No. 1 Workshop, M-10, Middle section, Science \& Technology Park, Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 75526012053
Fax: $\quad+86$ (0) 75526710594
Email: ee.shenzhen@sgs.com
Report No.: SZEM180300223102
Page: 1 of 92

TEST REPORT

Application No.:	SZEM1803002231CR
Applicant:	IFI H.K. Limited
Address of Applicant:	1405 14F Chinachem Exchange Square 1Hoi Wan Street Quarry Bay Hong Kong
Manufacturer/ Factory:	IFI H.K. Limited
Address of Manufacturer/ Factory:	1405 14F Chinachem Exchange Square 1Hoi Wan Street Quarry Bay Hong Kong
Equipment Under Test (EUT):	
EUT Name:	IPX7 Waterproof Speaker
Model No.:	AQUAJAM AJM-3
Trade mark:	AQUAJAM
FCC ID:	2AL6SAJM3
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2018-03-28
Date of Test:	2018-04-02 to 2018-04-11
Date of Issue:	2018-04-12
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Keny Xu
EMC Laboratory Manager
The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. Shenzhen Branch

Report No.: SZEM180300223102
Page: 2 of 92

Revision Record				Remark
Version	Chapter	Date	Modifier	Rem
01			$2018-04-12$	

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 3 of 92

2 Test Summary

Radio Spectrum Technical Requirement

Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 \& 15.247(c)	Pass
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass

Radio Spectrum Matter Part

Item	Standard	Method	Requirement	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	Section 7.8.5	C 15.247(b)(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Separation	47 CFR Part 15, Subpart C 15.247	NSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
Hopping Chan Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Dwell Time	Subpart C 15.247	Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	Section 7.8.8	47 CFR Part 15, Subpart C 15.247 (d)	Pass
which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 \& 15.209	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 \& 15.209	Pass

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 4 of 92

3 Contents

Page
1 COVER PAGE 1
2 TEST SUMMARY 3
3 CONTENTS 4
4 GENERAL INFORMATION 6
4.1 Details of E.U.T. 6
4.2 DESCRIPTION OF SUPPORT UNITS 6
4.3 Measurement Uncertainty 6
4.4 TEST LOCATION7
4.5 TEST FACILITY. 7
4.6 DEVIATION FROM STANDARDS 7
4.7 AbNORMALITIES FROM Standard Conditions 7
5 EQUIPMENT LIST 8
6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12
6.1 ANTENNA REQUIREMENT 12
6.1.1 Test Requirement: 12
6.1.2 Conclusion 12
6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence 13
6.2.1 Test Requirement: 13
6.2.2 Conclusion 13
7 RADIO SPECTRUM MATTER TEST RESULTS 14
7.1 CONDUCTEd Emissions at AC POWER Line (150kHz-30MHz) 14
7.1.1 E.U.T. Operation 15
7.1.2 Test Setup Diagram 15
7.1.3 Measurement Procedure and Data. 15
7.2 Conducted Peak Output Power 18
7.2.1 E.U.T. Operation 19
7.2.2 Test Setup Diagram 19
7.2.3 Measurement Procedure and Data. 19
7.3 20DB BANDWIDTH 20
7.3.1 E.U.T. Operation 20
7.3.2 Test Setup Diagram 20
7.3.3 Measurement Procedure and Data. 20
7.4 Carrier Frequencies Separation 21
7.4.1 E.U.T. Operation 21
7.4.2 Test Setup Diagram 21
7.4.3 Measurement Procedure and Data. 21
7.5 Hopping Channel Number. 22
7.5.1 E.U.T. Operation 22
7.5.2 Test Setup Diagram. 22
7.5.3 Measurement Procedure and Data. 22
7.6 DWELL TIME. 23
7.6.1 E.U.T. Operation 23
7.6.2 Test Setup Diagram 23
7.6.3 Measurement Procedure and Data. 23

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.:	SZEM180300223102
Page:	5 of 92

7.7 Conducted Band Edges Measurement 24
7.7.1 E.U.T. Operation 25
7.7.2 Test Setup Diagram 25
7.7.3 Measurement Procedure and Data 25
7.8 Conducted Spurious Emissions 26
7.8.1 E.U.T. Operation 27
7.8.2 Test Setup Diagram 27
7.8.3 Measurement Procedure and Data 27
7.9 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS 28
7.9.1 E.U.T. Operation 29
7.9.2 Test Setup Diagram 29
7.9.3 Measurement Procedure and Data 30
7.10 Radiated Spurious Emissions 35
7.10.1 E.U.T. Operation 36
7.10.2 Test Setup Diagram 36
7.10.3 Measurement Procedure and Data 37
8 APPENDIX 46
8.1 APPENDIX 300328 46

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 6 of 92

4 General Information

4.1 Details of E.U.T.

Power supply:	Lithium lon Battery: 7.4 V 2600mAh rechargeable battery which charged by USB port
Cable:	USB cable: 50 cm unshielded Audio In cable: 50 cm unshielded
Channel Spacing	1 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	4.2 BT single mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, $\pi / 4$ DQPSK, 8 DPSK
Number of Channels:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	PCB Antenna
Antenna Gain:	OdBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25×10^{-8}
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75 dB
5	RF power density	2.84 dB
6	Conducted Spurious emissions	0.75 dB
7	RF Radiated power	$4.5 \mathrm{~dB}($ below 1 GHz$)$
		$4.8 \mathrm{~dB}($ above 1 GHz$)$
8	Radiated Spurious emission test	$4.5 \mathrm{~dB}($ Below 1 GHz$)$
	Temperature test	$4.8 \mathrm{~dB}(\mathrm{Above} 1 \mathrm{GHz})$
9	Humidity test	$1{ }^{\circ} \mathrm{C}$
10	Supply voltages	3%
11	Time	1.5%
12		3%

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 7 of 92

4.4 Test Location

All tests were performed at:
SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch
No. 1 Workshop, M-10, Middle Section, Science \& Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 75526012053 Fax: +86 75526710594
No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

- VCCI

The 3 m Fully-anechoic chamber for above $1 \mathrm{GHz}, 10 \mathrm{~m}$ Semi-anechoic chamber for below 1 GHz , Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

- FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.
Designation Number: CN1178. Test Firm Registration Number: 406779.

- Industry Canada (IC)

Two 3 m Semi-anechoic chambers and the 10 m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions None

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 8 of 92

5 Equipment List

Conducted Emissions at AC Power Line ($150 \mathrm{kHz}-30 \mathrm{MHz}$)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	$2017-05-10$	$2018-05-09$
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM024-01	$2017-07-13$	$2018-07-12$
LISN	Rohde \& Schwarz	ENV216	SEM007-01	$2017-09-27$	$2018-09-26$
LISN	ETS-LINDGREN	$3816 / 2$	SEM007-02	$2018-04-02$	$2019-04-01$
EMI Test Receiver	Rohde \& Schwarz	ESCI	SEM004-02	$2018-04-02$	$2019-04-01$

Conducted Peak Output Power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$	
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$	
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A	
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$	
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$	

20dB Bandwidth

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

Carrier Frequencies Separation

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 9 of 92

Hopping Channel Number					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

Dwell Time

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

Conducted Band Edges Measurement

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

Conducted Spurious Emissions

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	$2017-07-13$	$2018-07-12$
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	$2017-09-27$	$2018-09-26$
Power Meter	Rohde \& Schwarz	NRVS	SEM014-02	$2017-09-27$	$2018-09-26$

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 10 of 92

Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	$2017-05-02$	$2020-05-01$
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	$2017-07-13$	$2018-07-12$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
BiConiLog Antenna $(26-3000 M H z)$	ETS-Lindgren	3142 C	SEM003-01	$2017-06-27$	$2020-06-26$
Horn Antenna $(1-18 G H z)$	Rohde \& Schwarz	HF907	SEM003-07	$2015-06-14$	$2018-06-13$
Horn Antenna $(15 G H z-40 G H z)$	Schwarzbeck	BBHA 9170	SEM003-15	$2017-10-17$	$2020-10-16$
Pre-amplifier $(0.1-1300 M H z)$	HP	8447 D	SEM005-02	$2017-09-27$	$2018-09-26$
Low Noise Amplifier $(100 M H z-18 G H z)$	Black Diamond Series	BDLNA-0118-	SEM005-05	$2017-09-27$	$2018-09-27$
Pre-amplifier $(18-26 G H z)$	Rohde \& Schwarz	CH14-H052	SEM005-17	$2018-04-02$	$2019-04-01$
Pre-amplifier $(26 G H z-40 G H z)$	Compliance DC Power Supply Inections Systems Inc.	PAP-2640-50	SEM005-08	$2018-04-02$	$2019-04-01$
Active Loop Antenna	ETS-Lindgren	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Band filter	N/A	SEM003-08	$2017-08-22$	$2020-08-21$	

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 11 of 92

Radiated Spurious Emissions

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	$2017-05-02$	$2020-05-01$
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	$2017-07-13$	$2018-07-12$
Spectrum Analyzer	Rohde \& Schwarz	FSU43	SEM004-08	$2018-04-02$	$2019-04-01$
BiConiLog Antenna $(26-3000 M H z)$	ETS-Lindgren	3142 C	SEM003-01	$2017-06-27$	$2020-06-26$
Horn Antenna $(1-18 G H z)$	Rohde \& Schwarz	HF907	SEM003-07	$2015-06-14$	$2018-06-13$
Horn Antenna $(15 G H z-40 G H z)$	Schwarzbeck	BBHA 9170	SEM003-15	$2017-10-17$	$2020-10-16$
Pre-amplifier $(0.1-1300 M H z)$	HP	8447 D	SEM005-02	$2017-09-27$	$2018-09-26$
Low Noise Amplifier $(100 M H z-18 G H z)$	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	$2017-09-27$	$2018-09-27$
Pre-amplifier(18-26GHz)	Rohde \& Schwarz	CH14-H052	SEM005-17	$2018-04-02$	$2019-04-01$
Pre-amplifier $(26 G H z-40 G H z)$	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	$2018-04-02$	$2019-04-01$
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	$2017-09-27$	$2018-09-26$
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	$2017-08-22$	$2020-08-21$
Band filter	N/A	N/A	SEM023-01	N/A	N/A

General used equipment

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	$2018-09-28$
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	$2017-09-29$	$2018-09-28$
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	$2017-09-29$	$2018-09-28$
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	$2017-04-18$	$2018-04-17$

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 12 of 92

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 \& 15.247(c)

6.1.2 Conclusion

Standard Requirement:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi . Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi .

Page: 13 of 92

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.
Compliance for section 15.247(a)(1):
According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.
> Number of shift register stages: 9
$>$ Length of pseudo-random sequence: 29-1 = 511 bits
$>$ Longest sequence of zeros: 8 (non-inverted signal)
Linear Feedback Shift Register for Generation of the PRBS sequence
An example of Pseudorandom Frequency Hopping Sequence as follow:
Each frequency used equally on the average by each transmitter.
According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.
Compliance for section 15.247(g):
According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.
Compliance for section 15.247(h):
According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.
The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 14 of 92

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement $\quad 47$ CFR Part 15, Subpart C 15.207
Test Method:
ANSI C63.10 (2013) Section 6.2
Limit:

Frequency of emission(MHz)	Conducted limit(dB $\mu \mathrm{V})$	
	Quasi-peak	Average
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5$	56	46
$5-30$	60	50
*Decreases with the logarithm of the frequency.		

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 15 of 92

7.1.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 18.6^{\circ} \mathrm{C} \quad$ Humidity: 53.2 \% RH Atmospheric Pressure: 1015 mbar
Test mode: d:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \mathrm{ohm} / 50 \mu \mathrm{H}+50 \mathrm{hm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
3) The tabletop EUT was placed upon a non-metallic table 0.8 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Remark: LISN=Read Level+ Cable Loss+ LISN Factor

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 16 of 92

Mode:d; Line:Live Line

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 17 of 92

Mode:d; Line:Neutral Line

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 18 of 92

7.2 Conducted Peak Output Power

Test Requirement
Test Method:
Limit:

47 CFR Part 15, Subpart C 15.247(b)(1)
ANSI C63.10 (2013) Section 7.8 .5

Frequency range(MHz)	Output power of the intentional radiator(watt)
$902-928$	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels <50
	1 for digital modulation
$2400-2483.5$	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
$5725-5850$	1 for frequency hopping systems and digital modulation

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 19 of 92

7.2.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.5% RH Atmospheric Pressure: 1015 mbar
Test mode c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 20 of 92

7.3 20dB Bandwidth

Test Requirement
Test Method:

47 CFR Part 15, Subpart C 15.247(a)(1)
ANSI C63.10 (2013) Section 7.8.7

7.3.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.3 \% RH Atmospheric Pressure: 1015 mbar
Test mode
c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 21 of 92

7.4 Carrier Frequencies Separation

Test Requirement
Test Method:
Limit:

47 CFR Part 15, Subpart C 15.247a(1)
ANSI C63.10 (2013) Section 7.8.2
$2 / 3$ of the 20 dB bandwidth base on the transmission power is less than 0.125 W

7.4.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.6% RH Atmospheric Pressure: 1015 mbar
Test mode
b:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technica
Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 22 of 92

7.5 Hopping Channel Number

Test Requirement $\quad 47$ CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method: \quad ANSI C63.10 (2013) Section 7.8.3
Limit:

Frequency range(MHz)	Number of hopping channels (minimum)
$902-928$	50 for 20 dB bandwidth $<250 \mathrm{kHz}$
	25 for 20 dB bandwidth $\geq 250 \mathrm{kHz}$
$2400-2483.5$	15
$5725-5850$	75

7.5.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.6% RH Atmospheric Pressure: 1015 mbar
Test mode b:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.5.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.5.3 Measurement Procedure and Data

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 23 of 92

7.6 Dwell Time

Test Requirement
47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method:
ANSI C63.10 (2013) Section 7.8.4
Limit:

Frequency(MHz)	Limit
$902-928$	0.4 S within a 20S period(20dB bandwidth<250kHz)
	0.4 S within a 10S period(20dB bandwidth $\geq 250 \mathrm{kHz})$
$2400-2483.5$	0.4 S within a period of 0.4 S multiplied by the number of hopping channels
$5725-5850$	0.4 S within a 30S period

7.6.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: $\quad 50.7 \%$ RH Atmospheric Pressure: 1015 mbar
Test mode
b:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.6.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 24 of 92

Abstract

7.7 Conducted Band Edges Measurement

Test Requirement Test Method: Limit:

47 CFR Part 15, Subpart C 15.247(d) ANSI C63.10 (2013) Section 7.8.6 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209(\mathrm{a})$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page: 25 of 92

7.7.1 E.U.T. Operation

Operating Environment:

Pretest these modes to find the worst case:

The worst case for final test:

Temperature: $23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.8 \% RH Atmospheric Pressure: 1015 mbar
b:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
b:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
7.7.2 Test Setup Diagram

Ground Reference Plane

7.7.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 26 of 92

7.8 Conducted Spurious Emissions

Test Requirement
Test Method:
Limit:

47 CFR Part 15, Subpart C 15.247(d)
ANSI C63.10 (2013) Section 7.8.8
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209(\mathrm{a})$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 27 of 92
7.8.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 23.6^{\circ} \mathrm{C} \quad$ Humidity: 50.7% RH Atmospheric Pressure: 1015 mbar
Test mode c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technica
Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 28 of 92

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement
Test Method:
Measurement Distance: 3m
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands $9-90 \mathrm{kHz}, 110-490 \mathrm{kHz}$ and above 1000 MHz . Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 29 of 92

7.9.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 22.2^{\circ} \mathrm{C} \quad$ Humidity: 58.9 \% RH Atmospheric Pressure: 1015 mbar

Pretest these modes to find the worst case:

The worst case for final test:
c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
d:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
d:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.9.2 Test Setup Diagram

$30 \mathrm{MHz}-1 \mathrm{GHz}$

Above 1 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 30 of 92

7.9.3 Measurement Procedure and Data

a. For below 1 GHz , the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. For above 1 GHz , the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30 MHz , the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
g. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
j. Repeat above procedures until all frequencies measured was complete.
Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
Remark 2: For frequencies above 1 GHz , the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 31 of 92

Mode:d; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition: 3m HORIZONTAL
Job No : 02231CR/02232CR
Mode : 2402 Band edge
: BT

Freq	$\begin{array}{r} \text { Cable } \\ \text { Loss } \end{array}$	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	BuV/m		

1	2376.127	5.46	29.04	41.87	49.36	41.99	74.00	-32.01 peak
2	2390.000	5.47	29.08	41.87	47.23	39.91	74.00	-34.09 peak
3 pp	2402.000	5.49	29.11	41.88	101.85	94.57	74.00	20.57 peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 32 of 92

Mode:d; Polarization:Vertical; Modulation:GFSK; Channel:Low

Conditi	ion: 3m	RTIC							
Job No	: 022	31CR/0	2232 CR						
Mode	$\begin{aligned} & : 240 \\ & : ~ B T \end{aligned}$	Band	edge						
	Freq	$\begin{array}{r} \text { Cable } \\ \text { Loss } \end{array}$	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\mathrm{dBuV} / \mathrm{m}$	dB	
1	2376.127	5.46	29.04	41.87	50.31	42.94	74.00	-31.06	peak
2	2390.000	5.47	29.08	41.87	47.27	39.95	74.00	-34.05	peak
3 pp	2402.000	5.49	29.11	41.88	100.33	93.05	74.00	19.05	peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 33 of 92

Mode:d; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condit Job No	$\begin{aligned} & \text { ion: } 3 \mathrm{~m} \\ & \quad: \quad 022 \end{aligned}$	HORIZO	NTAL 2232CR						
Mode	$\begin{aligned} & : 248 \\ & : ~ B T \end{aligned}$	Band	edge						
	Freq	$\begin{array}{r} \text { Cable } \\ \text { Loss } \end{array}$	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	
1 pp	2480.000	5.59	29.34	41.91	103.05	96.07	74.00	22.07	peak
2	2483.500	5.60	29.35	41.91	51.58	44.62	74.00	-29.38	peak
3	2483.846	5.60	29.35	41.91	51.46	44.50	74.00	-29.50	peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 34 of 92

Condition: 3m VERTICAL
Job No : 02231CR/02232CR
Mode : 2480 Band edge
: BT

Freq	$\begin{array}{r} \text { Cable } \\ \text { Loss } \end{array}$	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
MHz	dB	dB/m	dB	dBuV	/m	BuV/m	dB	

1 pp	2480.000	5.59	29.34	41.91	103.62	96.64	74.00	22.64 peak
2	2483.500	5.60	29.35	41.91	52.39	45.43	74.00	-28.57 peak
3	2484.046	5.60	29.35	41.91	51.76	44.80	74.00	-29.20 peak

SGS-CSTC Standards Technica
Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 35 of 92

7.10 Radiated Spurious Emissions

Test Requirement
Test Method:
Measurement Distance: 3m
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands $9-90 \mathrm{kHz}, 110-490 \mathrm{kHz}$ and above 1000 MHz . Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 36 of 92

7.10.1 E.U.T. Operation

Operating Environment:
Temperature: $\quad 22.2^{\circ} \mathrm{C} \quad$ Humidity: 30.3% RH Atmospheric Pressure: 1015 mbar

Pretest these modes to find the worst case:

The worst case for final test:
c:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
d:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
d:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, m/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.10.2 Test Setup Diagram

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: $\quad 37$ of 92

7.10.3 Measurement Procedure and Data

a. For below 1 GHz , the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. For above 1 GHz , the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30 MHz , the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
g. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1 GHz , through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
2) The field strength is calculated by adding the Antenna Factor, Cable Factor \& Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor
3) Scan from 9 kHz to 25 GHz , the disturbance above 18 GHz and below 30 MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20 dB below the limit need not be reported.
4) For frequencies above 1 GHz , the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 38 of 92
$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$
Mode: a; Polarization: Horizontal

Condition: 3m HORIZONTAL
Job No. : 02231CR
Test mode: d

Freq	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit
MHz	dB	dB / m	dB	dBuV	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB

1	127.22	1.27	13.33	27.52	35.27	22.35	43.50	-21.15
2 pp	200.69	1.40	16.53	27.53	49.62	40.02	43.50	-3.48
3	257.42	1.71	19.06	27.54	44.08	37.31	46.00	-8.69
4	297.22	1.89	19.49	27.54	43.12	36.96	46.00	-9.04
5	771.45	3.12	28.34	27.46	25.09	29.09	46.00	-16.91
6	986.07	3.69	30.23	26.81	24.61	31.72	54.00	-22.28

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 39 of 92
Mode: a; Polarization: Vertical

Condition: 3m VERTICAL
Job No. : 02231CR
Test mode: d

Freq	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit
MHz	dB	dB/m	dB	dBuV	BuV/m	dBuV/m	

1
2
3
4
5 pp
6
30.96
0.60
21.95
27.67
31.18
26.06
$40.00-13.94$
49.36
0.79
14.39
27.60
37.72
25.30
$40.00-14.70$
83.23
1.10
12.37
27.50
39.83
25.80
$40.00-14.20$
100.93
1.20
13.95
27.51
39.92
27.56
$43.50-15.94$
.
1.27
13.29
27.52
44.14
31.18
$43.50-12.32$
239.15
1.62
18.73
27.53
36.93
29.75
$46.00-16.25$

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page: 40 of 92
Above 1GHz
Mode:d; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition: 3m HORIZONTAL
Job No : 02231CR/02232CR
Mode : 2402 TX RSE
Note : BT

Freq	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit
MHz	dB		dB	dBuV	ul/m	/m	

1	1597.181	5.35	26.24	41.47	46.53	36.65	74.00	-37.35 peak
2	4242.641	7.27	33.60	42.37	47.81	46.31	74.00	-27.69 peak
3	4804.000	7.89	34.16	42.47	47.38	46.96	74.00	-27.04 peak
4	6974.982	10.20	36.43	40.87	45.76	51.52	74.00	-22.48 peak
5 pp	7206.000	10.08	36.42	40.71	46.21	52.00	74.00	-22.00 peak
6	9608.000	10.75	37.52	37.74	41.38	51.91	74.00	-22.09 peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 41 of 92

Mode:d; Polarization:Vertical; Modulation:GFSK; Channel:Low

Condition: 3m VERTICAL
Job No : 02231CR/02232CR
Mode : 2402 TX RSE
Note : BT

Freq
MHz

1
2
37.52
25.11
41.29
48.71
37.46
$74.00-36.54$ peak
47.40
46.03
$74.00-27.97$ peak

6
34804.000
4.93
7.43
7.89
11.46
10.08
10.75
$6 \quad 9608.000$
4 pp 6526.373
$5 \quad 7206.000$
1335.141
4379.699
4804.000
6526.373
7206.000
9608.000

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 42 of 92

Mode:d; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Condition: 3m HORIZONTAL
Job No : 02231CR/02232CR
Mode : 2441 TX RSE
Note : BT

Freq	Cable	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
MHz	dB	dB/m	dB	dBuV	V			

1	1653.550	5.28	26.48	41.50	45.64	35.90	74.00	-38.10 peak
2	4267.237	7.30	33.60	42.38	46.63	45.15	74.00	-28.85 peak
3	4882.000	7.97	34.30	42.48	45.43	45.22	74.00	-28.78 peak
4 pp	6914.763	10.36	36.27	40.91	45.80	51.52	74.00	-22.48 peak
5	7323.000	10.05	36.37	40.63	45.29	51.08	74.00	-22.92 peak
6	9764.000	10.82	37.55	37.52	40.39	51.24	74.00	-22.76 peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 43 of 92

Mode:d; Polarization:Vertical; Modulation:GFSK; Channel:middle

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 44 of 92

Mode:d; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition: 3m HORIZONTAL
Job No : 02231CR/02232CR
Mode : 2480 TX RSE
Note : BT

Freq	Cable	Ant Factor	Preamp Factor	Read	Level	Limit	Over	Remark
MHz	dB	dB/m	dB	dBuV	BuV/m	dBuV/m		

1	1556.169	5.41	26.06	41.44	45.38	35.41	74.00	-38.59 peak
2	4482.150	7.54	33.60	42.41	48.70	47.43	74.00	-26.57 peak
3	4960.000	8.05	34.43	42.49	47.20	47.19	74.00	-26.81 peak
4 pp	6835.278	10.58	36.05	40.97	45.74	51.40	74.00	-22.60 peak
5	7440.000	10.02	36.32	40.56	44.95	50.73	74.00	-23.27 peak
6	9920.000	10.90	37.58	37.31	39.48	50.65	74.00	-23.35 peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 45 of 92

Condition: 3m VERTICAL
Job No : 02231CR/02232CR
Mode : 2480 TX RSE
Note : BT

Freq	Cable Loss
MHz	Ant Preamp
dB	Read Revel
dB / m	dB

1	1697.129
2	4430.628
3	4960.000
4	pp
5	6545.263
5	7440.000
6	9920.000

$5.23 \quad 26.66$
41.53
45.37
35.73
$74.00-38.27$ peak
$7.48 \quad 33.60$
42.41
46.67
45.34
$74.00-28.66$ peak
42.49
46.09
46.08
$74.00-27.92$ peak
$74.00-21.68$ peak
74.00-24.11 peak
$6 \quad 9920.000$
10.90
36.32
41.18
46.86
52.32
49.89
$74.00-22.30$ peak

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 46 of 92

8 Appendix

8.1 Appendix 300328

1.20 dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.990	---	PASS
DH5	2441	0.990	---	PASS
DH5	2480	0.990	---	PASS
2DH5	2402	1.284	---	PASS
2DH5	2441	1.288	---	PASS
2DH5	2480	1.284	---	PASS
3DH5	2402	1.290	---	PASS
3DH5	2441	1.288	---	PASS
3DH5	2480	1.292	--	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 47 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 48 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 49 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: $\quad 50$ of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 51 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 52 of 92

2.Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	2.68	$<=30$	PASS
DH5	2441	0.48	$<=30$	PASS
DH5	2480	0.63	$<=30$	PASS
2DH5	2402	0.57	$<=30$	PASS
2DH5	2441	1.76	$<=30$	PASS
2DH5	2480	1.79	$<=30$	PASS
3DH5	2402	0.97	$<=30$	PASS
3DH5	2441	2.1	$<=30$	PASS
3DH5	2480	2.19	$<=30$	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 53 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: $\quad 54$ of 92
 SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
55 of 92
 SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
56 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
57 of 92

3.Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2441	1.005	$>=0.99$	PASS
2DH5	2441	1.008	$>=0.86$	PASS
3DH5	2441	1.002	$>=0.86$	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
58 of 92

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page: 59 of 92

4.Dwell Time

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2402	0.39	320	0.125	<0.4	PASS
DH3	2402	1.65	130	0.215	<0.4	PASS
DH5	2402	2.9	130	0.377	<0.4	PASS
2DH1	2402	0.4	320	0.128	<0.4	PASS
2 DH3	2402	1.65	190	0.314	<0.4	PASS
2 DH5	2402	2.9	70	0.203	<0.4	PASS
3DH1	2402	0.4	320	0.128	<0.4	PASS
3DH3	2402	1.66	190	0.315	<0.4	PASS
3DH5	2402	2.9	70	0.203	<0.4	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
60 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 61 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 62 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 63 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 64 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 65 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 66 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 67 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 68 of 92

5.Hopping Channel Number

Test Mode	Test Channel	Number of Hopping Channel[N]	Limit[N]	Verdict

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 69 of 92

DH5	2402	79	$>=15$	PASS
2DH5	2402	79	$>=15$	PASS
3DH5	2402	79	$>=15$	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 70 of 92

Hopping Channel Number_DH5_2402

$\begin{array}{llllllll}\text { * RBW } 1 & \mathrm{MHz} & \text { Delta } & 1 & {[\text { T1 }} & & & \\ \text { *VBW } & 3 \mathrm{MHz} & & & & 1.19 \mathrm{~dB}\end{array}$

Hopping Channel Number_2DH5_2402

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
71 of 92
Hopping Channel Number_3DH5_2402

6. Band-edge for RF Conducted Emissions

Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level $[\mathrm{dBm}]$	Limit[dBm]	Verdict
DH5	2402	On	-1.170	-56.457	<-21.17	PASS
DH5	2402	Off	2.250	-55.579	<-17.75	PASS
DH5	2480	On	-0.550	-53.849	<-20.55	PASS
DH5	2480	Off	0.000	-55.474	<-20	PASS
2DH5	2402	On	-1.520	-57.509	<-21.52	PASS
2DH5	2402	Off	-1.130	-56.717	<-21.13	PASS
2DH5	2480	On	-2.060	-55.653	<-22.06	PASS
$2 D H 5$	2480	Off	0.020	-55.868	<-19.98	PASS
3DH5	2402	On	-1.260	-55.745	<-21.26	PASS
3DH5	2402	Off	-1.310	-57.491	<-21.31	PASS
3DH5	2480	On	-1.850	-55.439	<-21.85	PASS
3DH5	2480	Off	0.020	-56.411	<-19.98	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
72 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
73 of 92

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page:
74 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
75 of 92

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page: 76 of 92

SGS-CSTC Standards Technical Services Co., Ltd.

 Shenzhen BranchReport No.: SZEM180300223102
Page:
77 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 78 of 92
7.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre $[\mathrm{MHz}]$	StopFre $[\mathrm{MHz}]$	RBW $[\mathrm{kHz}]$	VBW $[\mathrm{kHz}]$	Pref[dBm]	Max. Level $[\mathrm{dBm}]$	Limit $[\mathrm{dBm}]$	Verdict
DH5	2402	30	10000	1000	3000	2.2	-42.420	<-17.8	PASS
DH5	2402	10000	25000	1000	3000	2.2	-40.980	<-17.8	PASS
DH5	2441	30	10000	1000	3000	0.16	-42.390	$<-$ 19.84	PASS
DH5	2441	10000	25000	1000	3000	0.16	-39.910	$<-$ 19.84	PASS
DH5	2480	30	10000	1000	3000	0.2	-41.350	<-19.8	PASS
DH5	2480	10000	25000	1000	3000	0.2	-40.360	<-19.8	PASS
2DH5	2402	30	10000	1000	3000	-1.16	-41.950	$<-$ 21.16	PASS
2DH5	2402	10000	25000	1000	3000	-1.16	-40.340	$<-$ 21.16	PASS
2DH5	2441	30	10000	1000	3000	0	-41.500	<-20	PASS
2DH5	2441	10000	25000	1000	3000	0	-40.920	<-20	PASS
2DH5	2480	30	10000	1000	3000	0.08	-42.400	$<-$ 19.92	PASS
2DH5	2480	10000	25000	1000	3000	0.08	-40.640	$<-$ 19.92	PASS
3DH5	2402	30	10000	1000	3000	-1.65	-42.290	$<-$ 21.65	PASS
3DH5	2402	10000	25000	1000	3000	-1.65	-40.870	$<-$ 21.65	PASS
3DH5	2441	30	10000	1000	3000	0.01	-41.400	$<-$ 19.99	PASS
3DH5	2441	10000	25000	1000	3000	0.01	-41.010	$<-$ 19.99	PASS
3DH5	2480	30	10000	1000	3000	0.12	-42.730	$<-$ 19.88	PASS
3DH5	2480	10000	25000	1000	3000	0.12	-40.480	$<-$ 19.88	PASS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page:
79 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 80 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 81 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 82 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 83 of 92

CSE_2

RF Conducted Spurious Emissions_2DH5_2402

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 84 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 85 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 86 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 87 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 88 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 89 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 90 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 91 of 92

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300223102
Page: 92 of 92

- End of the Report -

