

FCC SAR TEST REPORT

APPLICANT	:	Patriot Memory LLC
PRODUCT NAME	:	Wireless AC600 USB2.0 Mini Adapter
MODEL NAME	:	AC600
TRADE NAME	:	N/A
BRAND NAME	:	N/A
FCC ID	:	2AL6WGC139694
STANDARD(S)	:	47CFR 2.1093 IEEE 1528-2013
ISSUE DATE	:	2017-03-01

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

 MORLAB GROUP
 FL1-3, Building A, Feitraing Science Faity, Ros League
 FL1-3, Building A, Feitraing Science Faity, Ros L

DIRECTORY

TEST REPORT DECLARATION ····································
1.TECHNICAL INFORMATION ·······5
1.1 IDENTIFICATION OF APPLICANT ·······5
1.2 IDENTIFICATION OF MANUFACTURER···································
1.3 EQUIPMENT UNDER TEST (EUT)
1.3.1 Photographs of the EUT
1.3.2 IDENTIFICATION OF ALL USED EUT
1.4 APPLIED REFERENCE DOCUMENTS ····································
1.5 DEVICE CATEGORY AND SAR LIMITS ·······6
2. SPECIFIC ABSORPTION RATE (SAR)····································
2.1 INTRODUCTION7
2.2 SAR DEFINITION
3. SAR MEASUREMENT SETUP·······8
3.1 THE MEASUREMENT SYSTEM ······8
3.2 PROBE8
3.3 PROBE CALIBRATION PROCESS
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE
3.3.2 Free Space Assessment Procedure 10
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE 10
3.4 PHANTOM ······11
3.5 DEVICE HOLDER ·····11
4. TISSUE SIMULATING LIQUIDS ······12
5. UNCERTAINTY ASSESSMENT ·······14
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST
5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK ······15

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

6. SAR MEASUREMENT EVALUATION ·······17
6.1 System Setup
6.2 VALIDATION RESULTS ······18
7. OPERATIONAL CONDITIONS DURING TEST
7.1 BODY-WORN CONFIGURATIONS ······19
7.2 MEASUREMENT PROCEDURE ······19
7.3 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME
8. WIFI (5GHZ BANDS)21
9. MEASUREMENT OF CONDUCTED OUTPUT POWER
10. TEST RESULTS LIST
11. STRANSMITTERS EVALUATION ····································
ANNEX A GRAPH TEST RESULTS
······································
ANNEX B GENERAL INFORMATION

	Change History			
Issue Date Reason for change		Reason for change		
1.0 2017-03-01 First edition		First edition		

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

TEST REPORT DECLARATION

Applicant	Patriot Memory LLC			
Applicant Address		11F, No. 700, Jhong Jheng Road., Jhong He District, New Taipei City, 23552, Taiwan		
Manufacturer	MTN HIGH	I-TECHNOLOGY (HON	IGKONG) CO., LTD	
Manufacturer Address	UNIT D 16 HONGKOI		ZA 250 HENNESSY RD WANCHAI	
Product Name	Wireless AC600 USB2.0 Mini Adapter			
Model Name	AC600			
Brand Name	N/A			
HW Version	BSD01-V1.2			
SW Version	V1.0			
Test Standards	47CFR 2.1093; IEEE 1528-2013			
Test Date	2017-02-08			
The Highest Reported 1g-SAR(W/kg)	Body	0.170W/Kg	Limit(W/kg): 1.6W/kg	

Peny Funei

Tested by

:

:

Peng Fuwei (Test engineer)

Peng Hen:

Approved by

Peng Huarui (Supervisor)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

1. TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	Patriot Memory LLC	
Address:	11F, No. 700, Jhong Jheng Road., Jhong He District, New Taipei City	
	23552, Taiwan	

1.2 Identification of Manufacturer

Company Name:	MTN HIGH-TECHNOLOGY (HONGKONG) CO., LTD	
Address:	UNIT D 16/F CHEUK NANG PLAZA 250 HENNESSY RD WANCHAI	
	HONGKONG	

1.3 Equipment Under Test (EUT)

Model Name:	AC600
Trade Name:	N/A
Brand Name:	N/A
Hardware Version:	BSD01-V1.2
Software Version:	V1.0
Tx Frequency Bands:	WIFI 802.11 b/g/n20/n40 (2.4GHz);
	WIFI 802.11ac/n20/n40 (5.180-5.250GHz, 5.745-5.825GHz);
Uplink Modulations:	WIFI802.11b: DSSS;WIFI802.11g: OFDM;
	WIFI802.11ac/n20/n40: OFDM;
Antenna type:	Fixed Internal Antenna
Hotspot function:	Not Support

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 5 0f 39

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	BSD01-V1.2	V1.0

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable	
		Devices	
2	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak	
		Spatial-Average Specific Absorption Rate (SAR) in the	
		Human Head from Wireless Communications Devices:	
		Measurement Techniques	
3	KDB 447498 D01v06	General RF Exposure Guidance	
4	KDB 616217 D04v01r02	SAR for laptop and Tablets	
5	KDB 248227 D01v02r02	SAR Measurement Guidance for IEEE 802.11 Transmitters	
6	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz	

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are High than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

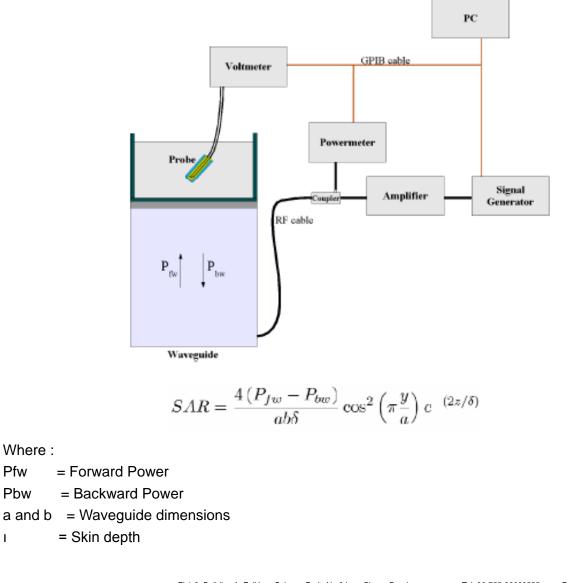
The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 6.5 mm

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 MORLAB GROUP
 FL1-3, Building A, Feinang Good A, and Tang Good A, and Tang Good A, and Tang Good A, and Tang Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.com

- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

MORLAB GROUP

Where : Pfw

Pbw

Т

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{(1+V(N)/DCP(N))}$ (N=1,2,3)

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \exp osure time (30 seconds),$

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com

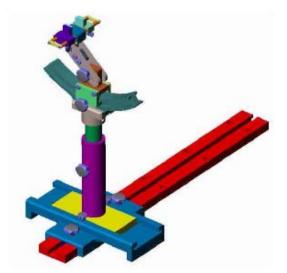
$$\mathbf{SAR} = \mathbf{C}\left(\frac{\mathbf{\delta T}}{\mathbf{\delta t}}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:


 $SAR = \frac{\sigma |E|^2}{\rho}$ $\sigma = \text{simulated tissue conductivity,}$ $\rho = \text{Tissue density (1.25 g/cm^3 \text{ for brain tissue)}}$

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is High than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Ingredients	Frequency Band	
(% by weight)	2450MHz	
Tissue Type	Body	
Ingredients (% by wei	ght)	
Deionised Water	73.20	
Salt(NaCl)	0.10	
Sugar	0.00	
Tween 20	0.00	
HEC	0.00	
Bactericide	0.00	
Triton X-100	0.00	
DGBE	26.70	
Diethylenglycol	0.00	
monohexylether	0.00	
Measured dielectric parameters		
Dielectric Constant	52.70	
Conductivity (S/m)	1.95	

Recipes for Tissue Simulating Liquid

Note: Please refer to the validation results for dielectric parameters of each frequency band.

Note: Please refer to the validation results for dielectric parameters of each frequency band.

 FL1-3, Building A, FerYang Science Park, INO.0 LongOritang Acces,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 12 Of 39

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.								
Date Freq.(MHz) Liquid Parameters Meas. Target Delta(%) Lin					Limit±(%)			
2017/2/9 Dedu 2450	Relative Permittivity(cr):	52.52	52.7	-0.34	5			
2017/2/8 Body 2450		Conductivity(σ):	1.90	1.95	-2.56	5		

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/	k
								е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-			(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	
								%)	
Measurement System				-					
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Probe positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
Mechanical Tolerance								5	
Probe positioning with	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
respect to Phantom Shell								3	
Extrapolation,	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
interpolation and								9	
integration Algoritms for									
Max. SAR Evaluation									
Test sample Related									
Test sample positioning	E.4.2.	0.03	N	1	1	1	0.03	0.0	N-
	1							3	1
Device Holder Uncertainty	E.4.1.	5.00	Ν	1	1	1	5.00	5.0	N-

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

	1							0	1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	8
SAR drift measurement								3	
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1		0.0	8
(Shape and thickness							0.03	3	
tolerances)								3	
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	8
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	Ν	1	0.64	0.43	3.20	2.1	М
measurement uncertainty								5	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	Ν	1	0.6	0.49	6.00	4.9	М
measurement uncertainty		0						0	
Combined Standard			RSS				11.55	10.	
Uncertainty								67	
Expanded Uncertainty			K=2				23.11	21.	
(95% Confidence interval)								33	

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

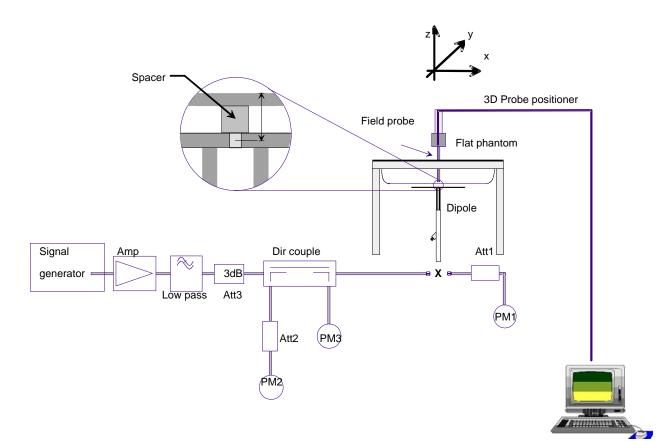
а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System									
Probe calibration	E.2.1	4.76	Ν	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	Ν	1	1	1	0.02	0.0	∞

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

	1	1	r	1	1	r	1	1	-
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Probe positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
Mechanical Tolerance								5	
Probe positioning with	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
respect to Phantom Shell								3	
Extrapolation,	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
interpolation and								9	
integration Algoritms for									
Max. SAR Evaluation									
Dipole									
Dipole axis to liquid	8,E.4.	1.00	Ν	$\sqrt{3}$	1	1	0.58	0.5	8
Distance	2							8	
Input power and SAR drift	8,6.6.	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	8
measurement	2							3	
Phantom and Tissue Para	meters								
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
(Shape and thickness								3	
tolerances)									
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	8
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	Ν	$\sqrt{3}$	0.64	0.43	1.85	1.2	Μ
measurement uncertainty								4	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	Ν	$\sqrt{3}$	0.6	0.49	3.46	2.8	Μ
measurement uncertainty		0						3	
Combined Standard			RSS			T	8.83	8.3	
Uncertainty								7	
Expanded Uncertainty			K=2			T	17.66	16.	
(95% Confidence interval)								73	

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555


 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

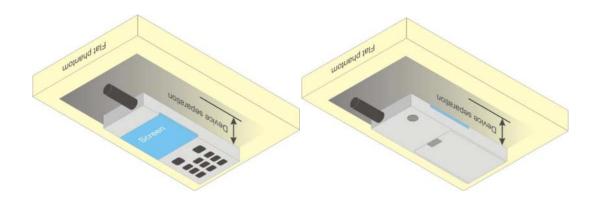
Frequency	2450MHz(B)
Target value 1W (1g)	56.13 W/Kg
Test value 1g (250 mW input power)	13.981 W/Kg
Normalized to 1W value(1g)	55.924 W/Kg

Note: System checks the specific test data please see 36~37.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.2 Measurement procedure

The Following steps are used for each test position

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

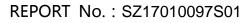
8. WIFI (5GHz BANDS)

Required Test Channels per KDB 248227 D01

NA	ode	Band GHz		Channel	"Default Test Channels"	
	oue	Danu	GHZ	Channel	802.11	
			5.18	36	\checkmark	
	UNII	5.2GHz	5.20	40		*
	(15.407)		5.22	44		*
			5.24	48	\checkmark	
802.11a			5.745	149	\checkmark	
	DTS		5.765	153		*
	(15.247)	5.8GHz	5.785	157	\checkmark	
	· · ·		5.805	161		*
			5.825	165	\checkmark	

 $\sqrt{}$ = "default test channels"

* = possible 802.11a channels with maximum average output > the "default test channels"

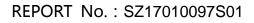

= when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

Measured Results

Band	Channel	Frequency	Output Power(dBm)			
	Channel	(MHz)	802.11ac	802.11n		
	36	5180	8.09	8.17		
	38	5190	8.18	7.92		
Wi-Fi	40	5200	8.11	8.04		
5.2GHz	42	5210	8.06	N/A		
5.2012	44	5220	8.15	8.19		
	46	5230	8.15	8.21		
	48	5240	8.19	8.14		

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com


Band	Channel	Frequency	Output Power(dBm)			
	Channel	(MHz)	802.11ac	802.11n		
	149	5745	6.51	5.93		
	151	5755	7.05	6.81		
	153	5765	5.91	5.61		
Wi-Fi 5.8GHz	155	5775	6.91	N/A		
(UNII)	157	5785	5.85	5.37		
	159	5795	6.95	6.71		
	161 5805		5.77	5.42		
	165	5825	5.71	5.50		

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 22 Of 39

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. WiFi Average output power

		Frequency	Output Power(dBm)				
Band	d Channel	(MHz)	802.11b	802.11g	802.11n20		
		()	(DSSS)	(OFDM)	(OFDM)		
	1	2412	17.93	14.28	15.62		
WiFi	6	2437	18.26	15.38	16.11		
	11	2462	17.32	14.08	15.01		

			Output
Band	Channel	Frequency	Power(dBm)
		(MHz)	802.11n40
			(OFDM)
	3	2422	13.78
Wifi	6	2437	14.72
	9	2452	14.47

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

10. TEST RESULTS LIST

Summary of Measurement Results (WLAN 802.11b Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.							
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g		
Pody	Horizontal-Up		0.143		0.151		
Body	Horizontal-Down	6	0.161	1.057	0.170		
(5mm Separation)	Vertical-Front	6	0.058		0.061		
	Vertical-Back		0.054		0.057		

Note:

- 1. When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)
 - \leq 0.8 W/kg and transmission band \leq 100 MHz
 - \leq 0.6 W/kg and, 100 MHz < transmission bandwidth \leq 200 MHz
 - ≤ 0.4 W/kg and transmission band > 200 MHz
- 2. During 802.11 testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal. The RF signal utilized in SAR measurement has almost 100% duty cycle, and its crest factor is 1.
- 3. IEEE Std 1528-2013 require the High channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the High channel, the highest output power channel must be used.
- 4. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is≤ 100 MHz, testing for the other channels is not required.

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

5. Scaling Factor calculation

Band	Tune-up power tolerance(dBm)	SAR test channel Power (dBm)	Scaling Factor
802.11b	Max output power =18+-0.5	18.26	1.057

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

11. STAND-ALONE TRANSMITTERS EVALUATION

Test distance: 5mm			
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
WIFI(5.2G)	6.76	[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f}(GHz)$] \leq	No
WIFI(5.8G)	5.37	3.0 for 1-g SAR	No

Stand-alone SAR

The Body SAR test for WIFI 5.2GHz and WIFI 5.8GHz is not required.

The Body SAR test for WIFI required. 802.11g/HT20/HT40 is not required, for the maximum average output power is less than 1/4 dB Higher than measured on the corresponding 802.11b channels. As per KDB 248227

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Page 26 Of 39

ANNEX A GRAPH TEST RESULTS

BAND	PARAMETERS
	Measurement 1: Flat Plane with Body Horizontal-Up on Middle
	Channel in DSSS mode
	Measurement 2: Flat Plane with Body Horizontal-Down on Middle
902 44h	Channel in DSSS mode
<u>802.11b</u>	Measurement 3: Flat Plane with Body Vertical-Front on Middle
	Channel in DSSS mode
	Measurement 4: Flat Plane with Body Vertical-Back on Middle
	Channel in DSSS mode.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

MEASUREMENT 1

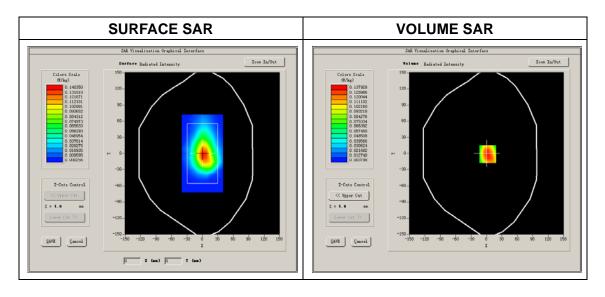
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.2.8

Measurement duration: 9 minutes 37 seconds


A. Experimental conditions.

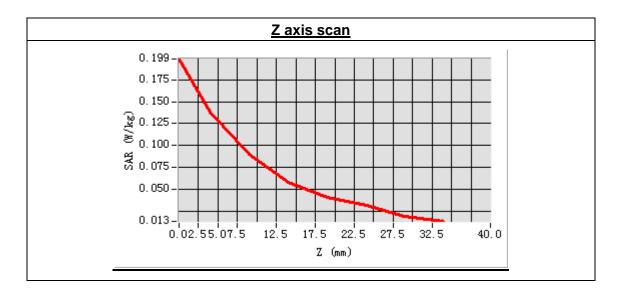
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

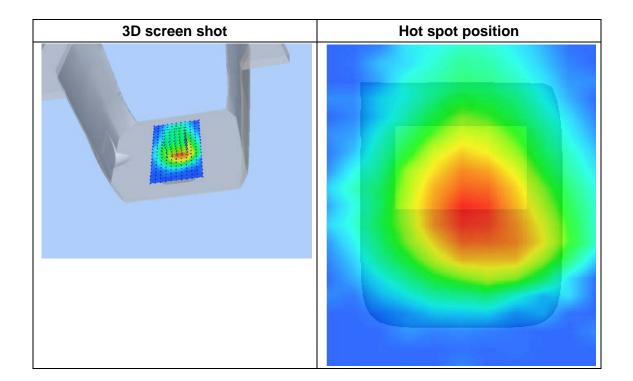
B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-3.420000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com


Tel: 86-755-36698555

Maximum location: X=2.00, Y=-1.00 SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.089761
SAR 1g (W/Kg)	0.142760

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

MEASUREMENT 2

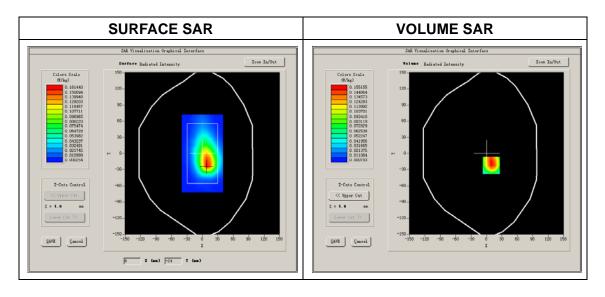
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.2.8

Measurement duration: 9 minutes 29 seconds


A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

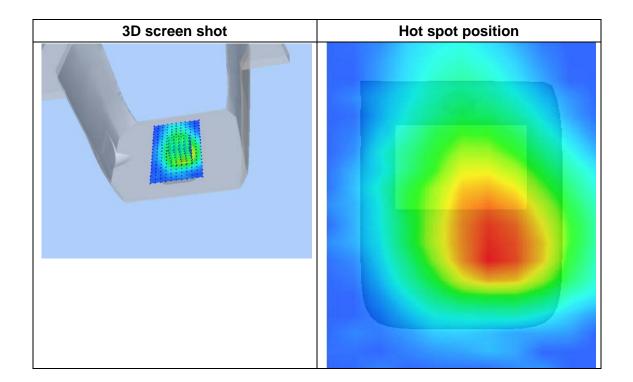
B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-2.360000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.com

Maximum location: X=9.00, Y=-22.00 SAR Peak: 0.23 W/kg

SAR 10g (W/Kg)	0.101314
SAR 1g (W/Kg)	0.160630

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

MEASUREMENT 3

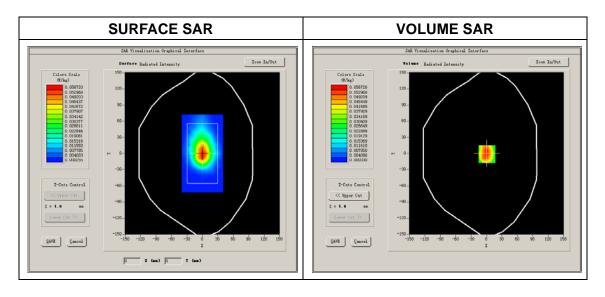
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.2.8

Measurement duration: 9 minutes 31 seconds


A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

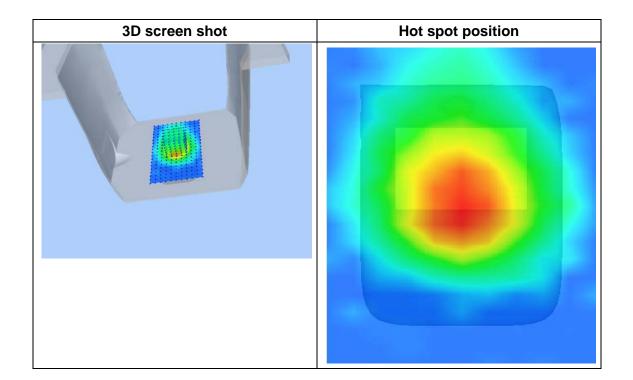
B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-2.740000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com


Tel: 86-755-36698555

Maximum location: X=1.00, Y=-1.00 SAR Peak: 0.09 W/kg

SAR 10g (W/Kg)	0.034755
SAR 1g (W/Kg)	0.057781

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

MEASUREMENT 4

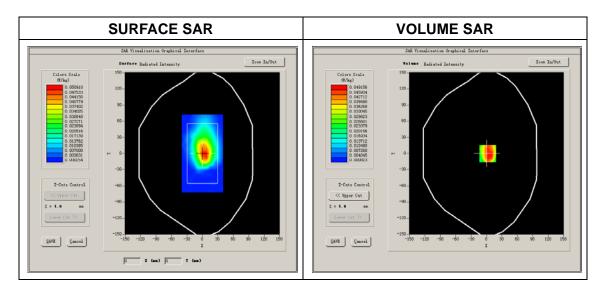
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.2.8

Measurement duration: 9 minutes 31 seconds


A. Experimental conditions.

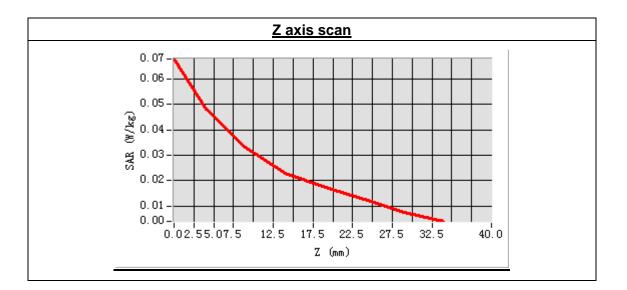
Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	802.11b	
Channels	Middle	
Signal	DSSS	

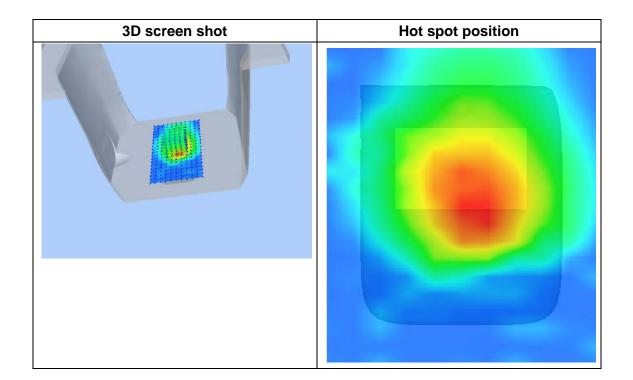
B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000	
Relative permittivity (real part)	52.520628	
Conductivity (S/m)	1.958675	
Power drift (%)	3.340000	
Ambient Temperature:	22.9°C	
Liquid Temperature:	22.1°C	
ConvF: 4.96		
Crest factor:	1:1	

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com


Tel: 86-755-36698555

Maximum location: X=2.00, Y=0.00 SAR Peak: 0.09 W/kg

SAR 10g (W/Kg)	0.032538	
SAR 1g (W/Kg)	0.053699	

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

System Performance Check Data(Body)

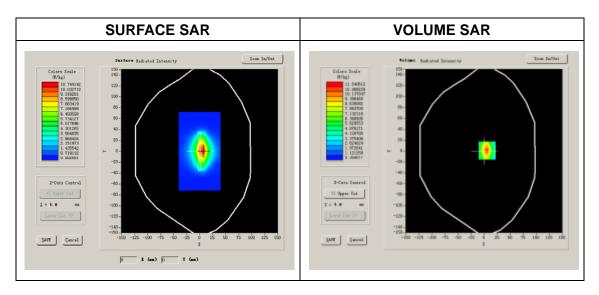
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.2.8

Measurement duration: 13 minutes 27 seconds


A. Experimental conditions.

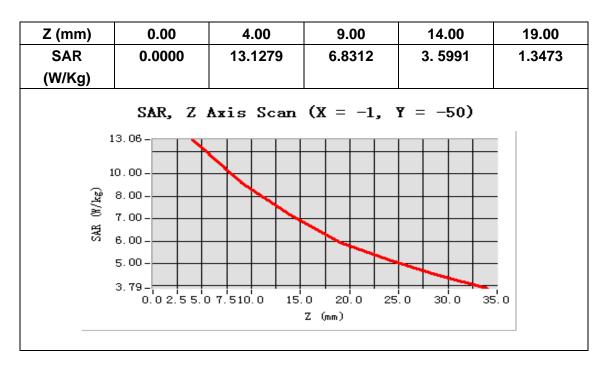
Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position		
Band	2450MHz	
Channels		
Signal	CW	

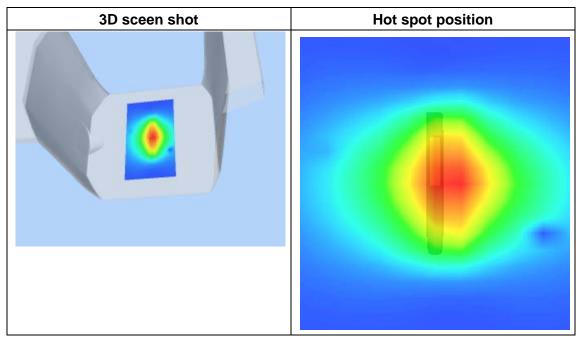
B. SAR Measurement Results

Band SAR

Frequency (MHz)	MHz) 2450.00000	
Relative permittivity (real part)	52.520628	
Conductivity (S/m)	1.958675	
Power Drift (%)	0.630000	
Ambient Temperature:	22.9°C	
Liquid Temperature: 22.1°C		
ConvF:	4.96	
Crest factor: 1:1		

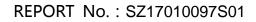
 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555


 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



Maximum location: X=-1.00, Y=-50.00

SAR 10g (W/Kg)	7.285412	
SAR 1g (W/Kg)	13.286857	


Z Axis Scan

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

ANNEX B GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(N/A)	(N/A)
2	Network Emulator	Aglient (8960, SN:10752)	2016-6-7	1year
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2016-7-8	1year
4	Voltmeter	Keithley (2000, SN:1000572)	2016-7-8	1year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2016-7-8	1year
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2016-7-8	1year
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2016-7-8	1year
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2016-7-8	1year
9	Directional coupler	Giga-tronics(SN:1829112)	2016-7-24	1year
10	Probe	Satimo (SN:SN 37/08 EP80)	2016-7-5	1year
11	Dielectric Probe Kit	Agilent (85033E)	2016-7-5	1year
12	Phantom	Satimo (SN:SN_36_08_SAM62)	(N/A)	(N/A)
13	Liquid	Satimo(Last Calibration: 2017-02-08)	(N/A)	(N/A)
14	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2016-7-5	1year
15	Waveguide 5-6GHz	Satimo (SN 41/12 WGA21)	2016-7-5	1year

***** END OF REPORT *****

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 39 Of 39