

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

IP Camera

MODEL NUMBER: IPC6415SR-X5UPW

ADDITIONAL NUMBER: IPC6415SR-X5UPW-NB, IPC-B645, IPC-B645-IR, IPC-B645-WH, IPC-B645-FW, IPC-S645, IPC-S645-IR, IPC-S645-FW, IPC-E645-FW, IPC-E645-FW, IPC-E645-IR, IPC-E645-WH, IPC-E645-FW, AFSXJ-NC-C-IPC-B645, AFSXJ-NC-C-IPC-B645-IR, AFSXJ-NC-C-IPC-B645-WH, AFSXJ-NC-C-IPC-B645-FW, IPC-B645-XYZ-ABC

FCC ID: 2AL8S-0235C3GQ

REPORT NUMBER: 4789049979-1

ISSUE DATE: Jul. 08, 2019

Prepared for

Zhejiang Uniview Technologies Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

UL				REPORT No.:	4789049979-1 Page 2 of 122
			Revision History		
Rev.	Issue Date	Revisions			Revised By
V0	07/08/2019	Initial Issue			

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass			
7	Antenna Requirement	FCC Part 15.203	Pass			

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	. 6
2.	TES	ST METHODOLOGY	. 8
3.	FAG	CILITIES AND ACCREDITATION	. 8
4.	CAI	LIBRATION AND UNCERTAINTY	. 9
4	4.1.	MEASURING INSTRUMENT CALIBRATION	. 9
4	4.2.	MEASUREMENT UNCERTAINTY	. 9
5.	EQ	UIPMENT UNDER TEST	10
ł	5.1.	DESCRIPTION OF EUT	10
ł	5.2.	MAXIMUM OUTPUT POWER	11
ł	5.3.	CHANNEL LIST	11
ł	5.4.	TEST CHANNEL CONFIGURATION	11
ł	5.5.	THE WORSE CASE CONFIGURATIONS	11
ł	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	12
ł	5.7.	THE WORSE CASE CONFIGURATIONS	12
ł	5.8.	DESCRIPTION OF TEST SETUP	13
c			
6.	ME.	ASURING INSTRUMENT AND SOFTWARE USED	14
о. 7.		ASURING INSTRUMENT AND SOFTWARE USED	
7.	ME	ASUREMENT METHODS	15
7. 8.	ME.	ASUREMENT METHODS	15 16
7. 8.	ME. AN ⁻ 3. 1.	ASUREMENT METHODS	15 16 <i>16</i>
7. 8.	ME.	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH	15 16 16 19
7. 8.	ME AN 3. 1. 3.2. 8.2. 8.2.	ASUREMENT METHODS	15 16 <i>19</i> 20 22
7. 8.	ME AN 3. 1. 3.2. 8.2. 8.2.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24
7. 8.	ME AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26
7. 8.	ME AN ⁻ 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 28 29
7. 8.	ME AN ⁻ 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 28 29 29
7. 8.	ME AN ⁻ 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 28 29 29 29
7. 8. 8.	ME AN ⁻ 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 29 29 29 29 29
7. 8. 8.	ME AN ⁻ 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 4. 8. 4.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 29 29 29 29 29 30 31
7. 8. 8.	ME AN ⁻ 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4.	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE PEAK CONDUCTED OUTPUT POWER. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT40 MODE PEAK CONDUCTED OUTPUT POWER. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT40 MODE 2. 802.11n HT40 MODE 2. 802.11n HT40 MODE 2. 802.11n HT40 MODE	15 16 <i>19</i> 20 22 24 26 29 29 29 29 29 30 31 33
7. 8. 8.	ME AN ⁻ 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4.	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE PEAK CONDUCTED OUTPUT POWER. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT40 MODE 9. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT40 MODE 9. 802.11b MODE 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT20 MODE 7. 802.11b MODE 802.11n HT20 MODE 802.11n HT20 MODE 90WER SPECTRAL DENSITY 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT40 MODE 2. 802.11g MODE 3. 802.11n HT40 MODE	15 16 <i>19</i> 20 22 24 26 29 29 29 29 29 30 31 33 35
7. 8. { { {	ME AN ⁻ 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4.	ASUREMENT METHODS	15 16 <i>19</i> 20 22 24 26 29 29 29 29 30 31 33 35 37

			Tuge o of TZZ
	8.5.2.	802.11g MODE	47
	8.5.1.	802.11n HT20 MODE	53
	8.5.1.	802.11n HT40 MODE	59
9.	RADIAT	TED TEST RESULTS	65
q	.1. RES	STRICTED BANDEDGE	71
0	9.1.1.	802.11b MODE	
	9.1.2.	802.11g MODE	
	9.1.3.	802.11n HT20 MODE	80
	9.1.1.	802.11n HT40 MODE	
~	-		
9		URIOUS EMISSIONS (1~18GHz)	
	9.2.1.	802.11b MODE	
	9.2.2. 9.2.3.	802.11g MODE	
	9.2.3. 9.2.4.	802.11n HT20 MODE 802.11n HT40 MODE	
9	.3. SPL	URIOUS EMISSIONS (18~26GHz)	
	9.3.1.	802.11b MODE	112
9	4 SPI	URIOUS EMISSIONS (0.03 ~ 1 GHz)	114
Ŭ	9.4.1.		
~			
9		URIOUS EMISSIONS BELOW 30M	
	9.5.1.	802.11b MODE	
10.		OWER LINE CONDUCTED EMISSIONS	110
1	0.1. 8	302.11b MODE	
			(00
11.	ANIE	ENNA REQUIREMENTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

- pp. ca c c	
Company Name:	Zhejiang Uniview Technologies Co., Ltd.
Address:	88 JIANGLING RD, BINJIANG DISTRICT, HANGZHOU,
	ZHEJIANG 310051 CHINA
Manufacturer Information	
Company Name:	Zhejiang Uniview Technologies Co., Ltd.
Address:	88 JIANGLING RD, BINJIANG DISTRICT, HANGZHOU,
	ZHEJIANG 310051 CHINA

Factory Information

Factory 1: Company Name: Address:

Zhejiang Uniview Systems Technology Co.,Ltd. No.1277 South Qingfeng South Road, Tongxiang City,Jiaxing City

Factory 2: Company Name: Address:

Factory 3: Company Name: Address:

EUT Description

EUT Name: Model: Additional Number:

Sample Number: Sample Received Date: Date of Tested: TDG Technology Co.,Ltd. YATAI ROAD NO.1, NANHU DISTRICT, JIAXING, ZHEJIANG, 314050, CHINA

SUZHOU QIAOXIN ELECTRONIC Technology Co.,Ltd. NO.77,YITANG ROAD,ECONOMIC DEVELOPMENT ZONE,WUJIANG DISTRICT, SUZHOU JIANGSU CHINA

IP Camera IPC6415SR-X5UPW IPC6415SR-X5UPW-NB, IPC-B645, IPC-B645-IR, IPC-B645-WH, IPC-B645-FW, IPC-S645, IPC-S645-IR, IPC-S645-WH, IPC-S645-FW, IPC-E645, IPC-E645-IR, IPC-E645-WH, IPC-E645-FW, AFSXJ-NC-C-IPC-B645, AFSXJ-NC-C-IPC-B645-IR, AFSXJ-NC-C-IPC-B645-WH, AFSXJ-NC-C-IPC-B645-FW, IPC-B645-XYZ-ABC 2349907 May 16, 2019 May 16~ June 20, 2019

All the modules have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with IPC6415SR-X5UPW. The difference lies only for model designation, different sales markets and consumer.

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			

Prepared By:

Tom Tang

Checked By:

Chris Zhong.

Tom Tang Engineer Project Associate Chris Zhong Senior Project Engineer

Approved By:

Scholl Zhang

Scholl Zhang Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.80dB		
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.32dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.27dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.72dB (1GHz-18Gz)		
	4.11dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	IP Camera
Model	IPC6415SR-X5UPW
Radio Technology	IEEE802.11b/g/n HT20&HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Power Supply	DC 12V

Remark:

Model No.:

Number	Name	Number	Name	Number:	Name
1	IPC6415SR- X5UPW	2	IPC6415SR- X5UPW-NB	3	IPC-B645
4	IPC-B645-IR	5	IPC-B645-WH	6	IPC-B645-FW
7	IPC-S645	8	IPC-S645-IR	9	IPC-S645-WH
10	IPC-S645-FW	11	IPC-E645	12	IPC-E645-IR
13	IPC-E645-WH	14	IPC-E645-FW	15	AFSXJ-NC-C-IPC- B645
16	AFSXJ-NC-C-IPC- B645-IR	17	AFSXJ-NC-C-IPC- B645-WH	18	AFSXJ-NC-C-IPC- B645-FW
19	IPC-B645-XYZ- ABC				

Only the main model IPC6415SR-X5UPW is tested and only the data of this model is shown in this test report. Since have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with IPC6415SR-X5UPW. The difference lies only for model designation, different sales markets and consumer.

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)	
1	IEEE 802.11b	2412-2462	1-11[11]	11.12	
1	1 IEEE 802.11g		1-11[11]	18.50	
1	IEEE 802.11nHT20	2412-2462	1-11[11]	18.09	
1	IEEE 802.11nHT40	2422-2452	3-9[7]	18.07	

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	/	/	

	Channel List for 802.11n (40 MHz)								
Channel	nannel Frequency (MHz) Channel Frequency y(MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)			
3	2422	5	2432	7	2442	9	2452		
4	2427	6	2437	8	2447	/	/		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency		
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz		

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		SecureCRT					
Transmit			Test Channel					
Modulation Mode	Antenna		NCB: 20MHz			NCB: 40MHz		
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	N/A	N/A	N/A				
802.11g	1	N/A N/A N/A /			/			
802.11n HT20	1	N/A	N/A	N/A	1			
802.11n HT40	1	/ N/A N/A				N/A	N/A	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2412-2462	Internal Antenna	2.4	

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there is only one transmission antenna, so only the worst data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

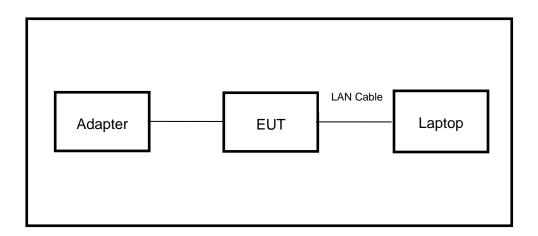
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	E550c	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	LAN	LAN	LAN	1	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Adapter	GUCF	UWP-24W-1220T	N/A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

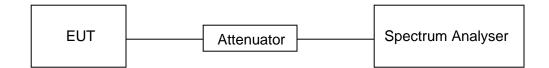
		Cor	nducted	Emis	sions (Instrur	nent)				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.		
\checkmark	EMI Test Receiver	R&S	ESR	3	126700	2017-12-14	2018-12-13	2019-12-12		
\checkmark	Two-Line V-Network	R&S	ENV2	16	126701	2017-12-14	2018-12-13	2019-12-12		
\checkmark	Artificial Mains Networks	R&S	ENY8	31	126711	2017-12-14	2018-12-13	2019-12-12		
	Software									
Used	ed Description Manufacturer Name Version									
\checkmark	Test Software for (Conducted distur	bance		R&S	EMC32	Ver. 9.25			
		Ra	diated E	miss	ions (Instrum	ent)				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.		
\checkmark	Spectrum Analyzer	Keysight	N9010)B	MY57110128	2018-05-30	2019-05-29	2020-05-28		
\checkmark	EMI test receiver	R&S	ESR2	26	1267603	2017-12-14	2018-12-13	2019-12-22		
\checkmark	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	513	513-265	2018-06-17	2019-06-16	2020-06-15		
	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		126704	N/A	2019-01-28	2022-01-27		
	Receiver Antenna (1GHz-18GHz)	R&S	HF907		126705	2018-01-27	2019-01-26	2020-01-26		
\checkmark	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9170		126706	2018-02-07	2019-02-06	2020-02-05		
	Receiver Antenna (26.5GHz-40GHz)	ΤΟΥΟ	HAP 26-40W		00000012	2017-07-26	2018-07-25	2019-07-24		
\checkmark	Pre-amplification (To 1GHz)	R&S	SCU-0	3D	134666	2018-02-07	2019-02-06	2020-02-05		
	Pre-amplification (To 18GHz)	TDK	PA-02-0)118	TRS-305- 00066	2017-12-12	2018-12-11	2019-12-10		
	Pre-amplification (To 26.5GHz)	R&S	SCU-2	6D	134668	2018-02-07	2019-02-06	2020-02-05		
	Band Reject Filter	Wainwright	WRCJ 2350-24 2483.5-25 40SS	400- 533.5-	1	2018-05-30	2019-05-29	2020-05-28		
V	Highpass Filter	Wainwright	WHKX10- 2700-3000- 18000-40SS		2	2018-05-30	2019-05-29	2020-05-28		
				Soft	ware					
Used	Desci	ription	Manufac		turer	Name	Version			
\checkmark	Test Software for R	adiated disturbar	nce T	onsce	end	JS32	V1.0			
			Oth	er ins	truments					
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Next Cal.			
	Spectrum Analyzer	Keysight	N9010)B	MY57110128	2018-05-30	2019-05-29	2020-05-28		
\checkmark	Power Meter	Keysight	U2021	XA	MY57110002	2018-06-13	2019-06-12	2020-06-11		

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density KDB 558074 D01 15.247 Meas Guidance v05r02		8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

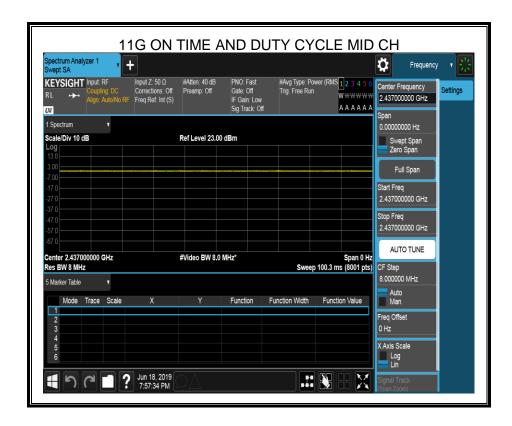
TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

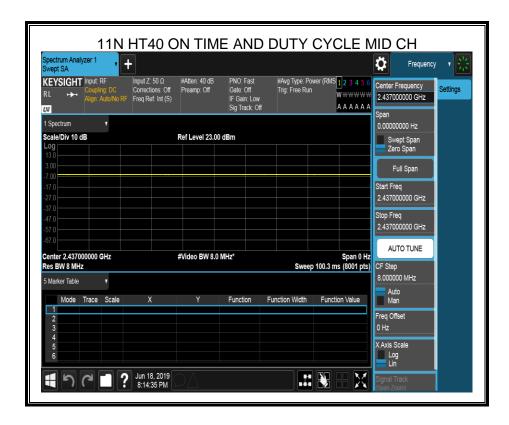
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11B	100.3	100.3	1	100%	0	0.01	0.01
11G	100.3	100.3	1	100%	0	0.01	0.01
11N20	100.3	100.3	1	100%	0	0.01	0.01
11N40	100.3	100.3	1	100%	0.	0.01	0.01

Note:


Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.

UL-CCIC COMPANY LIMITED

This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.


|--|

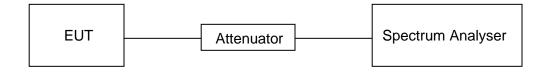
pectrum Analyzer 1 wept SA	' +					Frequency	/ 1 诺
L Coupling: D L Align: Auto/		#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Pov Trig: Free Run	wer (RMS <mark>1</mark> 23456 W WWWW A A A A A A	2.437000000 GHz	Settings
Spectrum v						0.00000000 Hz	
cale/Div 10 dB og 3.0		Ref Level 23.00	dBm			Swept Span Zero Span	
3.00						Full Span	
7.00 17.0 27.0 37.0						Start Freq 2.437000000 GHz	
17.0 57.0						Stop Freq 2.437000000 GHz	
enter 2.437000000 GHz		#Video BW 8.0	MU-*		Span 0 Hz	AUTO TUNE	
enter 2.437000000 GHz es BW 8 MHz		#video Bw 8.0	MHZ"	Sweep	100.3 ms (8001 pts)	CF Step	
Marker Table Mode Trace Sca	ale X	Y	Function F	unction Width	Function Value	8.000000 MHz Auto Man	
1 2 3						Freq Offset 0 Hz	
4 5 6						X Axis Scale Log	

wept SA	er 1 🕇 🕇							y y
EYSIGHT I L ++- A Z	oupling: DC	Input Ζ: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Po Trig: Free Run	wer (RMS <mark>1</mark> 23456 W\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.437000000 GHZ	Settings
Spectrum	v						0.00000000 Hz	
cale/Div 10 dB			Ref Level 23.00	dBm			Swept Span Zero Span	
.00							Full Span	
7.0							Start Freq 2.437000000 GHz	
7.0 7.0 7.0							Stop Freq 2.437000000 GHz	1
nter 2.437000	000 GHz		#Video BW 8.0	WHz*		Span 0 Hz	AUTO TUNE	
s BW 8 MHz Marker Table	,				Sweep	100.3 ms (8001 pts)		
	ace Scale	Х	Y	Function	Function Width	Function Value	Auto Man	J
2 3							Freq Offset 0 Hz	
4 5 6							X Axis Scale Log	

8.2. 6 dB DTS BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C								
Section	Limit	Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5					


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

8.2.1. 802.11b MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	9.075	≥500	Pass
Middle	9.065	≥500	Pass
High	9.073	≥500	Pass

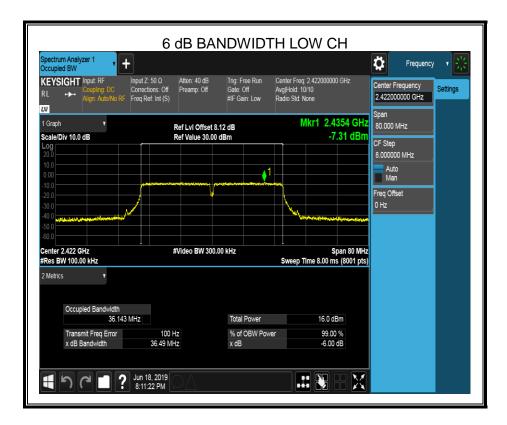
8.2.2. 802.11g MODE

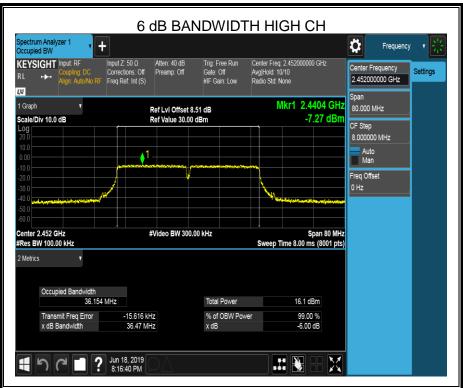
Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	16.57	≥500	Pass
Middle	16.56	≥500	Pass
High	16.57	≥500	Pass



8.2.3. 802.11n HT20 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	17.78	≥500	Pass
Middle	17.75	≥500	Pass
High	17.76	≥500	Pass




8.2.4. 802.11n HT40 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	36.49	≥500	Pass
Middle	36.45	≥500	Pass
High	36.47	≥500	Pass

8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

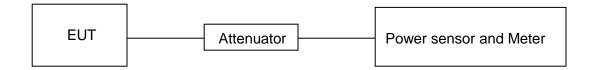
CFR 47 FCC Part15 (15.247) Subpart C							
Section Test Item Limit Frequency Range (MHz)							
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm (See note1)	2400-2483.5				

Note:

1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

8.3.1. 802.11b MODE

Test Observal		Maximum Conducted	LIMIT
Test Channel	nnel ANT. Output Power (dBm)		dBm
Low	1	10.82	30
Middle	1	10.40	30
High	1	11.12	30

8.3.2. 802.11g MODE

		Maximum Conducted	LIMIT
Test Channel ANT.		Output Power(PK) (dBm)	dBm
Low	1	18.50	30
Middle	1	18.46	30
High	1	17.87	30

8.3.3. 802.11n HT20 MODE

		Maximum Conducted	LIMIT
Test Channel	nnel ANT. Output Power(PK) (dBm)		dBm
Low	1	18.09	30
Middle	1	18.04	30
High	1	17.45	30

8.3.4. 802.11n HT40 MODE

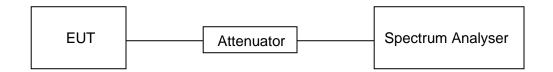
T (Q)		Maximum Conducted	LIMIT
Test Channel	ANT.	Output Power(PK) (dBm)	dBm
Low	1	17.77	30
Middle	1	18.07	30
High	1	17.80	30

8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz (See note1)	2400-2483.5	
Note: 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.				

TEST PROCEDURE


Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Connect the UUT to the spectrum analyser and use the following settings:

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

RESULTS

8.4.1. 802.11b MODE

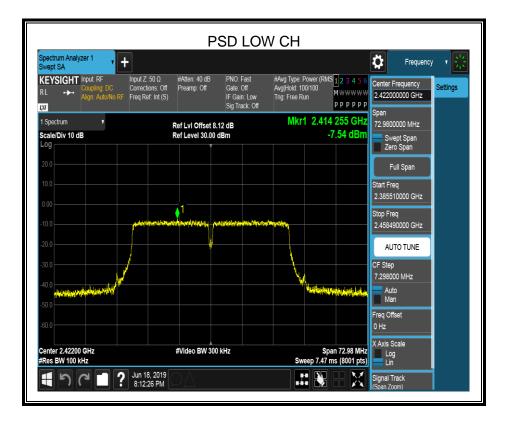
Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-1.30	8	PASS
Middle	-1.75	8	PASS
High	-1.01	8	PASS

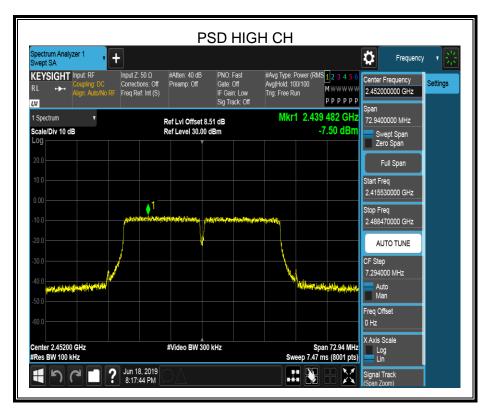
8.4.2. 802.11g MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-3.45	8	PASS
Middle	-3.42	8	PASS
High	-4.21	8	PASS

8.4.3. 802.11n HT20 MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	-3.66	8	PASS
Middle	-3.85	8	PASS
High	-4.39	8	PASS




8.4.1. 802.11n HT40 MODE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result	
Low	-7.54	8	PASS	
Middle	-7.16	8	PASS	
High	-7.50	8	PASS	

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

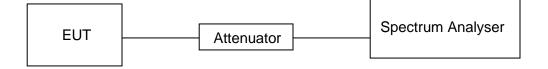
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit		
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

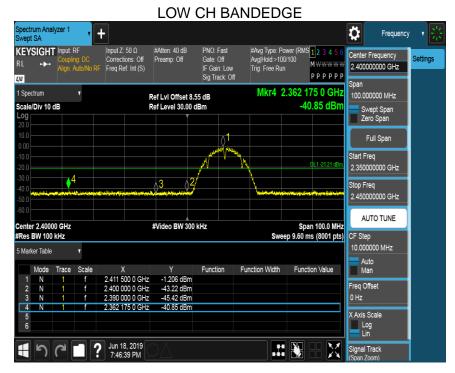
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

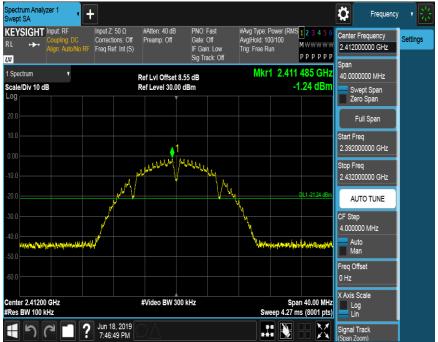
12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

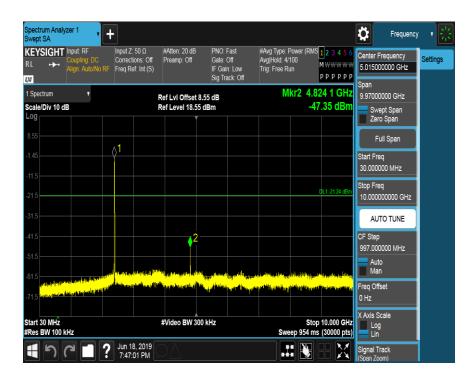
Use the peak marker function to determine the maximum amplitude level.

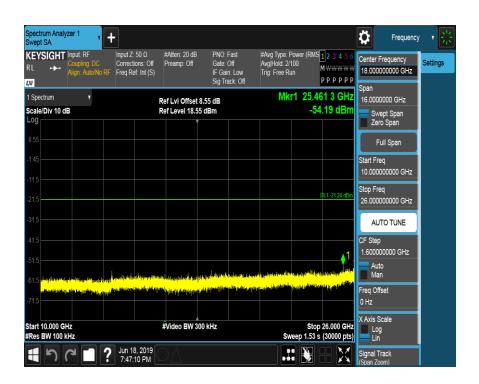
TEST SETUP


TEST ENVIRONMENT

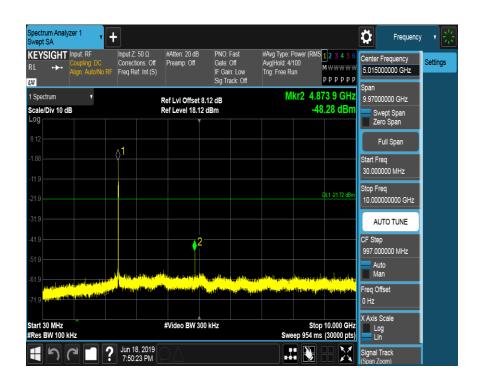
Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

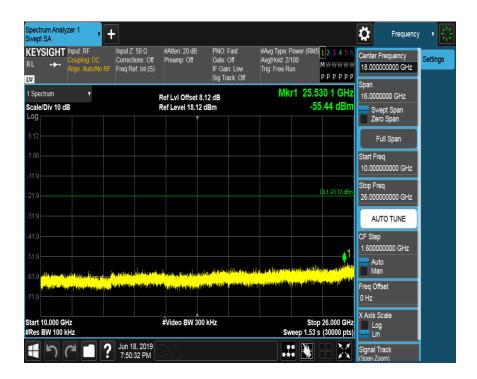



RESULTS


8.5.1. 802.11b MODE

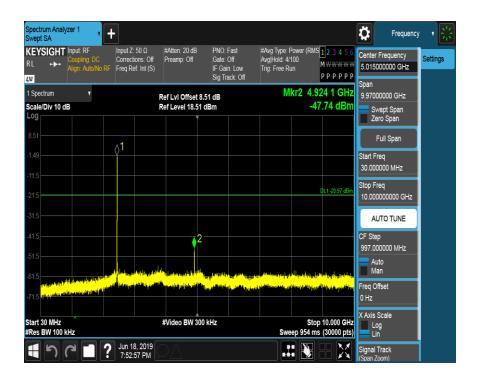
LOW CH SPURIOUS EMISSIONS





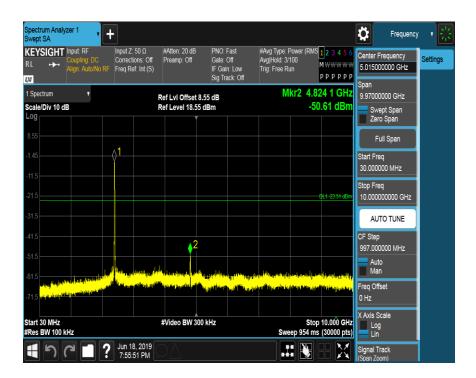
pectrum Analyzer 1 wept SA + Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 Avg|Hold: 100/100 Trig: Free Run #Atten: 40 dB Preamp: Off KEYSIGHT Input RF Center Frequency Settings ----M₩₩₩₩ 2.437000000 GHz рррррр L).U Spar Mkr1 2.437 500 GHz 1 Spectrum Ref LvI Offset 8.12 dB Ref Level 30.00 dBm 40.000000 MHz -1.72 dBn Scale/Div 10 dB Swept Span Zero Span Loa Full Span Start Freq 2.417000000 GHz ▲1 العكماليالياليالي Maria Stop Freq 2.457000000 GHz M Mu AUTO TUNE CF Step 4.000000 MHz not which may have been stated Auto Man hall Hart Freq Offset 0 Hz X Axis Scale Span 40.00 MHz Sweep 4.27 ms (8001 pts) Center 2.43700 GHz #Video BW 300 kHz Log Lin #Res BW 100 kHz **?** Jun 18, 2019 7:50:12 PM X ち 3 П Signal Track H

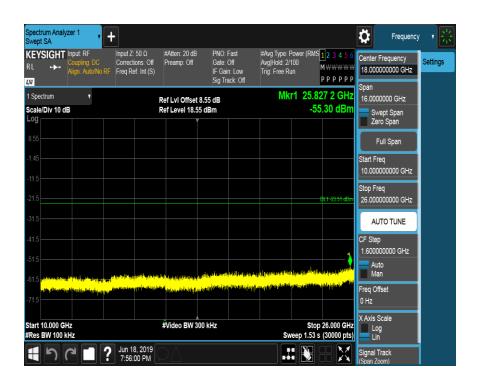
MID CH SPURIOUS EMISSIONS


HIGH CH BANDEDGE

HIGH CH SPURIOUS EMISSIONS

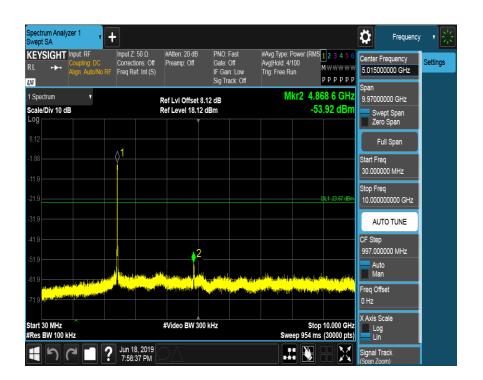
Spectrum Analy Swept SA	zer 1	ŀ					Frequency	- 1 景
KEYSIGHT RL ↔•	Input: RF Coupling: DC Align: Auto/No RF	Input Ζ: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Pow Avg Hold: 2/100 Trig: Free Run	er (RMS <mark>1</mark> 23456 М\\\\\\\\ РРРРРР	Center Frequency 18.00000000 GHz	Settings
1 Spectrum Scale/Div 10 d Log	y B		Ref LvI Offset 8. Ref Level 18.51		Mkr1	25.718 4 GHz -54.91 dBm	Span 16.0000000 GHz	
8.51							Zero Span Full Span	
-1.49							Start Freq 10.00000000 GHz Stop Freq	
-21.5						DL1 -20.97 dBm	26.000000000 GHz	
-41.5						1	CF Step 1.60000000 GHz	
-51.5	talah salih sina aya Na kanga mangangangan	ungellingstellebrevit na stellestendereter		diama and and	la pri ca kani shari shekara Jaranga na kani shekarati ji aga	n dirimati da sur kanalan Nasiri da ja sarakan	Auto Man Freq Offset	
-71.5							0 Hz X Axis Scale	
Start 10.000 Gi #Res BW 100 F		Jun 18, 2019 7:53:08 PM	#Video BW 300	KHŻ	Sweep	Stop 26.000 GHz 1.53 s (30000 pts)	Log Lin Signal Track	

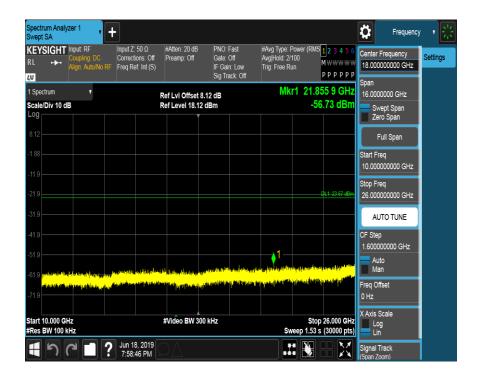

8.5.2. 802.11g MODE



LOW CH BANDEDGE

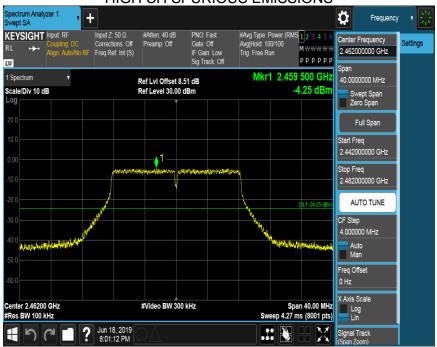
LOW CH SPURIOUS EMISSIONS

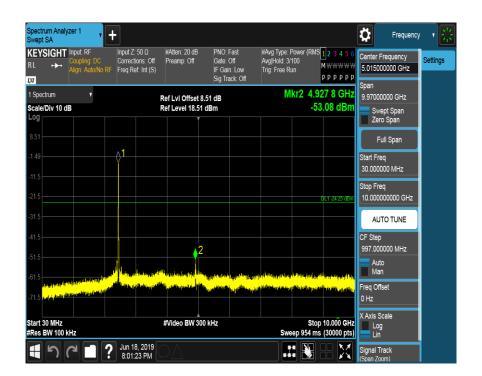




pectrum Analyzer * wept SA Ö + Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 Avg|Hold: 100/100 Trig. Free Run #Atten: 40 dB Preamp: Off KEYSIGHT Input RF Center Frequency Settings pling: DC 1: Auto/No RE ----M₩₩₩₩ 2.437000000 GHz рррррр L)J Span Mkr1 2.434 500 GHz 1 Spectrum 40.000000 MHz Ref LvI Offset 8.12 dB Ref Level 30.00 dBm -3.67 dBn Scale/Div 10 dB Swept Span Zero Span Loq Full Span Start Freq 2.417000000 GHz ø Stop Freq 2.457000000 GHz AUTO TUNE CF Step 4.000000 MHz a lundary to to be fills Auto Man Freq Offset 0 Hz X Axis Scale Span 40.00 MHz Sweep 4.27 ms (8001 pts) Center 2.43700 GHz #Video BW 300 kHz Log Lin #Res BW 100 kHz **?** Jun 18, 2019 7:58:26 PM X H ち 2 П Signal Track

MID CH SPURIOUS EMISSIONS




HIGH CH BANDEDGE

HIGH CH SPURIOUS EMISSIONS

EYSIGHT Input: RF Coupling: DC Align: Auto/No	Input Z: 50 Ω Corrections: Off RF Freq Ref: Int (S)	#Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (Rl Avg Hold: 2/100 Trig: Free Run	MS <mark>1</mark> 23456 M\\\\\\\\ PPPPPP	Center Frequency 18.00000000 GHz	Setting
Spectrum v sale/Div 10 dB		Ref LvI Offset 8.5 Ref Level 18.51 d			.646 4 GHz 55.08 dBm	Span 16.0000000 GHz Swept Span Zero Span	
						Full Span	
						Start Freq 10.000000000 GHz	
1.5					DL1 -24.25 dBm	Stop Freq 26.00000000 GHz	
						AUTO TUNE	
						CF Step 1.600000000 GHz	
5 Benetides and pilling to	n genel kontingen timmer også Ny konstantinger standere de lege	the state of the second st	anda antibality Alighter and a second second	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Auto Man Freq Offset	
.5						0 Hz	
rt 10.000 GHz es BW 100 kHz		#Video BW 300	kHz		top 26.000 GHz 3 s (30000 pts)	X Axis Scale Log Lin	