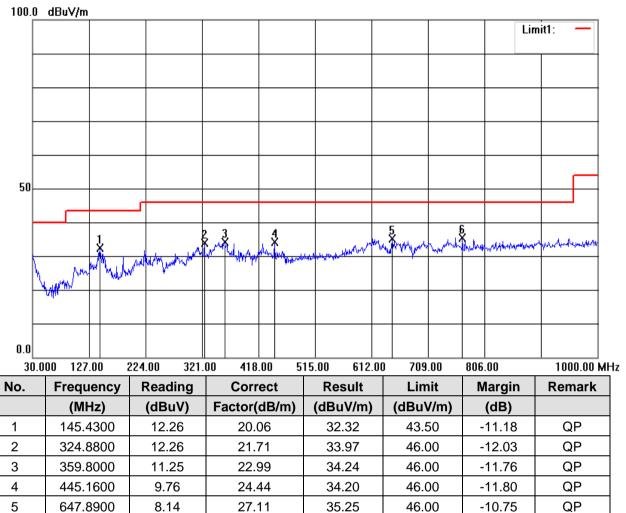
Mode:a; Polarization:Horizontal



(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 26 of 31

Mode:b; Polarization:Horizontal


No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 27 of 31

Mode:a; Polarization:Vertical

35.37

46.00

-10.63

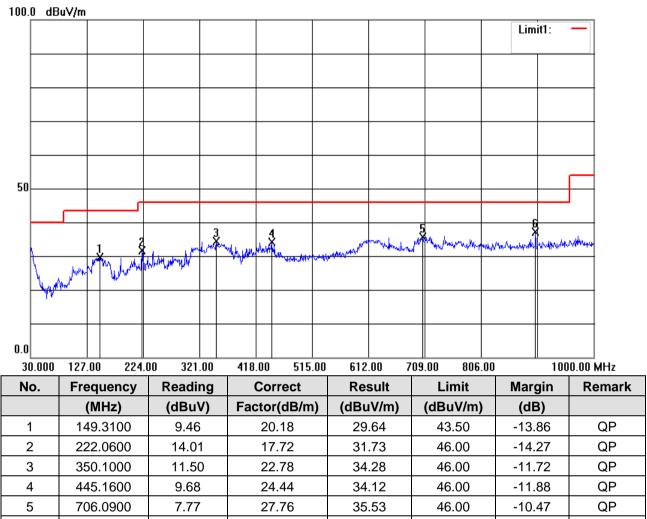
QP

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

28.00

6

768.1700


7.37

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 28 of 31

Mode:b; Polarization:Vertical

28.74

37.11

46.00

-8.89

QP

6

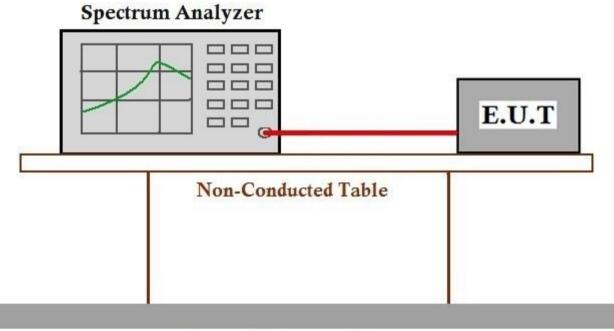
900.0900

8.37

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 29 of 31

7.7 99% Bandwidth


Test Requirement	RSS-210 A1.3				
Test Method:	RSS-Gen Section 6.7				

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: Test mode 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar a:TX mode_Keep the EUT in transmitting with modulation mode with Temperature module 1.

7.7.2 Test Setup Diagram

Ground Reference Plane

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Member of the SGS Group (SGS SA)

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 30 of 31

7.7.3 Measurement Procedure and Data

Frequency (MHz)	99% bandwidth (kHz)
13.56	6.4535

Ref Level 80.		- 0	0.00.10			 		
Att			BW 100 Hz BW 300 Hz	Mode Swe	en			
1Pk Max	 							
				M1[1]		62.87 dBµ 13.56059300 MH		
70 dBµV				Occ Bw		6.453546454 kH		
				M1				
60 dBµV								
50 dBµV						T2	1	
40 dBµV	 <u> </u>					 T2		
30 dBµV								
20 dBµV	 					 		
10 dBµV	 					 		
0 dBµV	 							
-10 dBµV								
CF 13.56 MHz			100	l pts		Spa	n 10.0 kHz	

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

(Kunshan) Inc.

Report No.: KSEM201200152701 Page: 31 of 31

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -