

Test Report for FCC

FCC ID: 2AL6N-SV-BTIN002

Repo	rt Number	ESTRFC2204-001				
	Company name	Salted Co	o., Ltd.			
Applicant	Address	4F, 140, H	lakdong-ro, Gang	nam-gu, Seoul, Sc	outh Korea	
	Telephone	+82-02-	552-0815			
	Contact person	KyungHo	on Kang			
	Product name	SMART INSOLE				
Product	Factory address	4F, 140, Hakdong-ro, Gangnam-gu, Seoul, South Korea				
	Model No.	SV-BTINSOLE002 Manufacturer Salted Co.,				
	Serial No.		NONE	Country of origin	KOREA	
Test date	28-Mar-2	22 ~ 01-A	Apr-22	Date of issue	12-Apr-22	
Testing location	140-16, Eongma	ılli-ro, Maj	jang-myeon, Ich	eon-si, Gyeongg	yi-do, Rep. of Korea	
Standard	FCC PART	15 Subpart (C (15.247), ANSI C 6	63.10(2013), KDB 558	8074 D01v05r02	
Measurement	facility registration	number	659627			
Tested by	Senior En	Senior Engineer H.G. Lee (Signature)				
Reviewed by	ey Engineering Manager I.K Hong (Signature)					
Abbreviation	OK, Pass = Pass	ed, Fail	= Failed, N/A =	not applicable		

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned
- This test report is not related to KOLAS accreditation

Contents

1.	Laboratory Information	3
2.	Description of EUT	4
3.	Test Standards	5
	Measurement condition	5
	DTS bandwidth	10
	5.1 Test procedure	10
	5.2 Test instruments and measurement setup	10
	5.3 Measurement results	10
	5.4 Trace data	11
6.	Maximum Peak Output Power	13
	6.1 Test procedure	13
	6.2 Measurement results	13
7.	Maximum conducted (average) output power	14
	7.1 Test procedure	14
	7.2 Measurement results	14
8.	Maximum power spectral density level in the fundamental emission	15
	8.1 Test procedure	15
	8.2 Test instruments and measurement setup	15
	8.3 Measurement results	15
	8.4 Trace data	16
9.	Emissions in non-restricted frequency bands	18
	9.1 Test procedure	18
	9.2 Test instruments and measurement setup	18
	9.3 Measurement results of band-edge & out of emission	18
	9.4 Trace data of band-edge & Out of Emission	19
10). Measurement of radiated emission	22
	10.1 Measurement equipment	22
	10.2 Environmental conditions	22
	10.3 Measurement Instrument setting for Radiated Emission	23
	10.4 Test Data·····	24
11	1. Measurement of conducted emission	36
	11.1 Measurement equipment	36
	11.2 Environmental conditions	36
	11.3 Test Data·····	37

Appendix 1. Special diagram

Report Number :ESTRFC2204-001

Appendix 2. Antenna Information

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab: 140-16, Eongmalli-ro, Majang-myeon, Icheon-si,

Gyeonggi-do, Rep. of Korea

1.3 Official Qualification(s)

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

2. Description of EUT

2.1 Summary of Equipment Under Test

Modulation Type : Bluetooth (GFSK)

Transfer Rate : 1 Mbps

Number of Channel : 40 ch

PEAK Output Power : GFSK: 0.31 mW

Rating : $100-240V \sim ,50/60Hz 3 A$

Receipt Date : 27-Sep-21

X-tal list(s) or . The highest operating frequency is 2480 MHz(Bluetooth)

Frequencies generated Blutooth: 2.4 GHz

2.2 General descriptions of EUT

- Transmission/reception frequency : Bluetooth(BLE) : 2402MHz ~ 2480MHz

Bluetooth(BLE) Class2 Max : 4dBm - Supply voltage : DC 3.8V(Battery)

- Operating temperature : -10°C ~ +50°C

3. Test Standards

Test Standard: FCC PART 15 Subpart C (15.247)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2013) & KDB558074 D01v05r02

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Applie	Applied Satandard: 47 CFR Part 15 Subpart C						
Standard	Test Type	Result	Remark	Limit			
15.207	AC Power Conducted Emission	Pass	Meet the requirement				
15.205 & 15.209	Restricted band / Intentional Radiated Emission	Pass	Meet the requirement				
15.247(a)(2)	6 dB Bandwidth	0	Marakali a mamuda arawa	M: 500 H			
	Occupied Bandwidth	Pass Meet the requirement		Min. 500 kHz			
15.247(b)(3)	Maximum Peak /Average ouput power	Pass	Meet the requirement	Max. 30 dBm			
15.209	Transmitter Radiated Emission	Pass	Meet the requirement	Table 15.209			
15.247(e)	Power Spectral Density	Pass	Meet the requirement	Max. 8 dBm			
15.247(d)	Band Edge Measurement	Pass	Meet the requirement	20 dB less			

4. Measurement Condition

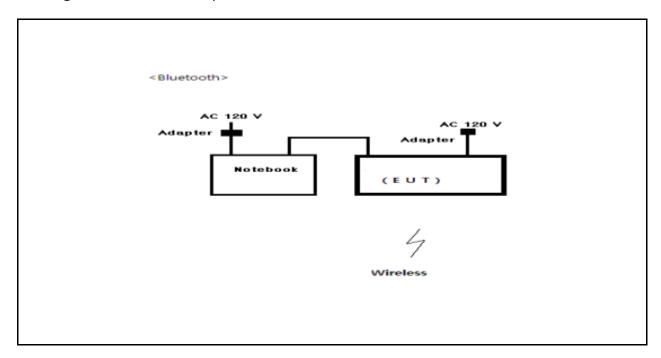
4.1 EUT Operation

a. Channel

Ch.	Frequency	Ch.	Frequency
0	2402 MHz		
1	2404 MHz	36	2474 MHz
2	2406 MHz	37	2476 MHz
3	2408 MHz	38	2478 MHz
	•••	39	2480 MHz
11	2428 MHz		
	•••		
19	2440 MHz		

b. Measurement Channel: Bluetooth: Low(2402 MHz), Middle(2440 MHz), High(2480 MHz)

c. Test Mode: Continuous Output, GFSK


d. Test rate: 1 Mbps

4.2 EUT Operation.

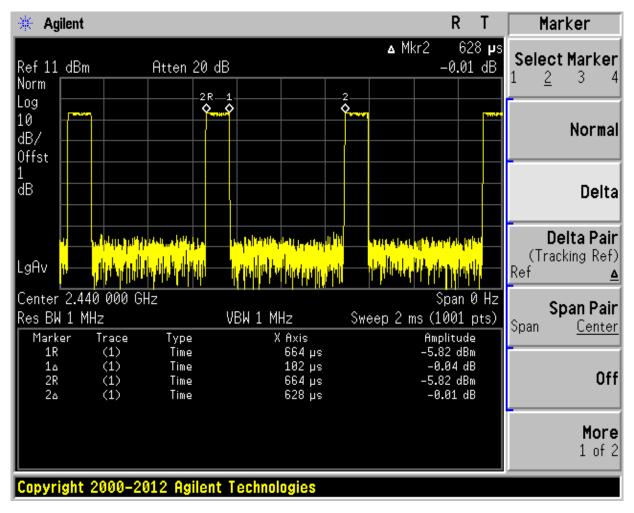
- The EUT was in the following operation mode during all testing
- * Bluetooth operation check
- * Transmit mode were measured each channels(Low, Middle, High)
- * The EUT was measured up to tenth harmonic or 40 GHz of the highest operating frequencies.

4.3 Configuration and Peripherals

4.4 EUT and Support equipment

Equipment Name Model Name		S/N	Manufacturer	Remark (FCC ID)
SMART INSOLE	SV-BTINSOLE002	NONE	(Salted Co., Ltd.)	EUT
Notebook	80XL	NONE	LcFc(hefei) electronics technology Co., Ltd.	
Adapter	ADL45WLE	NONE	LONOVO	

4.5 Cable Connecting


Start Equip	ment	End Equipment		Cable Standard		Damark
Name	I/O port	Name	I/O port	Length	Shielded	Remark
SMART INSOLE	Power	Adapter	-	2.0	Unshielded	
SMART INSOLE	USB	Notebook	USB	2.0	Unshielded	
Notebook	Power	Adapter	_	2.0	Unshielded	

4.6 DUTY CYCLE OF TEST SIGNAL

Duty cycle is < 98%, duty factor shall be considered.

duty cycle = 0.102/0.628=0.162, duty factor = 10*log(1/0.162)=7.904

5. DTS bandwidth

5.1 Test procedure

558074 D01 DTS Meas Guidance v05r02 Option 2

5.2 Test instruments and measurement setup

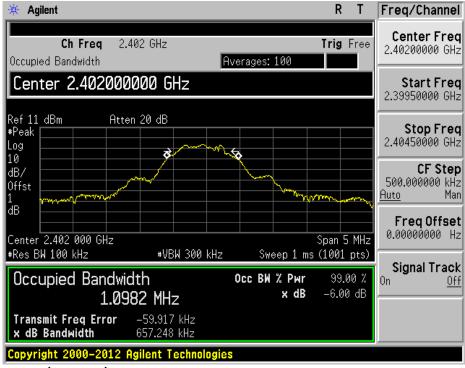
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limits: FCC § 15.247(a)(2)

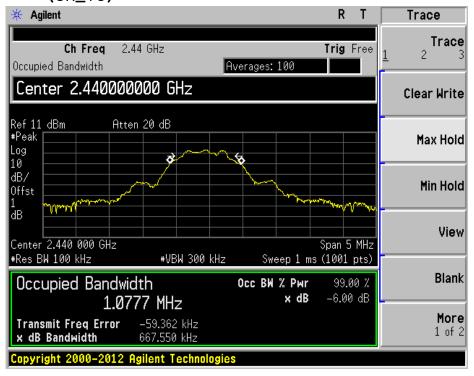
6dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2022-11-29
RF Cable	Length: 30 cm	_	
-Spectrum Analyzer <=> EUT	Loss: 1 dB	_	

5.3 Measurement results

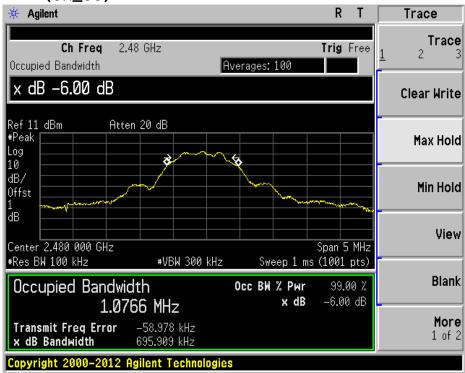

EUT	SMART INSOLE	MODEL	SV-BTINSOLE002
MODE	GFSK	ENVIRONMENTAL CONDITION	22.3 ℃, 44.6 % R.H.
INPUT POWER	DC 3.8 V		

Channel Frequency (MHz)	Occupied Bandwidth(MHz)	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2402	0.66	1.09	0.5	PASS
2440	0.67	1.07	0.5	PASS
2480	0.70	1.07	0.5	PASS



5.4 Trace data

 (ch_0)



(ch_19)

(ch_39)

6. Maximum peak conducted output power

6.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum peak output power measurement is 30 dBm.

Limits: FCC § 15.247

Maximum Peak Output Power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Power Meter	N1921A	MY45100570	2022-11-29
Power Sensor	N1921A	MY45240427	2022-11-29
Power Meter <=> EUT	Loss: 1 dB	_	

6.2 Measurement results

EUT	SMART INSOLE	MODEL	SV-BTINSOLE002
MODE	GFSK	ENVIRONMENTAL CONDITION	22.3 ℃, 44.6 % R.H.
INPUT POWER	DC 3.8 V		

CHANNEL	Channel Requency	Conducted Power Output(dBm)			Limit[1W]	PASS/FAIL
CHANNEL	(MHz)	Detector	(dBm)	(mW)	(dBm)	PASS/FAIL
0	2 402	PEAK	-5.11	0.31	30.0	PASS
19	2 440	PEAK	-5.76	0.27	30.0	PASS
39	2 480	PEAK	-6.66	0.22	30.0	PASS

7. Maximum conducted (average) output power

7.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum Average output power measurement is 30 dBm.

Limits: FCC § 15.247

Maximum conducted (average) output power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Power Meter	N1921A	MY45100570	2022-11-29
Power Sensor	N1921A	MY45240427	2022-11-29
Power Meter <=> EUT	Loss: 1 dB	_	

7.2 Measurement results

EUT	SMART INSOLE	MODEL	SV-BTINSOLE002
MODE	GFSK	ENVIRONMENTAL CONDITION	22.3 ℃, 44.6 % R.H.
INPUT POWER	DC 3.8 V		

CHANNEL	Channel Requency	Conducted Power Outpu		r Output(dBm)	Measured +	Measured + Duty	
CHANNEL	CHANNEL (MHz)		Detector (dBm) Duty Cycle		Duty Cycle(dBm)	Cycle(mW)	
0	2 402	AVG	-12.45	7.90	-4.55	0.35	
19	2 440	AVG	-13.07	7.90	-5.17	0.30	
39	2 480	AVG	-13.95	7.90	-6.05	0.25	

8. Maximum power spectral density level in the fundamental emission

8.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V05r02 10.2 Method PKPSD (peak PSD)

8.2 Test instruments and measurement setup

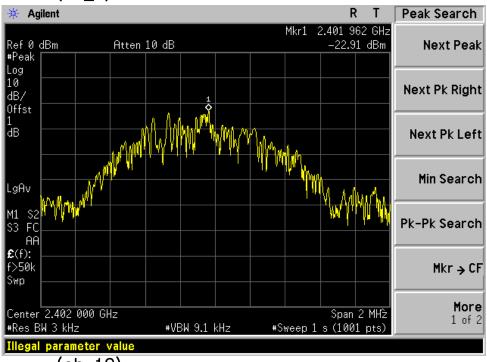
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

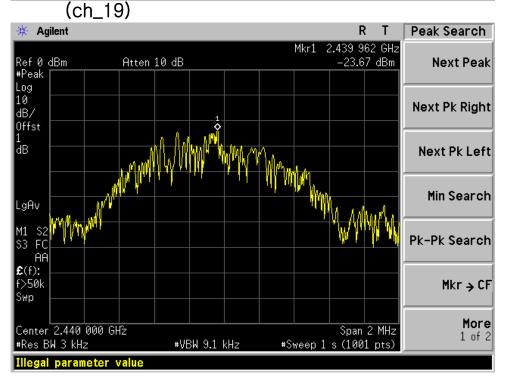
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Limits FCC § 15.247

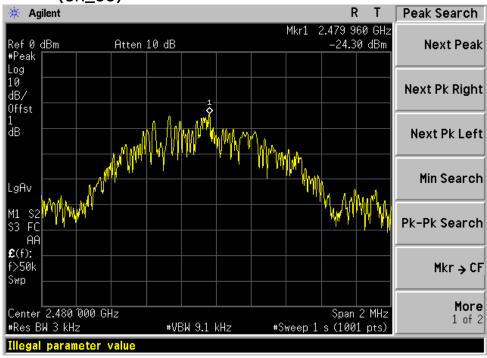
The peak power density Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E440A	US42041291	2022-11-29
RF Cable	Length: 30 cm	-	
-Spectrum Analyzer <=> EUT	Loss: 1 dB	_	


8.3 Measurement results


EUT	SMART INSOLE	MODEL	SV-BTINSOLE002
MODE	GFSK	ENVIRONMENTAL CONDITION	22.3 ℃, 44.6 % R.H.
INPUT POWER	DC 3.8 V		

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
0	2 402	-22.91	8.0	30.91
19	2 440	-23.67	8.0	31.67
39	2 480	-24.30	8.0	32.30


8.4 Trace data (ch_0)

9. Emissions in non-restricted frequency bands

9.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V05r02 11.0 Emissions in non-restricted frequency

9.2 Test instruments and measurement setup

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, t power shall be attenuated according to the following conditions(15.247(d))

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

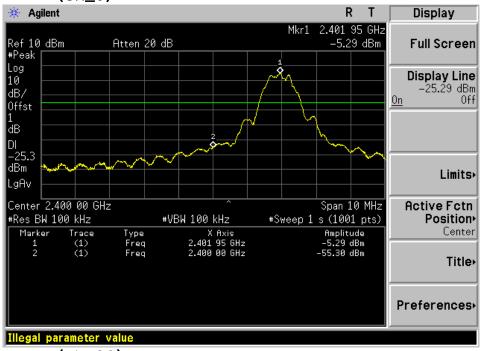
Report Number :ESTRFC2204-001

h) Use the peak marker function to determine the maximum amplitude level.

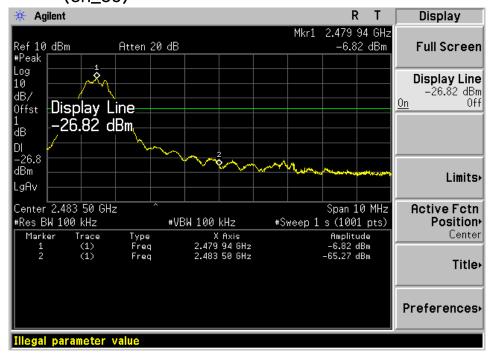
Limits FCC § 15.247

Band Edge&Out of Emission Test Instruments

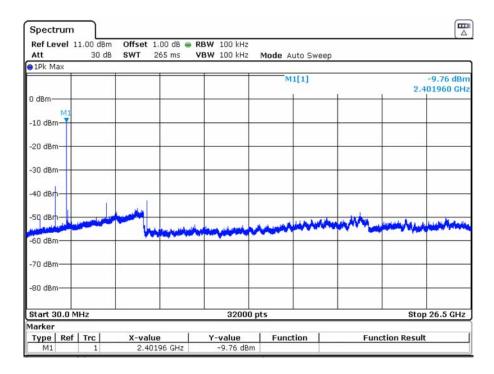
Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2022-11-29
RF Cable	Length: 30 cm		-
-Spectrum Analyzer <=> EUT	Loss: 1 dB		_


9.3 Measurement results of band-edge & out of emission

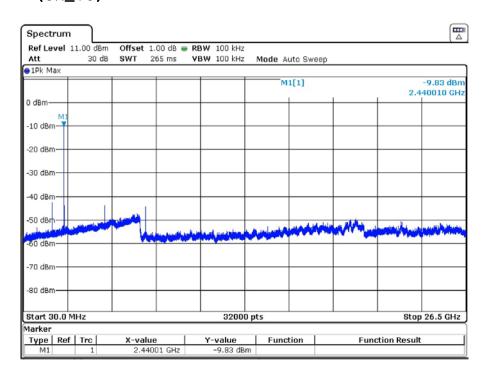
EUT	SMART INSOLE	MODEL	SV-BTINSOLE002
MODE	GFSK	ENVIRONMENTAL CONDITION	22.3 ℃, 44.6 % R.H.
INPUT POWER	DC 3.8 V		


CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
0	2 402	20dBc	PASS
39	2 480	20dBc	PASS

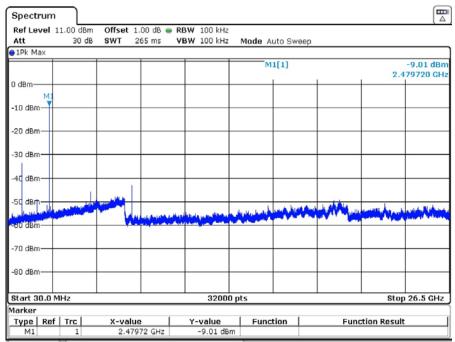
9.4 Trace data of band-edge & Out of Emission (ch_0)



(ch_39)



(ch_0)



(ch_19)

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC PART 15.205, 15.209. The test setup was made according to ANSI C 63.10 (2013) & KDB 558074 D01v05r02 Semi-anechoic chamber, which allows a 3 m distance measurement. The EUT was placed in the center of styrofoam. turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

Equipment Name	Equipment Name Type		Serial No.	Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	100916	19-Jul-22
Logbicon Antenna	VULB 9168	SCHWARZBECK	747	3-Feb-23
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
PREAMPLIFIER	8449B	AGILENT	3008A00581	20-Jul-22
Horn Antenna	BBHA9120D	SCHWARZBECK	752	22-Jul-22
Signal Analyzer	FSV40	ROHDE & SCHWARZ	100393	29-Nov-22
Turn Table	DT1500-S	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Antenna Master & Turn table controller	C02000-P	Innco System GmbH	CO2000/642 /28051111/L	-

10.2 Environmental Condition

Below 1 GHz -Test Place : 10 m Semi-anechoic chamber

BT(BLE) MODE

Temperature (°C) : 21.4 ℃

Humidity (% R.H.) : 43.2 % R.H.

Above 1 GHz-Test Place : 3 m Semi-anechoic chamber

BT(BLE) MODE

Temperature (°C) : 22.6 ℃

Humidity (% R.H.) : 43.4 % R.H.

10.3 Measurement Instrument setting for Radiated Emission

10.3.1 Frequency range below 1 GHz

Detector: Quasi-Peak

10.3.2 Frequency range above 1 GHz

Peak Power Measurement Procedure (KDB 558074 section 12.2.4)

a. RBW: 1 MHz, VBW: 3 MHz b. Trace mode = max hold

c. Detector : Peakd. Sweep time = auto

Average Power Measurement Procedures (KDB 558074 section 12.2.5.2)

a. Set analyzer center frequency to the frequency associated with the emission

b. RBW: 1 MHz, VBW: 3 MHz

c. Detector: RMS

d. Sweep time = auto

Note

Band	Duty cycle(%)	Ton (ms)	Ton + Toff (ms)	DCF=10*log(1/Duty) (dB)
BT(BLE)	16.200	0.102	0.628	7.904

* This was applied of duty cycle factor for average value because of measured with the EUT transmitting continuously less than 98 % duty cycle at its maximum power control level.

10.4 Test data(30 MHz ~ 1 000 MHz)

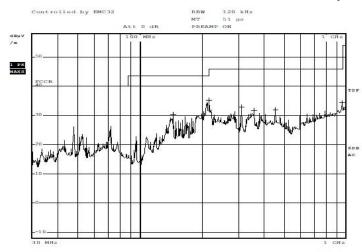
Test Date: 28-Mar-22 Measurement Distance: 3 m

Test Date .	20 IVIAI 22	Weasurement Distance . 5 iii						
Frequency	Reading	Position	Height	Correction	n Factor	Result Va	alue(Quasi-p	eak)
(MHz)	neading (dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
43.00	20.85	V	1.6	13.57	0.97	40.00	35.39	4.61
47.80	23.66	V	1.5	13.92	1.02	40.00	38.60	1.40
72.10	25.32	V	1.5	11.51	1.27	40.00	38.10	1.90
217.00	22.33	Н	1.4	10.66	2.26	46.00	35.25	10.75
312.00	16.18	Н	1.3	13.94	2.76	46.00	32.88	13.12
959.80	5.05	Н	1.0	24.18	5.12	46.00	34.35	11.65
						•	,	
	H: Horizontal, V: Vertical TEST MODE: BT BLE (CH: 19 - 2 440 MHz)							

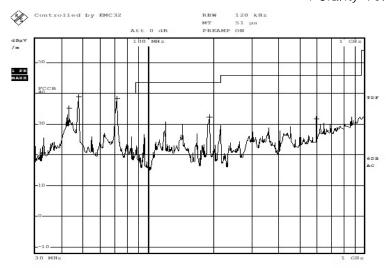
Remark

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is X axis of position)

^{*}CL = Cable Loss(In case of below 1 000 MHz)


^{*}Result Value = Reading + Ant Factor + Cable loss

[★]The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.


10.4-1 Restricted Band Edges

Polarity: Horizontal

ESTR-21-00317

Polarity:Vertical

10.4-2 Test Data(Low)

Test Date: 29-Mar-22 Measurement Distance: 3 m

Frequency Readin (MHz) (dB μ V)	Pooding	_	Height (m)	Correction Factor		Duty Cycle	Result Value		
	(dB#V)			Ant Factor (dB)	AMP & Cable (dB)	Correction(d B)	Limit (dB₩/m)	Result (dB#V/m)	Margin (dB)
			PEAI	MHz VBV	√: 3 MHz)				
2390.00	44.01	Н	1.6	27.83	-29.82		74.00	42.02	31.98
2390.00	44.82	V	1.6	27.83	-29.82		74.00	42.83	31.17
4804.00	43.59	Н	1.5	31.50	-27.28		74.00	47.81	26.19
4804.00	44.67	V	1.5	31.50	-27.28		74.00	48.89	25.11
	AV(RBW: 1 MHz VBW: 3 MHz)								
2390.00	34.48	Н	1.6	27.83	-29.82	7.90	54.00	40.39	13.61
2390.00	34.51	V	1.6	27.83	-29.82	7.90	54.00	40.42	13.58
4804.00	32.84	Н	1.5	31.50	-27.28	7.90	54.00	44.96	9.04
4804.00	33.12	V	1.5	31.50	-27.28	7.90	54.00	45.24	8.76
									_

H: Horizontal, V: Vertical TEST MODE: CH: 0 - 2 402 MHz (x postion)

Remark

^{*}The TX signal wasn't detected from 3th harmonics.

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is X axis of position)

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

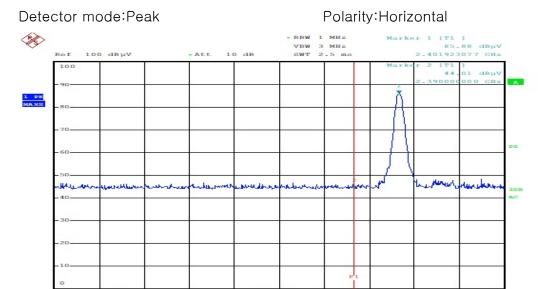
^{*}This test was radiated up to 26.5 GHz but no noise was measured.

10.4-3 Test Data(Middle)

Test Date: 18-Mar-22 Measurement Distance: 3 m

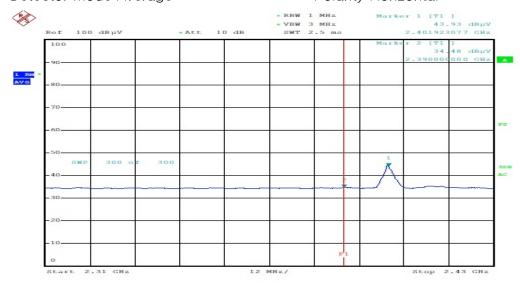
1		1		Ī		Ī	1		
Frequency (MHz)	Reading (dB#V)	Position (V/H)	Height	Correction Factor		Duty Cycle	Result Value		
			(m)	Ant Factor (dB)	AMP & Cable (dB)	Correction(d B)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			PEAK	(RBW: 1 MH	Hz VBW:	3 MHz)			
4880.00	44.62	Н	1.5	31.58	-27.24		74.00	48.96	25.04
4880.00	45.05	V	1.6	31.58	-27.24		74.00	49.39	24.61
			۸) // ۲	2014/- 1 1411-	. \/D\\/. C)			
1			AV(F	RBW: 1 MHz ı — ı	Z ABM: 3	3 MHZ)	1		
4880.00	33.62	Н	1.5	31.58	-27.24	7.90	54.00	45.86	8.14
4880.00	33.74	V	1.6	31.58	-27.24	7.90	54.00	45.98	8.02
Remark	*The TX sign *Checked in *Total = Read	al wasn't dete all 3 axis and ding Value + A	ected from the maxim Antenna Fa		data were rep sss - Amp Ga	orted.(Worst data ain + Duty Cycle C		osition)	

10.4-4 Test Data(High)


Test Date: 18-Mar-22 Measurement Distance: 3 m

Test Date:	18-Mar-22) 				Me	<u>asure</u> ment	Distance:	3 m
Frequency	Reading (dB#V)	Position (V/H)	Height (m)	Correction Factor		Duty Cycle	Result Value		
(MHz)				Ant Factor (dB)	AMP & Cable (dB)	Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margir (dB)
			PEAŁ	K(RBW: 1 N	MHz VBW	: 3 MHz)	_		
2483.50	50.55	Н	1.6	27.63	-29.75		74.00	48.43	25.57
2483.50	45.09	V	1.8	27.63	-29.75		74.00	42.97	31.03
4960.00	44.06	Н	1.6	31.78	-27.17		74.00	48.67	25.33
4960.00	44.34	V	1.5	31.78	-27.17		74.00	48.95	25.05
			AV(RBW: 1 MH	Hz VBW:				
2483.50	34.88	Н	1.6	27.63	-29.75	7.90	54.00	40.66	13.34
2483.50	34.40	V	1.8	27.63	-29.75	7.90	54.00	40.18	13.82
4960.00	32.69	Н	1.6	31.78	-27.17	7.90	54.00	45.20	8.80
4960.00	33.52	V	1.5	31.78	-27.17	7.90	54.00	46.03	7.97
Remark	*The TX sign *Checked in *Total = Rea	all 3 axis an ading Value +	tected from d the max Antenna		cs. d data were re Loss - Amp G	ported.(Worst da Gain + Duty Cycle		position)	

10.4-5 Restricted Band Edges

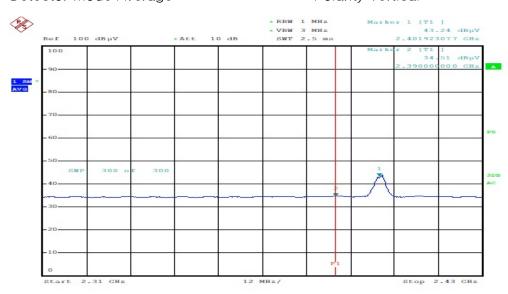

Band Edges(CH Low)

ESTR-21-00318

Detector mode: Average

Polarity: Horizontal

Band Edges(CH Low)

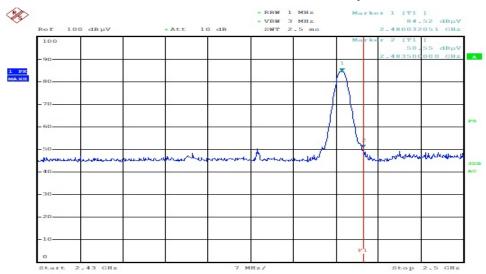

12 MHz/

ESTR-21-00318

Detector mode: Average

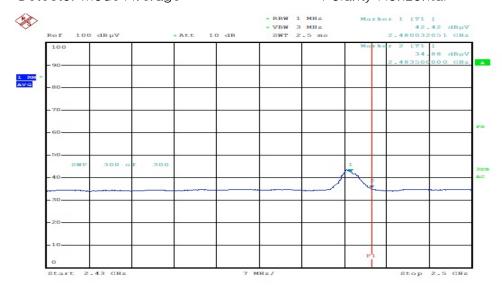
Start 2.31 GHz

Polarity:Vertical



Band Edges(CH High)

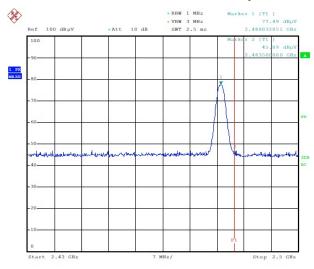
Detector mode:Peak


Polarity: Horizontal

ESTR-21-00318

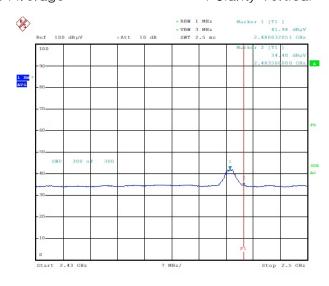
Detector mode: Average

Polarity: Horizontal



Band Edges(CH High)

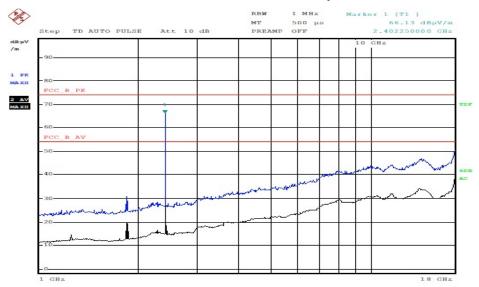
Detector mode:Peak


Polarity:Vertical

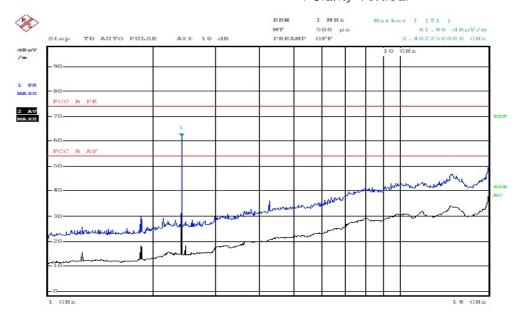
ESTR-21-00318

Detector mode: Average

Polarity:Vertical

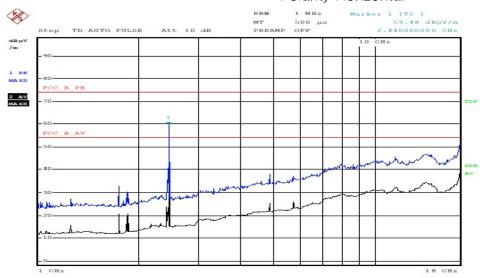


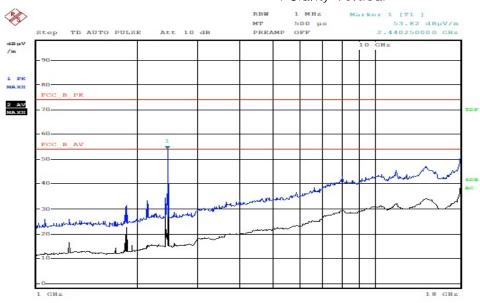
10.4-6 Restricted Band Edges


Band Edges(CH Low)

Polarity: Horizontal

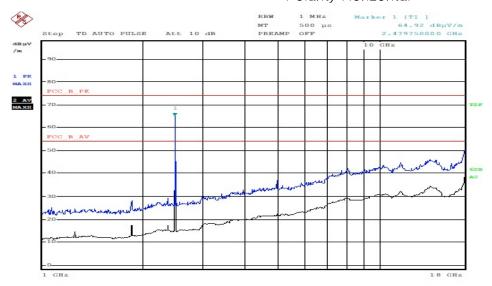
ESTR-21-00318

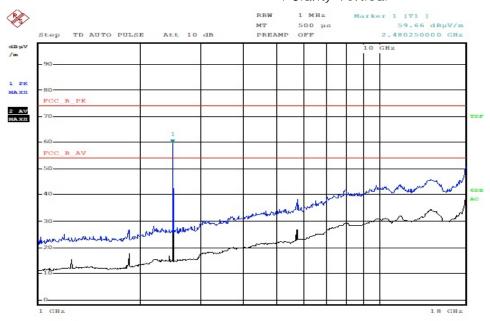

Polarity:Vertical


Band Edges(CH Middle)

Polarity: Horizontal

ESTR-21-00318


Polarity:Vertical


Band Edges(CH High)

Polarity: Horizontal

ESTR-21-00318

Polarity:Vertical

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC PART 15.207. The test setup was made according to ANSI C 63.10 (2009) in a shielded room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date	
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	19-Jul-22	
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	19-Jul-22	
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	19-Jul-22	

11.2 Environmental Condition

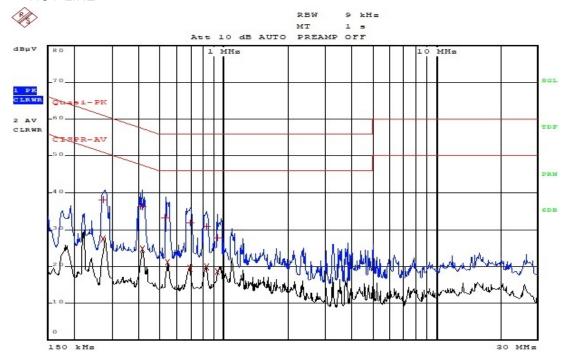
Test Place : Shielded Room

Temperature (°C) : 23.5 °C Humidity (% R.H.) : 44.4 % R.H.

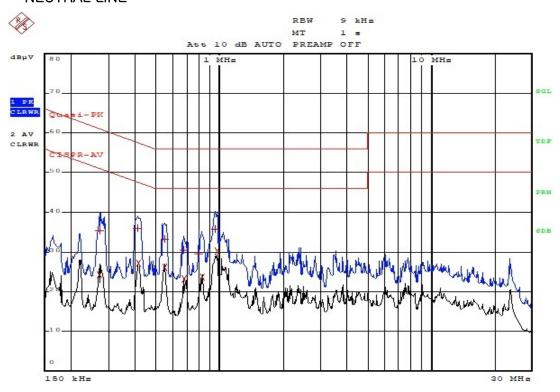
11.3 Test Data

Test Date: 30-Mar-22

Correction Factor		Lino	Quasi-peak Value			Average Value		
Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.05	0.18	Н	64.04	38.05	36.22	54.04	27.38	29.99
0.04	0.20	Н	62.10	36.19	41.82	52.10	24.67	32.56
0.04	0.31	Н	56.69	33.23	46.63	46.69	21.08	38.09
0.04	0.32	Ν	56.51	33.31	48.89	46.51	26.06	41.15
0.04	0.34	Η	56.00	31.73	33.23	46.00	19.42	28.45
0.04	0.47	Ν	56.00	35.78	37.20	46.00	30.11	30.77
	Lisn (dB) 0.05 0.04 0.04 0.04 0.04	Lisn (dB) (dB) 0.05 0.18 0.04 0.20 0.04 0.31 0.04 0.32 0.04 0.34	Lisn (dB) (dB) (H/N) 0.05 0.18 H 0.04 0.20 H 0.04 0.31 H 0.04 0.32 N 0.04 0.34 H	Lisn (dB) (dB) (H/N) Limit (dB \(\text{\pi} \)) 0.05 0.18 H 64.04 0.04 0.20 H 62.10 0.04 0.31 H 56.69 0.04 0.32 N 56.51 0.04 0.34 H 56.00	Lisn (dB) Cable (H/N) Limit (dB,W) (dB,W) 0.05 0.18 H 64.04 38.05 0.04 0.20 H 62.10 36.19 0.04 0.31 H 56.69 33.23 0.04 0.32 N 56.51 33.31 0.04 0.34 H 56.00 31.73	Lisn (dB) (dB) (H/N) Limit (dB,W) (dB,W) (dB,W) 0.05 0.18 H 64.04 38.05 36.22 0.04 0.20 H 62.10 36.19 41.82 0.04 0.31 H 56.69 33.23 46.63 0.04 0.32 N 56.51 33.31 48.89 0.04 0.34 H 56.00 31.73 33.23	Lisn (dB) (dB) (H/N) Limit (dB,W) (dB	Lisn (dB) (dB) (H/N) Limit (dB,W) (dB


Remark

Report Number :ESTRFC2204-001


H: Hot Line, N: Neutral Line *Correction Factor = Lisn + Cable *Result = Correction Factor + Reading

Appendix 1. Special diagram *CONDUCTED EMISSION

* HOT LINE

* NEUTRAL LINE

Appendix 2. Antenna information

1. Antenna information

antenna type: Intergrated FPCB Antenna.

antenna location: Integnal antenna gain: 1.0 dBi

No temporary RF connector provided