

Zhejiang Yankon Group Co.,Ltd.

EMC TEST REPORT

Report Type:

FCC Part 15C EMC report

Model:

MTSL1011XX (X can be A to Z, it represents the color of the enclosure. For example, HF means Fuschia as H represents Hong and F represents Fuschia)

REPORT NUMBER:

180701794SHA-001

ISSUE DATE:

August 21, 2018

DOCUMENT CONTROL NUMBER:

TTRF15c_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 180701794SHA-001

Applicant: Zhejiang Yankon Group Co.,Ltd.

TONGJIANG MIDDLE ROAD SHANGYU ECONOMIC DEVELOPMENT

ZONE ZHEJIANG PROVINCE

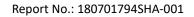
Manufacturer: Zhejiang Yankon Group Co.,Ltd.

TONGJIANG MIDDLE ROAD SHANGYU ECONOMIC DEVELOPMENT

ZONE ZHEJIANG PROVINCE

FCC ID: 2AL76MTSL10112

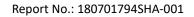
SUMMARY:


The equipment complies with the requirements according to the following standard(s) or Specification:

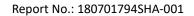
47CFR Part 15 (2017): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED DT:	REVIEWED DY:	
Gn'A Liu	Dul	
Project Engineer Erick Liu	Reviewer Daniel Zhao	

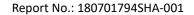

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Content


RI	EVISIC	ON HISTORY	4
M	IEASU	REMENT RESULT SUMMARY	5
1	G	ENERAL INFORMATION	ε
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	θ
	1.2	DESCRIPTION OF TEST FACILITY	7
2	T	EST SPECIFICATIONS	8
	2.1	STANDARDS OR SPECIFICATION	8
	2.2	Mode of operation during the test	
	2.3	Test software list	8
	2.4	TEST PERIPHERALS LIST	8
	2.5	TEST ENVIRONMENT CONDITION:	8
	2.6	INSTRUMENT LIST	g
	2.7	Measurement uncertainty	10
3	R	ADIATED EMISSIONS	11
	3.1	LIMIT	11
	3.2	BLOCK DIAGRAM AND TEST SET UP	
	3.3	Measurement Procedure	13
	3.4	TEST RESULTS OF RADIATED EMISSIONS	15
4	P	OWER LINE CONDUCTED EMISSION	18
	4.1	LIMIT	18
	4.	.1.1 Limits for conducted disturbance voltage at the mains ports of class A device	18
	4.	.1.2 Limits for conducted disturbance voltage at the mains ports of class B device	
	4.2	BLOCK DIAGRAM AND TEST SET UP	19
	4.3	Measurement Procedure	20
	4.4	TEST RESULTS OF POWER LINE CONDUCTED EMISSION	21

Revision History

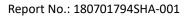
Report No.	Version	Description	Issued Date
180701794SHA-001	Rev. 01	Initial issue of report	August 21, 2018



Measurement result summary

TEST ITEM	FCC REFERANCE	TEST RESULT	RESULT
Power line conducted emission	15.207	Pass	Pass
Radiated emission	15.209	Pass	Pass

Notes: 1: NA =Not Applicable



1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	LED Desk Light	
Floudet name.	MTSL1011XX (X can be A to Z, it represents the color of the enclosure.	
	For example, HF means Fuschia as H represents Hong and F represents	
Type/Model:	Fuschia).	
71 7	EUT is a LED Desk Light with wireless charging function. It has a series	
	models, they have the same electrical construction except the color of	
	the enclosure. The model of MTSL1011HF was chosen to perform the	
Description of EUT:	full tests as representative.	
Rating:	120V~, 60Hz, 5W	
Category of EUT:	Class B	
EUT type:	☐ Table top ☐ Floor standing	
Operating frequency		
range	110kHz - 175kHz	
Software Version:	/	
Hardware Version:	/	
Sample received date:	August 03, 2018	
Date of test:	August 06, 2018- August 10, 2018	

1.2 Description of Test Facility

Name:	Intertek Testing Services Shanghai	
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China	
Telephone:	86 21 61278200	
Telefax:	86 21 54262353	

The test facility is	CNAS Accreditation Lab
recognized,	Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN1175
0.80	IC Registration Lab
	Registration code No.: 2042B-1
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0
	A2LA Accreditation Lab Certificate Number: 3309.02

Report No.: 180701794SHA-001

2 TEST SPECIFICATIONS

2.1 Standards or specification

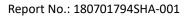
47CFR Part 15 (2017) ANSI C63.10 (2013)

2.2 Mode of operation during the test

Within this test report, EUT was tested under all available operation modes and tested under its rating voltage and frequency. Other voltage and frequency is specified if used.

2.3 Test software list

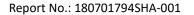
Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission ES-K1		R&S	V1.71


2.4 Test peripherals list

Item No.	Model number	Brand name	Mode	Rating
1	Load1	Provided by client	100% Power level	DC 5V/1A
2	Load2	Provided by client	50% Power level	DC 5V/0.5A
3	Load3	Provided by client	Stand by	DC 5V/0A

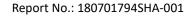
We tested the load at all three power level modes, and the 100% Power level mode is the worst case, we listed the results in this report.

2.5 Test environment condition:


Test items	Temperature	Humidity
Power line conducted emission	24°C	52% RH
Radiated Emissions	25°C	53% RH

2.6 Instrument list

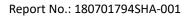
Condu	Conducted Emission					
Used	Equipment	Manufacturer	Туре	Internal no.	Due date	
>	Test Receiver	R&S	ESCS 30	EC 2107	2018-09-12	
~	A.M.N.	R&S	ESH2-Z5	EC 3119	2018-12-07	
~	Shielded room	Zhongyu	-	EC 2838	2019-01-07	
Radiat	ted Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date	
V	Test Receiver	R&S	ESIB 26	EC 3045	2018-09-12	
V	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2019-05-30	
	Horn antenna	R&S	HF 906	EC 3049	2018-11-17	
	Horn antenna	ETS	3117	EC 4792-1	2019-01-09	
	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2020-07-09	
>	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2019-03-07	
	Pre-amplifier	R&S	Pre-amp 18	EC5881	2019-06-20	
\	Semi-anechoic chamber	Albatross project	-	EC 3048	2018-09-15	
Additional instrument						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date	
\	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3323	2019-06-14	
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2019-06-28	



2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

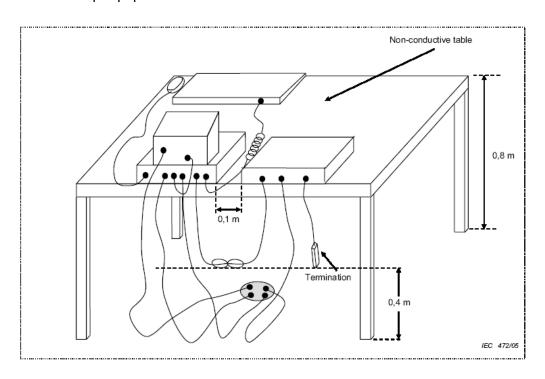
Test item	Measurement uncertainty
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Power line conducted emission	± 3.19dB

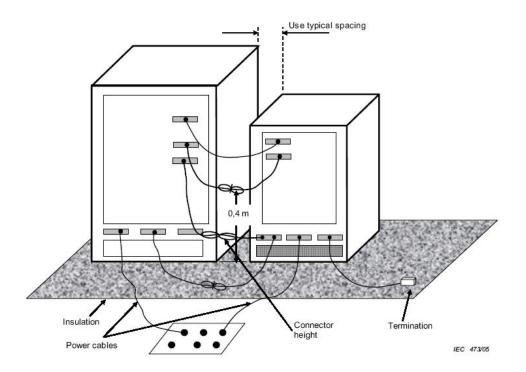

3 Radiated Emissions

Test result: Pass

3.1 Limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:


Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

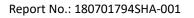


3.2 Block diagram and test set up

For table top equipment

For floor standing equipment

Report No.: 180701794SHA-001

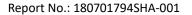

3.3 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

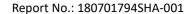

TEST REPORT

For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz $^{\sim}$ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

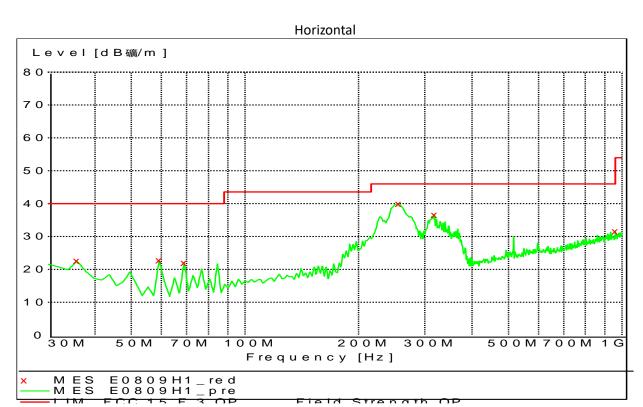
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported

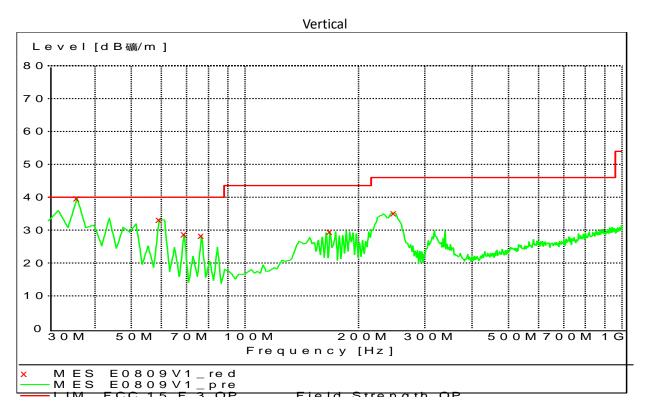


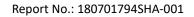
3.4 Test Results of Radiated Emissions

EUT was tested with empty load, half load and full load, the full load is the worst case and we listed the results in the report.

Test data below 30MHz

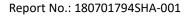

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	0.11	63.11	133.55	70.44	PK
Н	0.15	51.77	128.16	76.39	PK
Н	0.389	53.1	111.61	58.51	PK
Н	0.449	56.34	109.12	52.78	PK
Н	0.509	58.23	106.94	48.71	PK
Н	0.748	43.56	100.25	56.69	PK
V	0.09	49.56	137.04	87.48	PK
V	0.11	72.14	133.55	61.41	PK
V	0.449	56.87	109.12	52.25	PK
V	0.987	36.11	95.44	59.33	PK
V	1.227	37.88	91.65	53.77	PK
V	1.586	34.71	87.2	52.49	PK





Test data from 30MHz to 1GHz

The worst waveform from 30MHz to 1000MHz is listed as below:



TEST REPORT

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	35.83	22.50	15.30	40.00	17.50	PK
Н	59.16	22.70	7.00	40.00	17.30	PK
Н	68.88	22.00	7.20	40.00	18.00	PK
Н	255.49	39.90	14.70	46.00	6.10	PK
Н	317.70	36.70	15.30	46.00	9.30	PK
Н	959.18	31.60	24.10	46.00	14.40	PK
V	35.83	39.70	15.30	40.00	0.30	PK
V	59.16	33.20	7.00	40.00	6.80	PK
V	68.88	28.80	7.20	40.00	11.20	PK
V	76.65	28.20	7.60	40.00	11.80	PK
V	168.02	29.50	10.80	43.50	14.00	PK
V	247.72	35.20	13.80	46.00	10.80	PK

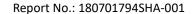
4 Power line conducted emission

Test result: Pass

4.1 Limit

4.1.1 Limits for conducted disturbance voltage at the mains ports of class A device

Frequency range (MHz)	Limits dB(μV)			
	Quasi-peak	Average		
0.15 ~ 0.5	79	66		
0.5 ~ 30	73	60		

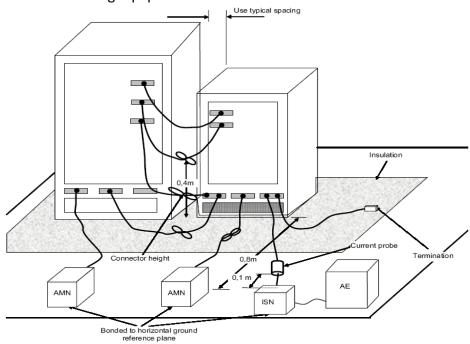

Note: If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.

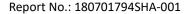
4.1.2 Limits for conducted disturbance voltage at the mains ports of class B device

Frequency range	Limits dB(μV)			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	66 ~ 56 *	56 ~ 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

Note: 1. * Means the limit decreasing linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz

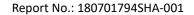
2. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.




4.2 Block diagram and test set up

For table top equipment

For floor standing equipment

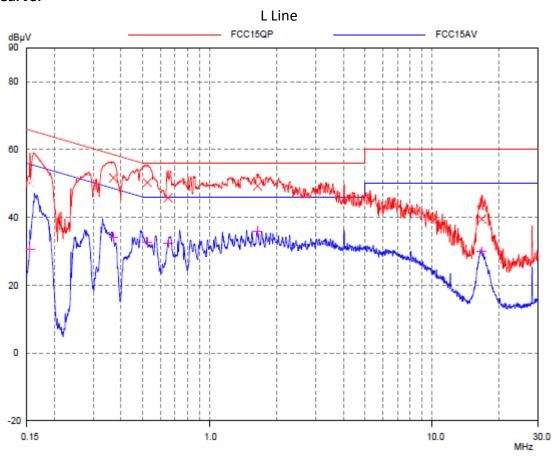


4.3 Measurement Procedure

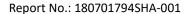
Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

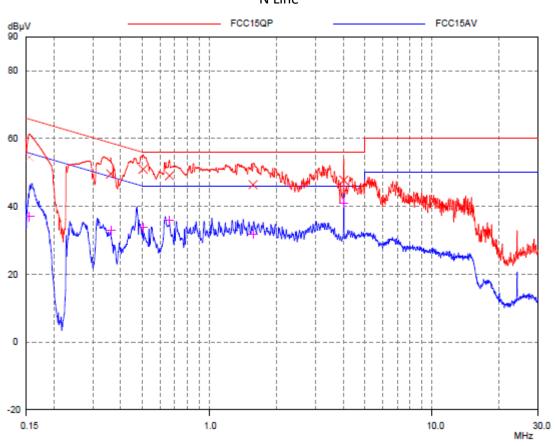


4.4 Test Results of Power line conducted emission


EUT was tested with empty load, half load and full load, the full load is the worst case and we listed the results in the report.

Test Curve:

Test Data:


Frequency (MHz)	Quasi-peak			Average		
	level dB(μV)	Limit dB(μV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.16	50.17	65.70	15.53	30.60	55.70	25.10
0.37	51.64	58.51	6.87	34.09	48.51	14.42
0.53	50.27	56.00	5.73	32.60	46.00	13.40
0.65	45.76	56.00	10.24	32.48	46.00	13.52
1.65	49.26	56.00	6.74	36.05	46.00	9.95
16.73	39.49	60.00	20.51	29.96	50.00	20.04

Test Curve:

Test Data:

Frequency (MHz)	Quasi-peak			Average		
	level dB(μV)	Limit dB(μV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.16	54.49	65.70	11.21	36.96	55.70	18.74
0.36	49.58	58.71	9.13	32.85	48.71	15.86
0.50	50.97	56.00	5.03	33.75	46.00	12.25
0.66	49.01	56.00	6.99	35.94	46.00	10.06
1.57	46.37	56.00	9.63	31.73	46.00	14.27
4.02	47.72	56.00	8.28	41.05	46.00	4.95

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.