

FCC Test Report

Page: 1/65

Application No.: DNT2412160549R5812-08684

Applicant: Shenzhen Bilian Electronic Co.,Ltd.

Address of Applicant: Room 501, Building 3, No.32, Dafu Road, Zhangge Community, Fucheng

Street, Longhua District, Shenzhen City, China

EUT Description: 802.11b/g/n 150Mbps WLAN + Bluetooth BLE v4.1 SDIO Module

Model No.: BL-M8723CS2

FCC ID: 2AL6KBL-M8723CS2

Power Supply DC 3.3V

Trade Mark: N/A

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2024/12/18

Date of Test: 2024/12/21 to 2025/02/26

Date of Issue: 2025/02/27

Test Result: PASS

Prepared By: Name Line (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Report No.: DNT2412160549R5812-08684

Date: February 27, 2025

Page: 2/65

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Feb.27, 2025	Valid	Original Report

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	<u> </u>	Clause 3.1	PASS
Duty Cycle	9 P- P	- P	Clause 3.2	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2013	Clause 3.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2013	Clause 3.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2013	Clause 3.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.10	NA

Note:

1. "N/A" denotes test is not applicable in this test report.

Report No.: DNT2412160549R5812-08684

Date: February 27, 2025

Page: 4/65

Contents

1 Test Summary	 	3
2 General Information	 	5
2.1 Test Location	 	5
2.2 General Description of EUT	 	6
2.3 Channel List	 	7
2.4 Test Environment and Mode	 	7
2.5 Power Setting of Test Software	 	8
2.6 Description of Support Units	 	8
2.7 Test Facility	 	8
2.8 Measurement Uncertainty (95% confidence levels, k=2)	 	9
2.9 Equipment List	 	10
2.10 Assistant equipment used for test	 	11
3 Test results and Measurement Data	 	12
3.1 Antenna Requirement	 	12
3.2 Duty Cycle	 	13
3.3 DTS (6 dB) Bandwidth	 	14
3.4 Conducted Output Power	 	15
3.5 Power Spectral Density	 	16
3.6 Band-edge for RF Conducted Emissions	 	17
3.7 RF Conducted Spurious Emissions		
3.8 Radiated Spurious Emissions	 	19
3.9 Restricted bands around fundamental frequency	 	27
3.10 AC Power Line Conducted Emissions	 	31
4 Appendix	 	33
Appendix A: Duty Cycle	 	33
Appendix B: DTS Bandwidth		38
Appendix C: Maximum peak conducted output power	 	43
Appendix D: Maximum power spectral density		
Appendix E: Band edge measurements		
Appendix F: Conducted Spurious Emission	 	53

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 6 / 65

2.2 General Description of EUT

Manufacturer:	Shenzhen Bilian Electronic Co.,Ltd.
Address of Manufacturer:	Room 501, Building 3, No.32, Dafu Road, Zhangge Community, Fucheng Street, Longhua District, Shenzhen City, China
EUT Description:	802.11b/g/n 150Mbps WLAN + Bluetooth BLE v4.1 SDIO Module
Test Model No.:	BL-M8723CS2
Additional Model(s):	
Chip Type:	RTL8723CS
Serial number:	PR2412160549R5812
Power Supply	DC 3.3V
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
IEEE 802.11 WLAN Mode Supported	 ⋈ 802.11b (20 MHz channel bandwidth), ⋈ 802.11g (20 MHz channel bandwidth) ⋈ 802.11n HT(20 MHz channel bandwidth), ⋈ 802.11n HT(40 MHz channel bandwidth).
Operation Frequency:	2400 MHz -2483.5MHz fc = 2407 MHz + N * 5 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 1 to 11 for the 20 MHz channel bandwidth, or 3 to 9 for the 40 MHz channel bandwidth.
Type of Modulation:	IEEE for 802.11b: DSSS IEEE for 802.11g : OFDM IEEE for 802.11n(HT20) : OFDM IEEE for 802.11n(HT40) : OFDM
Sample Type:	☐ Portable Device, ☒ Module, ☒ Mobile Device
Antenna Type:	⊠ External, □ Integrated
Antenna Ports	
Smart System	 ☐ SISO (for 802.11b/g/n/ax), ☐ MIMO (for 802.11 b/g/n): 2 Tx & 2 Rx, ☐ Diversity (for 802.11b/g): Tx & Rx
Antonna Cain*	⊠ Provided by applicant
Antenna Gain*:	2.52dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Ор	eration Freq	uency of each	n channel (80	02.11b/g/n HT2	20)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	< <	
	C	Operation Fr	equency of ea	ch channel ((802.11n HT40)		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
3	2422MHz	6	2437MHz	9	2452MHz	, ,	,
4	2427MHz	7	2442MHz				
5	2432MHz	8	2447MHz				

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency for 802.11 b/g/n (HT20))	Frequency for 802.11n (HT40)		
The Lowest channel	2412MHz	2422MHz		
The Middle channel	2437MHz	2437MHz		
The Highest channel	2462MHz	2452MHz		

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 8 / 65

2.5 Power Setting of Test Software

Software Name		Linux			
Frequency(MHz)	2412	2437	2462		
IEEE 802.11b Setting	40	40	40		
IEEE 802.11g Setting	40	40	40		
IEEE 802.11n HT20 Setting	40	40	40		
Frequency(MHz)	2422	2437	2452		
IEEE 802.11n HT40 Setting	40	40	40		

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	DTS Bandwidth	±0.0196%
2	Maximum Conducted Output Power	±0.686 dB
3	Maximum Power Spectral Density Level	±0.743 dB
4	Band-edge Compliance	±1.328 dB
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
	0, 0, 0, 0, 0,	± 4.8dB (Below 1GHz)
0	Dedicted Fusionism	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	± 5.02dB (Above 18GHz)

Report No.: DNT2412160549R5812-08684

Date: February 27, 2025 Page: 10 / 65

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2024-10-23	2025-10-22	
Signal Generator	Keysight	N5182B	MY57300617	2024-10-23	2025-10-22	
Power supply	Keysight	E3640A	ZB2022656	2024-10-23	2025-10-22	
Radio Communication Tester	R&S	CMW500	105082	2024-10-23	2025-10-22	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2024-10-23	2025-10-22	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA (NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA	
Power Sensor	Anritsu	ML2495A	2129005	2024-10-23	2025-10-22	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2024-10-23	2025-10-22	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2024-10-23	2025-10-22	

Test Equipment for Conducted Emission										
Description Manufacturer Model Serial Number Cal Date Due										
Receiver	R&S	ESCI3	101152	2024-10-23	2025-10-22					
LISN	R&S	ENV216	102874	2024-10-23	2025-10-22					
ISN	R&S	ENY81-CA6	1309.8590.03	2024-10-23	2025-10-22					

Test Ed	quipment for F	Radiated Emis	sion(30MHz-	-1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2024-10-23	2025-10-22
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2022-11-28	2025-11-27
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2024-10-23	2025-10-22

l est E	quipment for	Radiated Emi	ssion(Above	1000MHz)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2024-10-23	2025-10-22
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Horn Antenna	ETS-LINDGREN	3117	00252567	2022-11-28	2025-11-27
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2022-11-28	2025-11-27
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2024-10-23	2025-10-22
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2024-10-23	2025-10-22

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	Chen yang	UC13CN	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

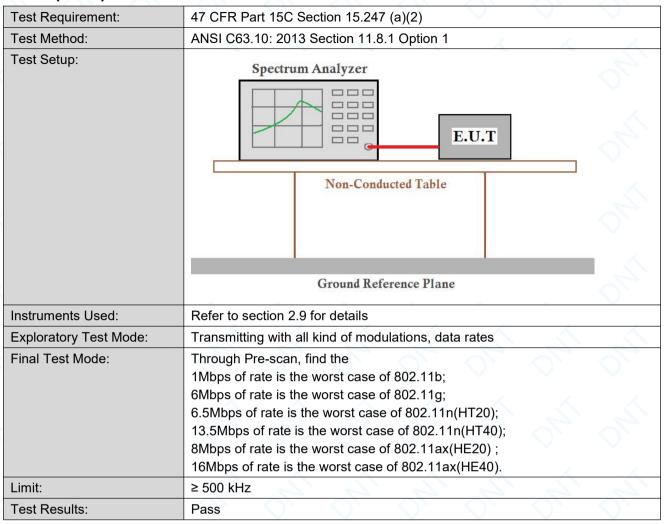
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The FPC antenna is externally connected to the motherboard, The best case gain of the antenna is 2.52dBi.

3.2 Duty Cycle

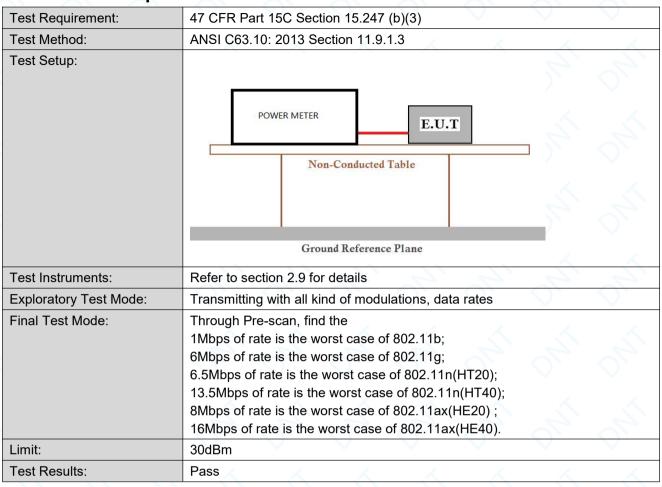
Refer to section : Appendix A


Note:

- 1.lf duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥ 98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 14 / 65

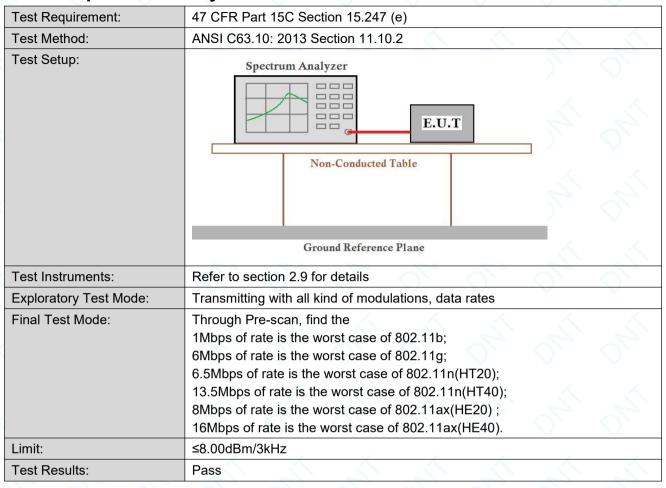
3.3 DTS (6 dB) Bandwidth



The detailed test data see: Appendix B

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 15 / 65

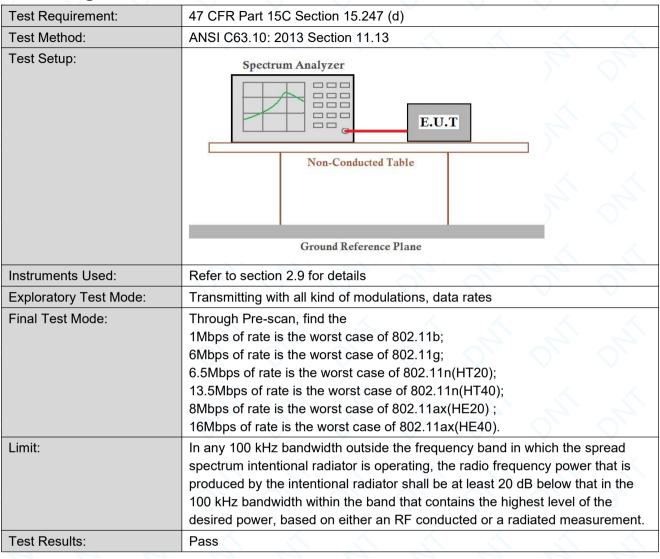
3.4 Conducted Output Power



The detailed test data see: Appendix C

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 16 / 65

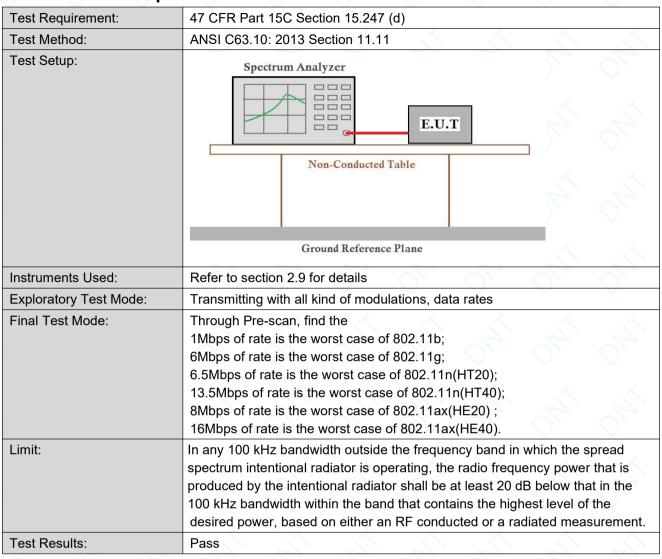
3.5 Power Spectral Density



The detailed test data see: Appendix D

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 17 / 65

3.6 Band-edge for RF Conducted Emissions



The detailed test data see: Appendix E

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 18 / 65

3.7 RF Conducted Spurious Emissions

The detailed test data see: Appendix F

3.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05							
Test Method:	ANSI C63.10: 2013 Sec	tion 11.12								
Test Site:	Measurement Distance:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak					
		Peak	1MHz	3MHz	Peak					
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average					
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	-	<u> </u>	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	P - V	30					
	1.705MHz-30MHz	30	V -	V - V	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	Remark: 15.35(b),Unles emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per nent under test. This	mitted avera	ge emission lin	nit					

Test Setup:

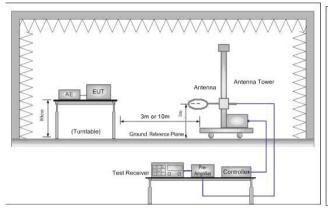


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

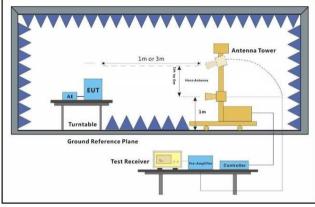


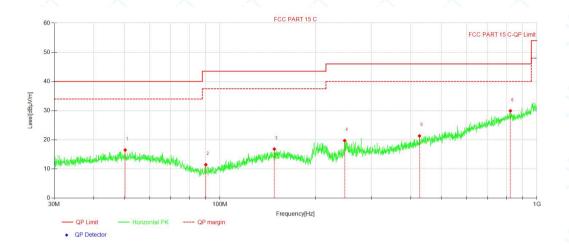
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

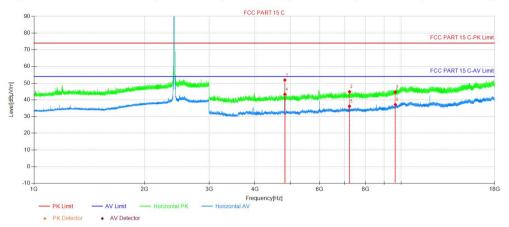

Report No.: DNT	2412160549R5812-08684
	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode.
	Through Pre-scan, find the
	1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g;
	6.5Mbps of rate is the worst case of 802.11n(HT20);
	13.5Mbps of rate is the worst case of 802.11n(HT40);
	8Mbps of rate is the worst case of 802.11ax(HE20);
	16Mbps of rate is the worst case of 802.11ax(HE40).
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

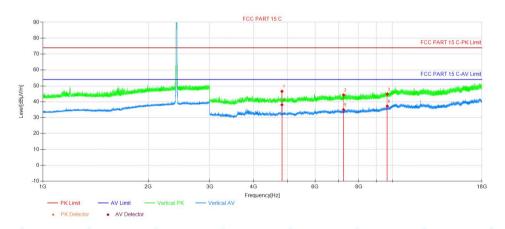

Test data

For 30-1000MHz

Horizontal:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
	1	50.23	24.59	-8.07	16.52	40.00	23.48	100	100	QP
	2	90.22	25.33	-13.84	11.49	43.50	32.01	100	350	QP
	3	148.44	24.80	-7.96	16.84	43.50	26.66	100	350	QP
4	4	247.39	28.73	-8.99	19.74	46.00	26.26	100	10	QP
V	5	426.02	24.87	-3.52	21.35	46.00	24.65	100	60	QP
	6	824.59	25.07	4.86	29.93	46.00	16.07	100	60	QP

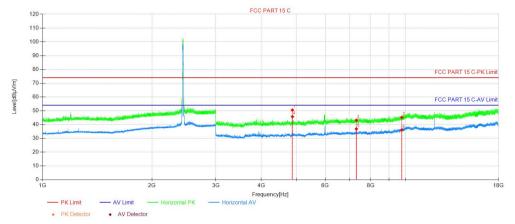

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	48.55	23.82	-8.08	15.74	40.00	24.26	100	220	QP
2	73.87	28.06	-10.93	17.13	40.00	22.87	100	30	QP
3	145.35	29.04	-8.15	20.89	43.50	22.61	100	170	QP
4	258.32	41.71	-8.68	33.03	46.00	12.97	100	60	QP
5	439.16	24.91	-3.07	21.84	46.00	24.16	100	70	QP
6	687.95	25.73	2.17	27.90	46.00	18.10	100	270	QP


Date: February 27, 2025 Page: 23 / 65

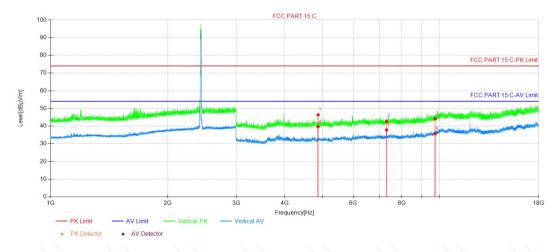
For above 1GHz 11G 2412MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4824.09	56.52	-4.63	51.89	74.00	22.11	150	121	Peak
2	7236.21	46.57	-1.70	44.87	74.00	29.13	150	104	Peak
3	9648.33	43.60	1.07	44.67	74.00	29.33	150	140	Peak
4	4824.09	47.96	-4.63	43.33	54.00	10.67	150	140	AV
5	7236.21	37.86	-1.70	36.16	54.00	17.84	150	104	AV
6	9648.33	36.11	1.07	37.18	54.00	16.82	150	195	AV


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4824.09	51.18	-4.63	46.55	74.00	27.45	150	158	Peak
2	7236.21	45.99	-1.70	44.29	74.00	29.71	150	31	Peak
3	9648.33	43.79	1.07	44.86	74.00	29.14	150	158	Peak
4	4824.09	42.69	-4.63	38.06	54.00	15.94	150	158	AV
5	7236.21	36.72	-1.70	35.02	54.00	18.98	150	267	AV
6	9648.33	36.20	1.07	37.27	54.00	16.73	150	140	AV

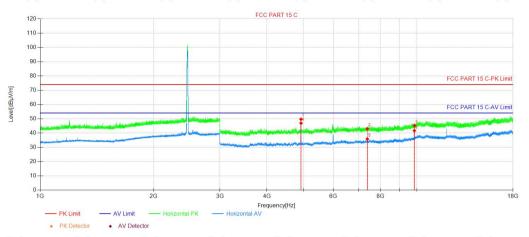
Report No.: DNT2412160549R5812-08684


Date: February 27, 2025

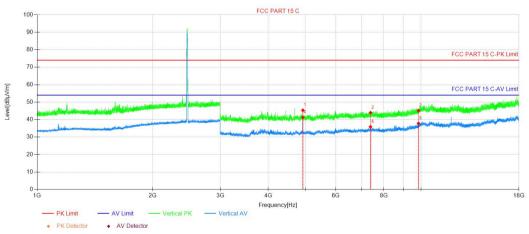
Page: 24 / 65

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4873.59	55.22	-4.70	50.52	74.00	23.48	150	124	Peak
2	7311.21	44.68	-1.53	43.15	74.00	30.85	150	124	Peak
3	9748.08	43.66	1.56	45.22	74.00	28.78	150	179	Peak
4	4874.34	50.42	-4.70	45.72	54.00	8.28	150	124	AV
5	7311.21	38.38	-1.53	36.85	54.00	17.15	150	232	AV
6	9748.08	34.57	1.56	36.13	54.00	17.87	150	214	AV



\ \ 	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4874.34	51.09	-4.70	46.39	74.00	27.61	150	144	Peak
	2	7311.21	44.23	-1.53	42.70	74.00	31.30	150	251	Peak
4	3	9748.08	42.61	1.56	44.17	74.00	29.83	150	14	Peak
Ī	4	4875.09	44.31	-4.70	39.61	54.00	14.39	150	162	AV
1	5	7311.21	39.35	-1.53	37.82	54.00	16.18	150	269	AV
	6	9748.08	34.20	1.56	35.76	54.00	18.24	150	2	AV



11G 2462MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4923.84	54.48	-4.79	49.69	74.00	24.31	150	124	Peak
2	7386.21	44.31	-1.32	42.99	74.00	31.01	150	198	Peak
3	9848.59	43.25	2.00	45.25	74.00	28.75	150	215	Peak
4	4924.59	51.71	-4.79	46.92	54.00	7.08	150	124	AV
5	7386.21	37.17	-1.32	35.85	54.00	18.15	150	233	AV
6	9848.59	39.71	2.00	41.71	54.00	12.29	150	215	AV

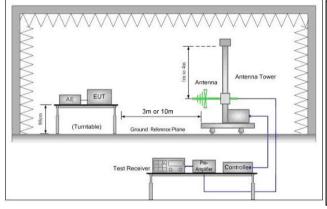
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4923.84	50.14	-4.79	45.35	74.00	28.65	150	197	Peak
2	7386.21	45.29	-1.32	43.97	74.00	30.03	150	340	Peak
3	9848.59	43.17	2.00	45.17	74.00	28.83	150	126	Peak
4	4924.59	46.10	-4.79	41.31	54.00	12.69	150	126	AV
5	7386.21	37.22	-1.32	35.90	54.00	18.10	150	269	AV
6	9848.59	35.83	2.00	37.83	54.00	16.17	150	126	AV

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 26 / 65

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)


- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, 802.11g(11G) is the worst case. only the worst case was reported.

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 27 / 65

3.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205		
Test Method:	ANSI C63.10: 2013 Section	11.12	<i>X</i>	
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	Chamber)	
Limit:	Frequency	Limit (dBuV/m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak	
	88MHz-216MHz	43.5	Quasi-peak	
	216MHz-960MHz	46.0	Quasi-peak	
	960MHz-1GHz	54.0	Quasi-peak	
	Above 4011=	54.0	Average Value	
	Above 1GHz	74.0	Peak Value	
Test Setup:			$\overline{}$	

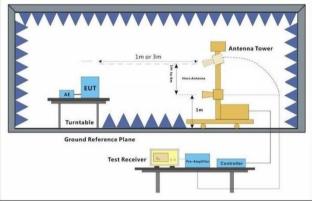
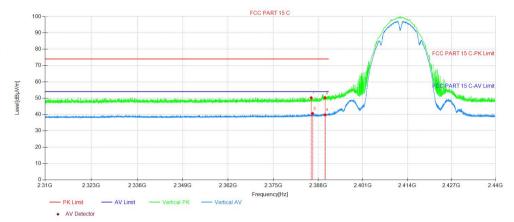


Figure 1. 30MHz to 1GHz

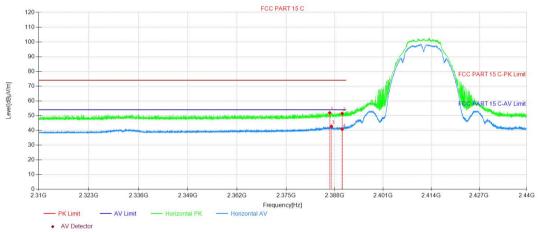
Figure 2. Above 1 GHz

Test Procedure:

- For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- Test the EUT in the lowest channel , the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.


1	Report No.: DNT	2412160549R5812-08684 Date: February 27, 2025 Page: 28 / 6
	Test Configuration:	Measurements Below 1000MHz
		• RBW = 120 kHz
		• VBW = 300 kHz
		Detector = Peak
		Trace mode = max hold
		Peak Measurements Above 1000 MHz
		• RBW = 1 MHz
		• VBW ≥ 3 MHz
		Detector = Peak
		Sweep time = auto
		Trace mode = max hold
		Average Measurements Above 1000MHz
		• RBW = 1 MHz
		 VBW = 10 Hz, when duty cycle is no less than 98 percent.
		 VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
		transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
	Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	,	Transmitting mode.
	Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
		Through Pre-scan, find the
		1Mbps of rate is the worst case of 802.11b;
		6Mbps of rate is the worst case of 802.11g;
		6.5Mbps of rate is the worst case of 802.11n(HT20);
		13.5Mbps of rate is the worst case of 802.11n(HT40);
		8Mbps of rate is the worst case of 802.11ax(HE20);
		16Mbps of rate is the worst case of 802.11ax(HE40).
		Only the worst case is recorded in the report.
	Instruments Used:	Refer to section 2.9 for details
	Test Results:	Pass

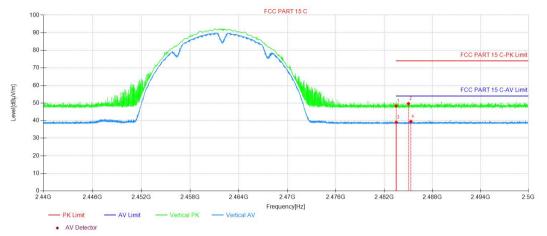
Report No.: DNT2412160549R5812-08684 Date: February 27, 2025


Page: 29 / 65

Test Date 11B 2412MHz Vertical:

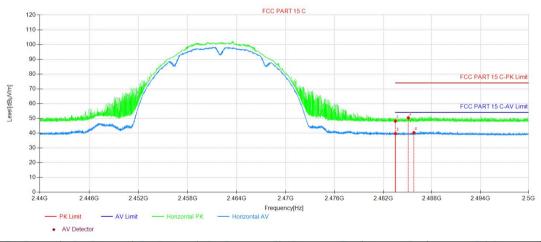
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2385.97	51.06	-0.81	50.25	74.00	23.75	150	66	Peak
2	2390.01	51.08	-0.80	50.28	74.00	23.72	150	241	Peak
3	2386.36	41.45	-0.81	40.64	54.00	13.36	150	121	AV
4	2390.01	40.66	-0.80	39.86	54.00	14.14	150	121	AV

Horizontal:


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2386.66	52.75	-0.81	51.94	74.00	22.06	150	146	Peak
2	2390.01	52.30	-0.80	51.50	74.00	22.50	150	36	Peak
3	2387.11	43.61	-0.81	42.80	54.00	11.20	150	134	AV
4	2390.01	41.56	-0.80	40.76	54.00	13.24	150	134	AV

Report No.: DNT2412160549R5812-08684

Date: February 27, 2025


Page: 30 / 65

Vertical:

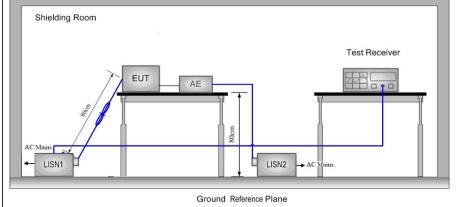
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	48.59	-0.29	48.30	74.00	25.70	150	132	Peak
2	2485.02	49.94	-0.27	49.67	74.00	24.33	150	144	Peak
3	2483.50	39.30	-0.29	39.01	54.00	14.99	150	64	AV
4	2485.34	39.82	-0.27	39.55	54.00	14.45	150	200	AV

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	48.41	-0.29	48.12	74.00	25.88	150	229	Peak
2	2485.10	50.69	-0.27	50.42	74.00	23.58	150	133	Peak
3	2483.50	40.04	-0.29	39.75	54.00	14.25	150	133	AV
4	2485.79	40.62	-0.27	40.35	54.00	13.65	150	155	AV

Note:

- 1. The 802.11b(11B) is the worse case.
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:


Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 31 / 65

3.10 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz		W W				
Limit:	[-	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
	room. 2) The EUT was connected Impedance Stabilization Nei impedance. The power cabl a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN aunit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equals in order to find the maximum equipment and all of the integration of the integral of the conditions and the conditions are supported by t	twork) which provides a 5 es of all other units of the 5 bonded to the ground rese LISN 1 for the unit being vas used to connect multiplication of the LISN was not estaced upon a non-metallication of the LISN was not estaced upon a non-metallication of for floor-standing arrangund reference plane, with a vertical ground reference was bonded to the hold was placed 0.8 m from the to a ground reference plane. This continues the continues of the LISN 1 and the EU uipment was at least 0.8 m emission, the relative perface cables must be characteristics.	in a special solution of the control of the contro				
Test Setup:	Shielding Room	AE	Test Receiver				

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 32 / 65

Final Test Mode: Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at lowest channel is the worst case.

Transmitting mode.
Only the worst case is recorded in the report.

Instruments Used: Refer to section 2.9 for details

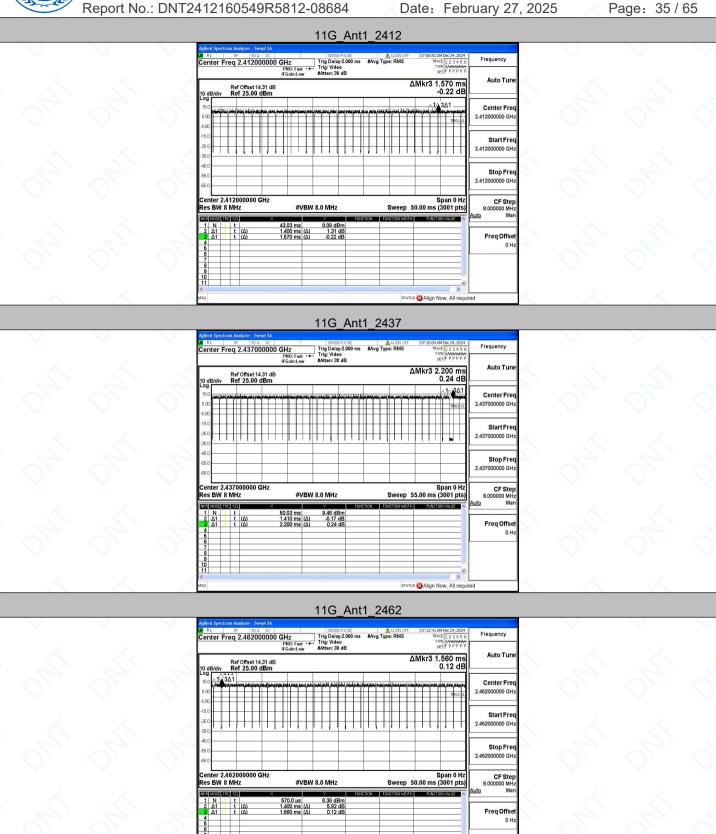
Test Results: NA

4 Appendix

Appendix A: Duty Cycle

Test Result

1 toouit					
TestMode	Antenna	Frequency[MHz]	Transmission	Transmission Period	Duty Cycle
restivioue	Antenna	Frequency[MHZ]	Duration [ms]	[ms]	[%]
		2412	8.48	8.65	98.03
11B	Ant1	2437	8.49	8.57	99.07
		2462	8.48	8.62	98.38
		2412	1.40	1.57	89.17
11G	Ant1	2437	1.41	2.20	64.09
		2462	1.40	1.56	89.74
		2412	1.32	1.49	88.59
11N20SISO	Ant1	2437	1.31	1.70	77.06
		2462	1.31	1.48	88.51
	Ant1	2422	1.95	4.27	45.67
11N40SISO		2437	1.30	5.07	25.64
		2452	1.30	3.72	34.95

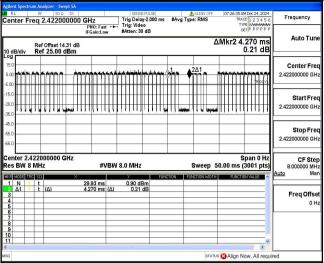


Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 34 / 65

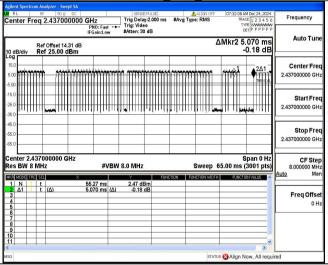
Test Graphs

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025

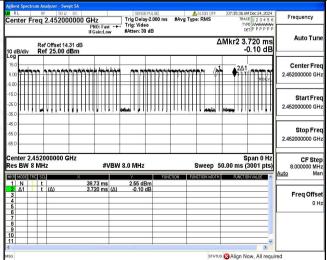
Report No.: DNT2412160549R5812-08684 Date: February 27, 2025


Date: February 27, 2025 Page: 36 / 65 11N20SISO_Ant1_2412 Ref Offset 14.31 dB Ref 25.00 dBm Center Fre 2.412000000 GH Start Fre enter 2.412000000 GHz es BW 8 MHz Freq Offs 11N20SISO_Ant1_2437 RL RF 50 0 DC SENSE:PLUS enter Freq 2.437000000 GHz Trig Video #Rten: 30 dB Center Fre Start Fre 2.437000000 GH Stop Fre 2.437000000 GH Span 0 Hz Sweep 50.00 ms (3001 pts) #VBW 8.0 MHz Freq Offse STATUS Align Now, All required 11N20SISO_Ant1_2462 RL RF 90 Q DC SENSEPLUSE ALIGN C enter Freq 2.462000000 GHz PRO: Fast +-| Ficaip+ ow | | Fic Center Fre Start Fre Stop Fred 2.462000000 GH Span 0 Hz Sweep 50.00 ms (3001 pts CF Ste 8.000000 MH #VBW 8.0 MHz Freq Offse

COLUMN ENTERANCE AND ENTERANCE ENTERANCE ENT

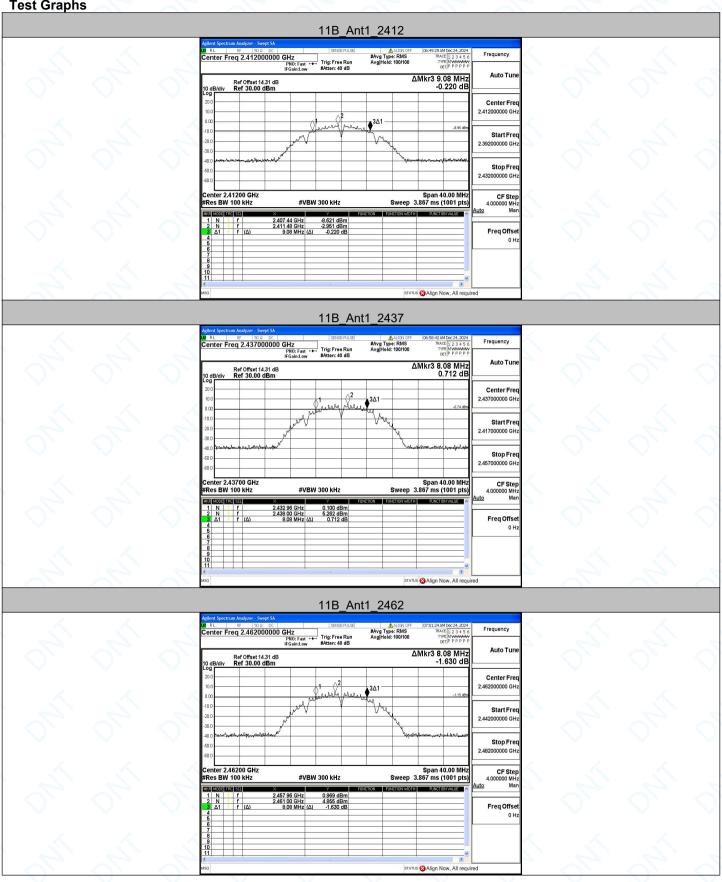

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025

11N40SISO_Ant1_2422


Page: 37 / 65

11N40SISO_Ant1_2437

11N40SISO_Ant1_2452


Appendix B: DTS Bandwidth

Test Result

rest Result							
TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	9.080	2407.440	2416.520	0.5	PASS
11B	Ant1	2437	8.080	2432.960	2441.040	0.5	PASS
		2462	8.080	2457.960	2466.040	0.5	PASS
		2412	16.320	2403.840	2420.160	0.5	PASS
11G	Ant1	2437	16.120	2429.080	2445.200	0.5	PASS
		2462	15.920	2453.840	2469.760	0.5	PASS
		2412	17.560	2403.200	2420.760	0.5	PASS
11N20SISO	Ant1	2437	17.160	2428.640	2445.800	0.5	PASS
		2462	17.160	2453.200	2470.360	0.5	PASS
	Ant1	2422	35.760	2404.400	2440.160	0.5	PASS
11N40SISO		2437	35.120	2419.480	2454.600	0.5	PASS
		2452	34.960	2434.560	2469.520	0.5	PASS

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 39 / 65

Test Graphs

Report No.: DNT2412160549R5812-08684 Date: February 27, 2025 Page: 40 / 65

11G_Ant1_2412 RL RF 50.0 DC Penter Freq 2.412000000 GHz PN0: Fast → 15.0 sind my #Atten: 40 dB #Avg Type: RMS AvalHold: 100/100 Auto Tur Ref Offset 14.31 dB Ref 30.00 dBm Center Fre 2.412000000 GH Start Free Stop Fre Center 2.41200 GHz #Res BW 100 kHz Freq Offs STATUS Align Now, All red 11G_Ant1_2437 #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 14.31 dB Ref 30.00 dBm Center Fre Start Fre 2.417000000 GH Stop Fre 2.457000000 GH Span 40.00 MHz Sweep 3.867 ms (1001 pts) #VBW 300 kHz 2.429 08 GHz 2.442 00 GHz 16.12 MHz (Δ) Freq Offse STATUS Align Now, All required 11G_Ant1_2462 #Avg Type: RMS Avg|Hold: 100/100 ΔMkr3 15.92 MHz -0.915 dB Center Fre Start Free 2.442000000 GH Stop Free 2.482000000 GH: Span 40.00 MHz Sweep 3.867 ms (1001 pts) CF Ste 4.000000 MH Freq Offse