

Test Report for FCC

FCC ID :2AL6N-SV-BTIN001

				1 0 0	TID IZACOIN ON DITINOOT		
Repo	rt Number	ESTRF	C2001-002				
	Company name	Salted	Co., Ltd.				
Applicant	Address	4F, 140,	Hakdong-ro, Gai	ngnam-gu, Seoul,	South Korea		
	Telephone	+82-02-552-0815					
	Contack person	KyungHoon Kang					
	Product name	SMART	INSOLE				
Product	Model No.	SV-BTINSOLE001		Manufacturer	Salted Co., Ltd.		
	Serial No.	None		Country of origin	KOREA		
Test date	09-Dec-1	9 ~ 12-D	ec-19	Date of issue	17-Jan-20		
Testing location	347-69, 3		aero 147beon-g onggi-do 467-8	il, Majang-myeor 11, R. O. Korea	n, Icheon-si,		
Standard	FCC PART	15 Subpart (C (15.247), ANSI C 6	33.10(2013), KDB 558	3074 D01v05r02		
Measurement	facility registration	number	659627				
Tested by	Senior En	Senior Engineer H.G. Lee (Signature)					
Reviewed by	Engineering	ng Manager I.K Hong (Signature)					
Abbreviation							

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned
- This test report is not related to KOLAS accreditation

Contents

	Laboratory information	3
	Description of EUT	4
	Test Standards	5
4.	Measurement condition	6
5.	DTS bandwidth	10
	5.1 Test procedure	10
	5.2 Test instruments and measurement setup	10
	5.3 Measurement results	10
	5.4 Trace data ·····	11
6.	Maximum Peak Output Power ······	13
	6.1 Test procedure	13
	6.2 Measurement results	13
7.	Maximum conducted (average) output power	14
	7.1 Test procedure	14
	7.2 Measurement results	14
8.	Maximum power spectral density level in the fundamental emission	15
	8.1 Test procedure ······	15
	8.2 Test instruments and measurement setup	15
	8.3 Measurement results	15
	8.4 Trace data	16
9.	Emissions in non-restricted frequency bands	18
	9.1 Test procedure	18
	9.2 Test instruments and measurement setup	18
	9.3 Measurement results of band-edge & out of emission	18
	9.4 Trace data of band-edge & Out of Emission	19
1(O. Measurement of radiated emission	23
	10.1 Measurement equipment	23
	10.2 Environmental conditions	23
	10.3 Measurement Instrument setting for Radiated Emission	24
	10.4 Test Data·····	25
1	1. Measurement of conducted emission	33
	11.1 Measurement equipment	33
	11.2 Environmental conditions	33
	11.3 Test Data·····	34

Appendix 1. Special diagram

Appendix 2. Antenna Requirement

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab: 140-16, Eongmalli-ro, Majang-myeon, Icheon-si,

Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

2. Description of EUT

2.1 Summary of Equipment Under Test

Modulation Type : Bluetooth (GFSK)

Transfer Rate : 1 Mbps

Number of Channel : 40 ch

PEAK Output Power : GFSK : 2.72 mW

Rating : DC 3.8 V

Receipt Date : 11-Jul-19

X-tal list(s) or . The highest operating frequency is 2480 MHz(Bluetooth)

Frequencies generated Blutooth: 2.4 GHz

2.2 General descriptions of EUT

- Transmission/reception frequency : Bluetooth(BLE) : 2402MHz \sim 2480MHz

Bluetooth(BLE) Class2 Max: 4dBm

Supply voltage : DC 3.8V(Battery)

- Operating temperature: -10° ~ +50°

3. Test Standards

Test Standard: FCC PART 15 Subpart C (15.247)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2013) & KDB558074 D01v05r02

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

outilitary of rest nesults						
Appl	Applied Satandard : 47 CFR Part 15 Subpart C					
Standard	Test Type	Result	Remark	Limit		
15.207	AC Power Conducted Emission Pass Meet the requirement					
15.205 & 15.209	Restricted band / Intentional Radiated Emission	Pass	Meet the requirement			
15.247(a)(2)	6 dB Bandwidth		Min. 500 kHz			
	Occupied Bandwidth	Pass	Meet the requirement	WIIII. SUU KMZ		
15.247(b)(3)	Maximum Peak/average ouput power	Pass	Meet the requirement	Max. 30 dBm		
15.247(c)	Transmitter Radiated Emission	Pass	Meet the requirement	Table 15.209		
15.247(e)	Power Spectral Density	Pass	Meet the requirement	Max. 8 dBm		
15.247(d)	Band Edge Measurement	Pass	Meet the requirement	20 dB less		

4. Measurement Condition

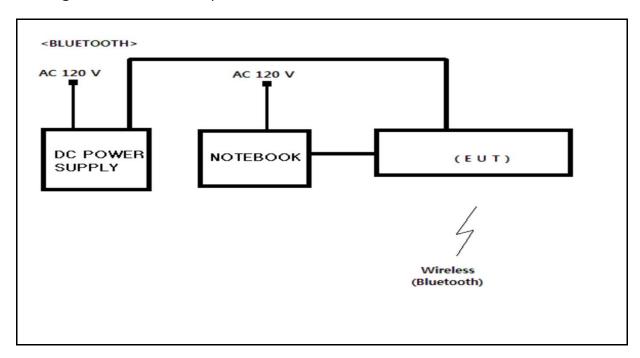
4.1 EUT Operation

a. Channel

Ch.	Frequency	Ch.	Frequency
0	2402 MHz	20	2442 MHz
1	2404 MHz	21	2444 MHz
2	2406 MHz	22	2446 MHz
3	2408 MHz	23	2448 MHz
4	2410 MHz	24	2450 MHz
5	2412 MHz	25	2452 MHz
6	2414 MHz	•••	
	•••	39	2480 MHz
19	2440 MHz		

b. Measurement Channel: Bluetooth: Low(2402 MHz), Middle(2440 MHz), High(2480 MHz)

c. Test Mode: Continuous Output, GFSK


d. Test rate: 1 Mbps

4.2 EUT Operation.

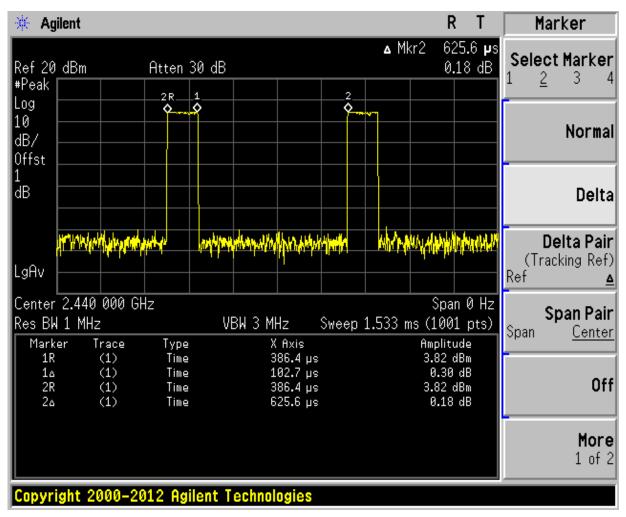
- The EUT was in the following operation mode during all testing
- * Bluetooth operation check
- * Transmit mode were measured each channels(Low, Middle, High)

4.3 Configuration and Peripherals

4.4 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
SMART INSOLE	SV-BTINSOLE001	NONE	Salted Co., Ltd.	EUT
NOTEBOOK	80XL	NONE	LcFc(hefei) electronics technology Co., Ltd.	
ADAPTER	ADL45WLE	NONE	LONOVO	
DC POWER SUPPLY	AK3010	NONE	Vu POWER	

4.5 Cable Connecting


Start Equipment		End Equip	Cable Standard		Domorile	
Name	I/O port	Name	I/O port	Length	Shielded	Remark
SMART INSOLE	POWER	DC POWER SUPPLY POWER		2	Unshielde d	
SMART INSOLE	USB	Notebook	USB	1.0	Unshielded	
Notebook	Power Adapte		_	2.0	Unshielded	

4.6 DUTY CYCLE OF TEST SIGNAL

Duty cycle is < 98%, duty factor shall be considered.

duty cycle = 0.1027/0.6256=0.164, duty factor = 10*log(1/0.164)=7.85

5. DTS bandwidth

5.1 Test procedure

558074 D01 DTS Meas Guidance v05r02 Option 2

5.2 Test instruments and measurement setup

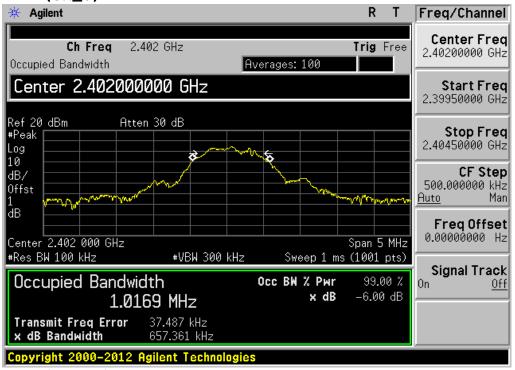
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limits: FCC § 15.247(a)(2)

6dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2-Dec-20
RF Cable	Length: 30 cm	_	
-Spectrum Analyzer <=> EUT	Loss: 1 dB	_	

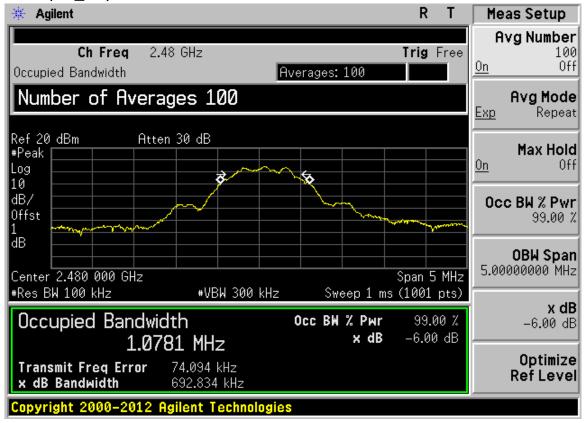
5.3 Measurement results


EUT	SMART INSOLE	MODEL	SV-BTINSOLE001
MODE	GFSK	ENVIRONMENTAL CONDITION	22.0 ℃, 44.0 % R.H.
INPUT POWER	3.8 Vd.c.		

Channel Frequency (MHz)	Occupied Bandwidth(MHz)	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2402	1.01	0.66	0.5	PASS
2440	1.03	0.68	0.5	PASS
2480	1.07	0.69	0.5	PASS

5.4 Trace data

 (ch_0)


 (ch_19)

Report Number: ESTRFC2001-002

(ch_39)

6. Maximum peak conducted output power

6.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum peak output power measurement is 30 dBm.

Limits: FCC § 15.247

Maximum Peak Output Power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Power Meter	N1921A	MY45100570	2020-12-02
Power Sensor	N1921A	MY45240427	2020-12-02
Power Meter <=> EUT	Loss: 1 dB	_	

6.2 Measurement results

EUT	SMART INSOLE	MODEL	SV-BTINSOLE001
MODE	GFSK	ENVIRONMENTAL CONDITION	22.0 ℃, 45.0 % R.H.
INPUT POWER	3.8 Vd.c.		

CHANNEL	Channel Requency	Conducted Power Output(dBm)			Limit[1W]	PASS/FAIL
CHANNEL	(MHz)	Detector	(dBm)	(mW)	(dBm)	PASS/FAIL
0	2 402	PEAK	4.15	2.600	30.0	PASS
19	2 440	PEAK	4.35	2.723	30.0	PASS
39	2 480	PEAK	4.24	2.655	30.0	PASS

7. Maximum conducted (average) output power

7.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum Average output power measurement is 30 dBm.

Limits: FCC § 15.247

Maximum conducted (average) output power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Power Meter	N1921A	MY45100570	2020-12-02
Power Sensor	N1921A	MY45240427	2020-12-02
Power Meter <=> EUT	Loss: 1 dB	_	

7.2 Measurement results

EUT	SMART INSOLE	MODEL	SV-BTINSOLE001
MODE	GFSK	ENVIRONMENTAL CONDITION	22.0 ℃, 45.0 % R.H.
INPUT POWER	3.8 Vd.c.		

CHANNEL	Channel Requency	Conduc	ted Powe	r Output(dBm)	(dBm) Measured + I		
CHAINNEL	(MHz)	Detector	(dBm)	Duty Cycle	Cycle(dBm)	Cycle(W)	
0	2 402	AVG	-5.81	7.85	2.0	0.0016	
19	2 440	AVG	-5.37	7.85	2.5	0.0018	
39	2 480	AVG	-5.33	7.85	2.5	0.0018	

8. Maximum power spectral density level in the fundamental emission

8.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V05r02 Method PKPSD (peak PSD)

8.2 Test instruments and measurement setup

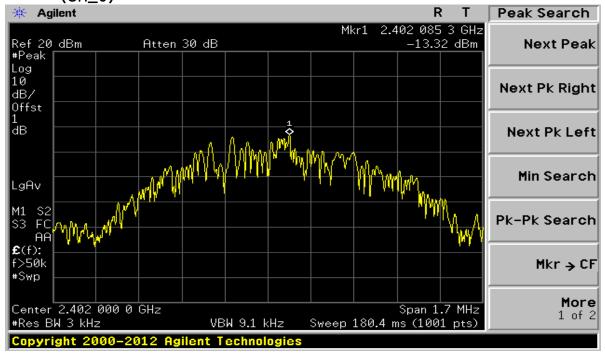
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

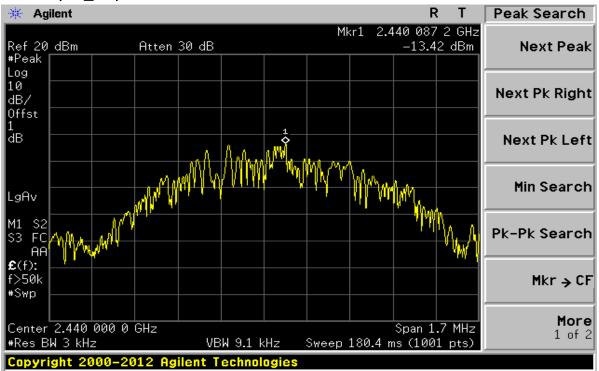
Limits FCC § 15.247

The peak power density Test Instruments

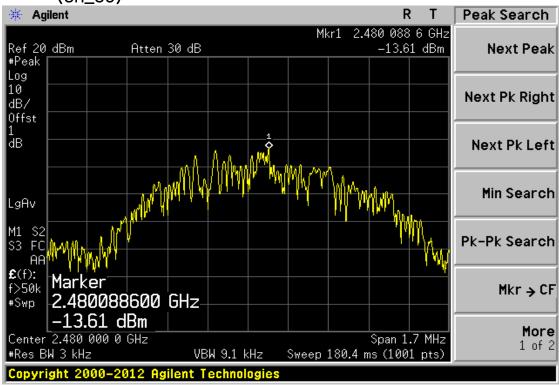
Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E440A	US42041291	2-Dec-20
RF Cable	Length: 30 cm	-	
-Spectrum Analyzer <=> EUT	Loss: 1 dB	_	


8.3 Measurement results

EUT	SMART INSOLE	MODEL	SV-BTINSOLE001
MODE	GFSK	ENVIRONMENTAL CONDITION	21.0 ℃, 45.0 % R.H.
INPUT POWER	3.8 Vd.c.		


CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
0	2 402	-13.32	8.0	21.32
19	2 440	-13.42	8.0	21.42
39	2 480	-13.61	8.0	21.61

8.4 Trace data (ch_0)



(ch_19)

9. Emissions in non-restricted frequency bands

9.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V05r02 Emissions in non-restricted frequency

9.2 Test instruments and measurement setup

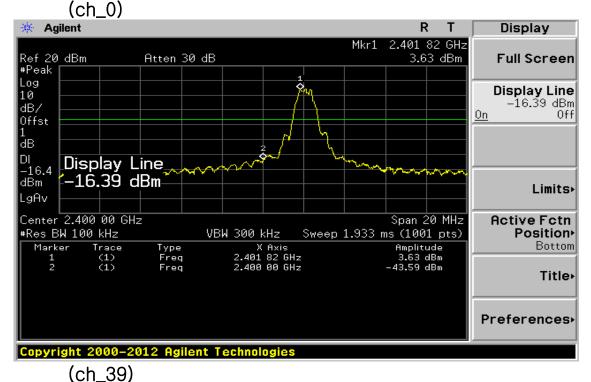
The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, t power shall be attenuated according to the following conditions(15.247(d))

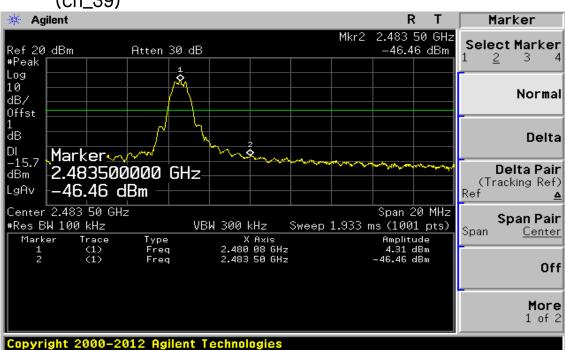
- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Limits FCC § 15.247

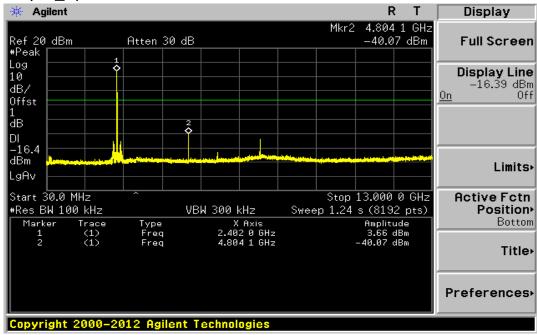
Band Edge&Out of Emission Test Instruments

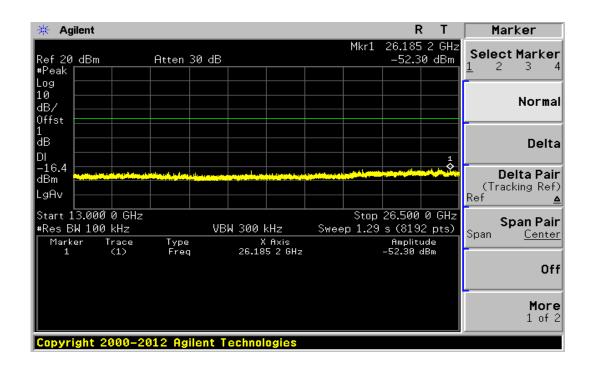
Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2-Dec-20
RF Cable	Length: 30 cm		_
-Spectrum Analyzer <=> EUT	Loss: 1 dB		_


9.3 Measurement results of band-edge & out of emission

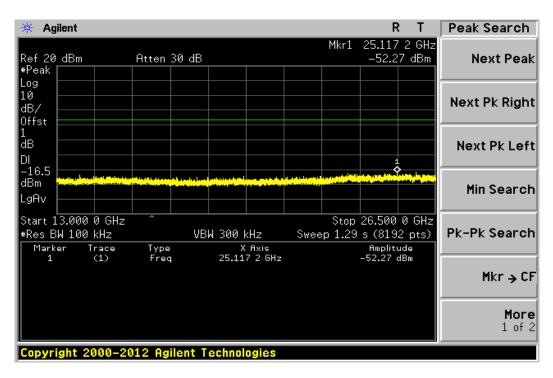

EUT	SMART INSOLE	MODEL	SV-BTINSOLE001
MODE	GFSK	ENVIRONMENTAL CONDITION	21.0 ℃, 45.0 % R.H.
INPUT POWER	3.8 Vd.c.		

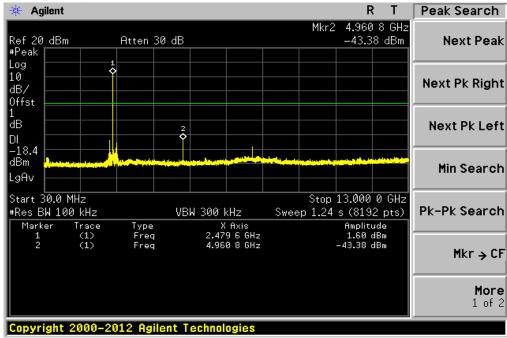
CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
0	2 402	20dBc	PASS
39	2 480	20dBc	PASS

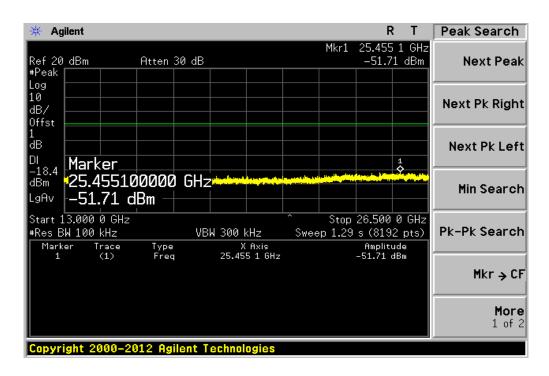

9.4 Trace data of band-edge & Out of Emission




(ch_0)




(ch_19)



(ch_39)

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC PART 15.205, 15.209. The test setup was made according to ANSI C 63.10 (2013) & KDB 558074 D01v05r02 Semi-anechoic chamber, which allows a 3 m distance measurement. The EUT was placed in the center of styrofoam. turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
EMI TEST Receiver	ESCI7	ROHDE & SCHWARZ	100916	9-Sep-20
Logbicon Antenna	VULB 9168	SCHWARZBECK	9168-193	15-Oct-20
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
PREAMPLIFIER	8449B	Agilent	3008A00595	9-Sep-20
Horn Antenna	BBHA 9120 D	SCHWARZBECK	469	30-Apr-20
Test Receiver	ESPI7	ROHDE & SCHWARZ	100185	9-Sep-20
Signal Analyzer	FSV40	ROHDE & SCHWARZ	100939	2-Dec-20
Turn Table	DT 1500-S	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Horn Antenna	BBHA 9170	SCHWARZBECK	752	1-Nov-20
Antenna Master & Turn table controller	C02000-P	Innco System GmbH	CO2000/642 /28051111/L	-

10.2 Environmental Condition

Below 1 GHz -Test Place : 10 m Semi-anechoic chamber

BT(BLE) MODE

Temperature (°C) : 20.4 ℃

Humidity (% R.H.) : 42.2 % R.H.

Above 1 GHz-Test Place : 3 m Semi-anechoic chamber

BT(BLE) MODE

Temperature (°C) : 22.6 ℃

Humidity (% R.H.) : 43.2 % R.H.

10.3 Measurement Instrument setting for Radiated Emission

10.3.1 Frequency range below 1 GHz

Detector: Quasi-Peak

10.3.2 Frequency range above 1 GHz

Peak Power Measurement Procedure (KDB558074 D01v05r02)

a. RBW: 1 MHz, VBW: 3 MHzb. Trace mode = max hold

c. Detector : Peakd. Sweep time = auto

Average Power Measurement Procedures (KDB558074 D01v05r02)

a. Set analyzer center frequency to the frequency associated with the emission

b. RBW: 1 MHz, VBW: 3 MHz

c. Detector: RMS

d. Sweep time = auto

Note

Band	Duty cycle(%)	Ton (ms)	Ton + Toff (ms)	DCF=10*log(1/Duty) (dB)
BT(BLE)	16.4	0.102	0.625	7.850

* This was applied of duty cycle factor for average value because of measured with the EUT transmitting continuously less than 98 % duty cycle at its maximum power control level.

10.4 Test data(30 MHz ~ 1 000 MHz)

Test Date: 9-Dec-19 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	n Factor	Result Va	alue(Quasi-pe	eak)
(MHz)	= =	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
36.90	23.20	V	1.0	13.02	0.90	40.00	37.12	2.88
43.00	20.72	V	1.0	13.57	0.97	40.00	35.26	4.74
218.10	24.16	Н	1.6	10.71	2.26	46.00	37.13	8.87
408.00	16.38	V	1.4	15.92	3.19	46.00	35.49	10.51
456.00	16.98	V	1.4	17.08	3.36	46.00	37.42	8.58
673.30	9.00	V	1.6	20.85	4.18	46.00	34.03	11.97
				_	_		_	

H: Horizontal, V: Vertical TEST MODE: BT BLE (CH: 19 - 2 440 MHz)

Remark

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is X axis of position)

^{*}CL = Cable Loss(In case of below 1 000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

10.4-1 Test Data(Low)

Test Date: 10-Dec-19 Measurement Distance: 3 m

' '	Reading	Position (V/H)	Height (m)	Correction Factor		Duty Cycle	Result Value		
	(dB#V)			Ant Factor (dB)	AMP & Cable (dB)	Correction(d B)	Limit (dB₩/m)	Result (dB#V/m)	Margin (dB)
			PEAK(RBW: 1 MH	Hz VBW:	3 MHz)			
2390.00	47.77	Н	1.5	27.02	-30.00	0.00	74.00	44.79	29.21
2390.00	45.88	>	1.5	27.02	-30.00	0.00	74.00	42.90	31.10
4804.00	44.12	Н	1.7	31.27	-27.10	0.00	74.00	48.29	25.71
4804.00	44.02	V	1.7	31.27	-27.10	0.00	74.00	48.19	25.81
		_	AV(R	BW: 1 MHz	z VBW: 3	B MHz)			
2390.00	36.07	Н	1.5	27.02	-30.00	7.85	54.00	40.94	13.06
2390.00	24.28	V	1.5	27.02	-30.00	7.85	54.00	29.15	24.85
4804.00	33.52	Н	1.7	31.27	-27.10	7.85	54.00	45.54	8.46
4804.00	33.42	V	1.7	31.27	-27.10	7.85	54.00	45.44	8.56

H: Horizontal, V: Vertical TEST MODE: CH: 0 - 2 402 MHz (x postion)

Remark

Report Number :ESTRFC2001-002

^{*}The TX signal wasn't detected from 3th harmonics.
*Checked in all 3 axis and the maximum measured data were reported.(Worst data is X axis of position)

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

^{*}This test was radiated up to 26.5 GHz but no noise was measured.

10.4-3 Test Data(High)

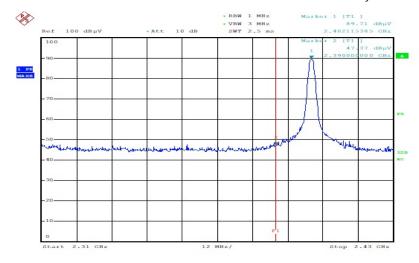
Test Date: 10-Dec-20 Measurement Distance: 3 m

Reading	Position	Height	Correctio	n Factor	Duty Cycle	R	esult Value	-
_	II OSILIOII				, ,			
(dB#V)	(V/H)	(m)	Ant Factor (dB)	AMP & Cable (dB)	Correction(d B)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
		PEAK(R	BW: 1 MHz	vBW: 3	MHz)			
44.20	Н	1.5	31.36	-27.03	0.00	74.00	48.53	25.47
44.12	V	1.6	31.36	-27.03	0.00	74.00	48.45	25.55
		AV(RB	W: 1 MHz	VBW: 3 N	ЛНz)			
33.69	Н	1.5	31.36	-27.03	7.85	54.00	45.87	8.13
33.58	V	1.6	31.36	-27.03	7.85	54.00	45.76	8.24
*The TX sign *Checked in *Total = Read	al wasn't dete all 3 axis and ding Value + /	ected from the maxim Antenna Fa	3th harmonics. um measured o	data were rep oss - Amp Ga	orted.(Worst data ain + Duty Cycle C		osition)	
	44.20 44.12 33.69 33.58 H: Horizonta *The TX sign *Checked in *Total = Read	44.20 H 44.12 V 33.69 H 33.58 V H: Horizontal, V: Vertice *The TX signal wasn't dete *Checked in all 3 axis and *Total = Reading Value + A	# H : Horizontal, V : Vertical TEST I *The TX signal wasn't detected from *Checked in all 3 axis and the maxim *Total = Reading Value + Antenna Fa	# Herizontal, V: Vertical TEST MODE: CH: 15 *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured of *Total = Reading Value + Antenna Factor + Cable Lot	PEAK(RBW: 1 MHz VBW: 3 44.20 H 1.5 31.36 -27.03 44.12 V 1.6 31.36 -27.03 AV(RBW: 1 MHz VBW: 3 N 33.69 H 1.5 31.36 -27.03 33.58 V 1.6 31.36 -27.03 H: Horizontal, V: Vertical TEST MODE: CH: 19 - 2 440 MHz *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were rep *Total = Reading Value + Antenna Factor + Cable Loss - Amp Gar	PEAK(RBW: 1 MHz VBW: 3 MHz) 44.20	PEAK(RBW: 1 MHz VBW: 3 MHz) 44.20 H 1.5 31.36 -27.03 0.00 74.00 44.12 V 1.6 31.36 -27.03 0.00 74.00 AV(RBW: 1 MHz VBW: 3 MHz) AV(RBW: 1 MHz VBW: 3 MHz) 33.69 H 1.5 31.36 -27.03 7.85 54.00 33.58 V 1.6 31.36 -27.03 7.85 54.00 H: Horizontal, V: Vertical TEST MODE: CH: 19 - 2 440 MHz (x postion) *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were reported. (Worst data is X axis of p * Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction	PEAK(RBW: 1 MHz VBW: 3 MHz) 44.20 H 1.5 31.36 -27.03 0.00 74.00 48.53 44.12 V 1.6 31.36 -27.03 0.00 74.00 48.45 AV(RBW: 1 MHz VBW: 3 MHz) AV(RBW: 1 MHz VBW: 3 MHz) 33.69 H 1.5 31.36 -27.03 7.85 54.00 45.87 33.58 V 1.6 31.36 -27.03 7.85 54.00 45.76 H: Horizontal, V: Vertical TEST MODE: CH: 19 - 2 440 MHz (x postion) *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were reported. (Worst data is X axis of position) *Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

10.4-3 Test Data(High)

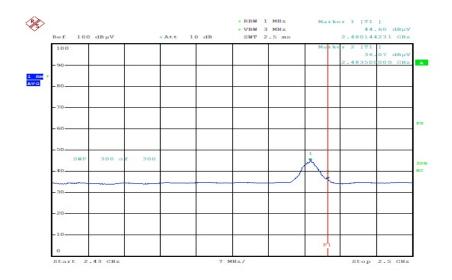
Test Date: 10-Dec-19

Measurement Distance: 3 m


Frequency (MHz)	Reading (dB#V)	Position (V/H)	Height (m)	Correction Factor		Duty Cycle	Result Value		
				Ant Factor (dB)	AMP & Cable (dB)	Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			PEAK(RBW: 1 MH	lz VBW: 3	3 MHz)			
2483.50	56.17	Н	1.6	27.24	-29.80	0.00	74.00	53.61	20.39
2483.50	47.77	V	1.8	27.24	-29.80	0.00	74.00	45.21	28.79
4960.00	43.52	Н	1.6	31.46	-26.94	0.00	74.00	48.04	25.96
4960.00	42.98	V	1.9	31.46	-26.94	0.00	74.00	47.50	26.50
			AV(R	BW: 1 MHz	VBW: 3	MHz)			
2483.50	34.18	Н	1.6	27.24	-29.80	7.85	54.00	39.47	14.53
2483.50	34.38	V	1.8	27.24	-29.80	7.85	54.00	39.67	14.33
4960.00	33.52	Н	1.6	31.46	-26.94	7.85	54.00	45.89	8.11
4960.00	33.48	V	1.9	31.46	-26.94	7.85	54.00	45.85	8.15
Remark	*The TX sigr *Checked in *Total = Rea	nal wasn't de all 3 axis an ading Value +	tected fro d the max Antenna		cs. d data were re Loss - Amp G	ported.(Worst da Gain + Duty Cycle		position)	

10.4-4 Restricted Band Edges

Band Edges(CH Low)

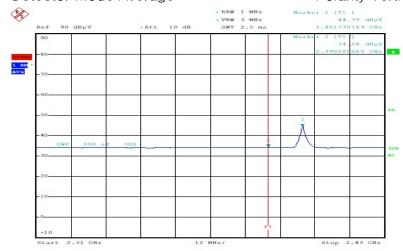

Detector mode:Peak Polarity:Horizontal

00233_CH0_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

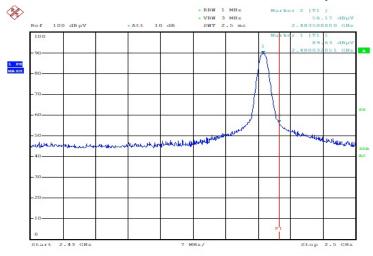
00233_CH39_AV_HOR


Band Edges(CH Low)

00233_CH0_PEAK_VER

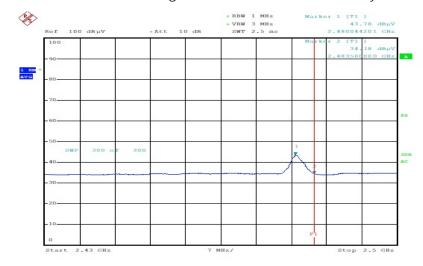
Detector mode: Average

Polarity: Vertical


00233_CH0_AV_VER

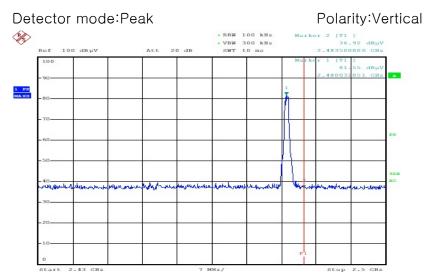
Band Edges(CH High)

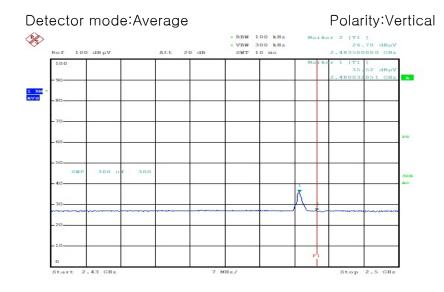
Detector mode:Peak


Polarity:Horizontal

00233_CH39_PEAK_HOR

Detector mode: Average


Polarity: Horizontal


00233_CH39_AV_HOR

Band Edges(CH High)

00233_CH39_PEAK_VER

00233_CH39_AV_VER

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC PART 15.207. The test setup was made according to ANSI C 63.10 (2009) in a shielded room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date	
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	9-Sep-20	
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	9-Sep-20	
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	9-Sep-20	

11.2 Environmental Condition

Test Place : Shielded Room

Temperature (°C) : 21.4 °C Humidity (% R.H.) : 45.5 % R.H.

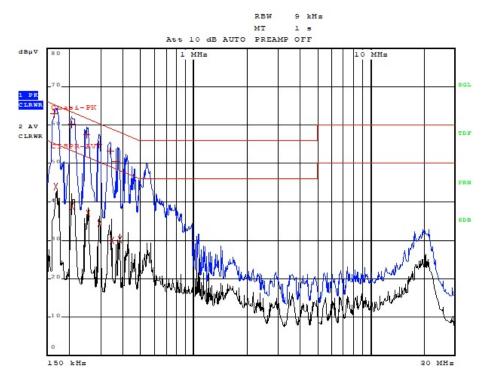
11.3-1 Test Data

Test Date: 11-Dec-19

Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.17	0.09	0.15	N	65.06	62.98	63.22	55.06	44.04	44.28
0.20	0.16	0.20	Н	63.45	60.10	60.46	53.45	39.28	39.64
0.25	0.16	0.20	Н	61.89	57.43	57.79	51.89	37.20	37.56
0.29	0.16	0.20	Н	60.41	55.02	55.38	50.41	34.43	34.79
0.34	0.16	0.20	Н	59.30	53.15	53.51	49.30	29.76	30.12
0.38	0.16	0.21	Н	58.26	50.65	51.02	48.26	30.54	30.91
	H: Hot Line, N: Neutral Line								

Remark

H: Hot Line, N: Neutral Line *Correction Factor = Lisn + Cable


*Result = Correction Factor + Reading

Appendix 1. Special diagram * HOT LINE

Comment: 00233_HOT

* NEUTRAL LINE

Comment: 00233_NUETRAL

Appendix 1. Antenna Requirement

1. Antenna Requirement

1.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.204

1.2 Antenna Connected Construction

The antenna types used in this product are Intergrated FPCB Antenna. The maximum Gain of this antenna is 1.913 dBi.