

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC155686 Page: 1 of 45

FCC Radio Test Report FCC ID: 2AL64-806W

Original Grant

Report No.	: TB-FCC155686			
Applicant	: Shenzhen qiuyu Electronic Co.,Ltd			
Equipment Under Test (EUT)				
EUT Name	: Tablet PC			
Model No.	: QM806			
Serial Model No.	: Westgate Owner Tablet, 186			
Brand Name	: Westgate Owner / Maxtalent			
Receipt Date	: 2017-06-22			
Test Date	: 2017-06-23 to 2017-07-01			
Issue Date	: 2017-07-02			
Standards	: FCC Part 15: 2016, Subpart C(15.247)			
Test Method	: ANSI C63.10: 2013			
Conclusions	: PASS			

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Da5ta	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	20
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	29
	6.1 Test Standard and Limit	
	6.2 Test Setup	29
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	

	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	45
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
	10.3 Result	

1. General Information about EUT

1.1 Client Information

Applicant	: Shenzhen qiuyu Electronic Co.,Ltd		
Address	ddress 3F, E Building, Hongzhuyongqi Industrial Park, Lezhujiao village xixiang town, Bao'an District, Shenzhen, China		
Manufacturer		Shenzhen qiuyu Electronic Co.,Ltd	
Address	:	3F, E Building, Hongzhuyongqi Industrial Park, Lezhujiao village, xixiang town, Bao'an District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Tablet PC		
Models No.	2	QM806, Westgate Owner Tablet, I86		
Model Difference	All these models are identical in the same PCB layout and e circuit, the only difference name.			
- RUDD		Operation Frequency:	Bluetooth 4.0(BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth 4.0(BLE): 40 channels see note(3)	
Product	8	RF Output Power:	-3.705dBm Conducted Power	
Description	5	Antenna Gain:	-0.12dBi FPC Antenna	
		Modulation Type:	GFSK	
	2	Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply		DC Voltage supplied by DC Voltage supplied by		
Power Rating	:	DC 5V by USB Cable DC 3.7V by 3500mAh Li-ion battery Please refer to the User's Manual		
Connecting I/O Port(S)	:			

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v04.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.
- (3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

	Adapter		EUT				
		Cable 1					
					e.11)		
TX Mod							
	Je .						
	16	m	EUT	MUSS		L.C.	- OR
	16		EUT	TUD			-013
	16		EUT	TUD			

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
AC/DC Adapter	A16-502000		AOHAI	\checkmark	
AC/DC Adapter Input:AC100-240V 50/60Hz 0.5A Output:5V/2A					
Cable Information Number Shielded Type Ferrite Core Length Note					
Cable 1	YES	NO	0.4M	A 199	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test		
Final Test Mode	Description	
Mode 1	Charging + TX Mode	

For Radiated Test			
Final Test Mode	Description		
Mode 2	TX Mode		
Mode 3	TX Mode (Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

- BLE Mode: GFSK Modulation Transmitting mode.
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.00 0B
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Padiated Emission	Level Accuracy:	14.20 dP
Radiated Emission	Above 1000MHz	±4.20 dB

Report No.: TB-FCC155686 Page: 8 of 45

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TOBY

Report No.: TB-FCC155686 9 of 45 Page:

2. Test Summary

Standard Section		Toot Itom	ludament	Bomork
FCC	IC	Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

3. Test Equipment

Conducted Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
LISN	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017

Radiation Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.25, 2017	Mar. 24, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.24, 2017	Mar. 23, 2018
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.24, 2017	Mar. 23, 2018
Loop Antenna	Laplace instrument	RF300	0701	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.25, 2017	Mar. 24, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Antenna Conducted Emission

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Power Meter	Anritsu	ML2495A	25406005	Jul. 22, 2016	Jul. 21, 2017
Power Sensor	Anritsu	ML2411B	25406005	Jul. 22, 2016	Jul. 21, 2017

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

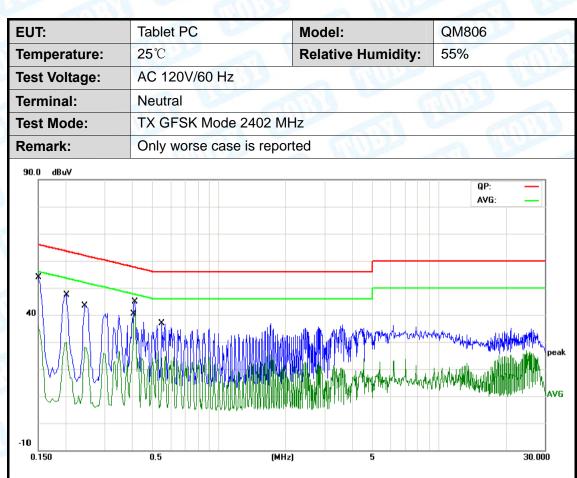
I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.


4.5 Test Da5ta

Test data please refer the following pages.

EUT:	Tablet F	°C	Mo	odel:	(QM806	
Temperature:	25 ℃	and	Re	elative Humi	dity: t	55%	A Des
Fest Voltage:	AC 120	V/60 Hz	-		In	132	
Ferminal:	Line		MAG			0	21
fest Mode:	TX GFS	TX GFSK Mode 2402 MHz					
Remark:	Only wo	orse case is	reported		ant	39-1	
90.0 dBuV							
						QP: AVG:	
×							
* *	- <u>-</u> -						
40	M II J X.						
	EL MA ANN	NM AND AN DUALMAN	MMP MARTIN	All muching have	how have a a	and have a start	pe
IN MALAN	K M M ANN	GRANNIN (
	IV K MAR		CALAM NO WWW HULLING		Lununum		
				210 40 10 11 11 11 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20			
	(<u> </u>	L MARINI (MARINA)		line and the second state of the first state of the second state of the second state of the second state of the		teles all all a secola secola de	Million Control AN
		T D. Find And And And And And And And And And A	NALL REF.	lanaidi I da a shekki a ta		laine allealt I an de sea a se	
	0.5	T D Park O C PARAMA				alan alkala II.a. ikara d	
-10 0.150	0.5	T D TANKA DATABAT	(MHz)	5			30.000
0.150	R		Correct	Measure-			
0.150 No. Mk. F	R req.	Level	Correct Factor	Measure- ment	Limit	Over	30.000
0.150 No. Mk. F	R req. //Hz	dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	dB	30.000 Detecto
0.150 No. Mk. F 1 0.1	R req. /Hz 1500	Level dBuV 41.23	Correct Factor dB 9.64	Measure- ment dBuV 50.87	dBuV 65.99	dB -15.12	30.000 Detecto
0.150 No. Mk. F 1 0.1 2 0.1	R req. //Hz /500	Level dBuV 41.23 25.00	Correct Factor dB 9.64 9.64	Measure- ment dBuV 50.87 34.64	dBuV 65.99 55.99	dB -15.12 -21.35	30.000 Detecto QP AV(
0.150 No. Mk. F 1 0.1 2 0.1	R req. //Hz /500 /500 /140	Level dBuV 41.23 25.00 31.38	Correct Factor dB 9.64	Measure- ment dBuV 50.87	dBuV 65.99 55.99 57.57	dB -15.12 -21.35 -16.61	30.000 Detecto
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4	R req. //Hz /500 /500 /140	Level dBuV 41.23 25.00	Correct Factor dB 9.64 9.64	Measure- ment dBuV 50.87 34.64	dBuV 65.99 55.99	dB -15.12 -21.35 -16.61	30.000 Detecto QP AVC QP
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4	R req. //Hz 1500 1500 140	Level dBuV 41.23 25.00 31.38	Correct Factor dB 9.64 9.64 9.58	Measure- ment dBuV 50.87 34.64 40.96	dBuV 65.99 55.99 57.57 47.57	dB -15.12 -21.35 -16.61	30.000 Detecto QP AV(QP AV(
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2	R req. 1500 1500 140 140 2500	Level dBuV 41.23 25.00 31.38 28.62	Correct Factor dB 9.64 9.64 9.58 9.58	Measure- ment dBuV 50.87 34.64 40.96 38.20	dBuV 65.99 55.99 57.57 47.57 61.75	dB -15.12 -21.35 -16.61 -9.37	30.000 Detector QP AV(QP AV(QP
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2 6 0.2	R req. //Hz 1500 1500 1500 140 2500 2500	Level dBuV 41.23 25.00 31.38 28.62 31.50	Correct Factor dB 9.64 9.64 9.58 9.58 9.61	Measure- ment dBuV 50.87 34.64 40.96 38.20 41.11	dBuV 65.99 55.99 57.57 47.57 61.75 51.75	dB -15.12 -21.35 -16.61 -9.37 -20.64	30.000 Detector QP AV(QP AV(QP AV(
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2 6 0.2 7 0.1	R req. //Hz 1500 1500 1500 140 2500 2500	Level dBuV 41.23 25.00 31.38 28.62 31.50 17.30	Correct Factor dB 9.64 9.64 9.58 9.58 9.58 9.61 9.61	Measure- ment dBuV 50.87 34.64 40.96 38.20 41.11 26.91	dBuV 65.99 55.99 57.57 47.57 61.75 51.75 64.03	dB -15.12 -21.35 -16.61 -9.37 -20.64 -24.84	30.000 Detecto QP AV(QP AV(QP AV(QP
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2 6 0.2 7 0.1 8 0.1	R req. //Hz 1500 1500 1400 2500 2500 2500	Level dBuV 41.23 25.00 31.38 28.62 31.50 17.30 10.55	Correct Factor dB 9.64 9.64 9.58 9.58 9.61 9.61 9.65	Measure- ment dBuV 50.87 34.64 40.96 38.20 41.11 26.91 20.20	dBuV 65.99 55.99 57.57 47.57 61.75 51.75 64.03 54.03	dB -15.12 -21.35 -16.61 -9.37 -20.64 -24.84 -43.83	30.000 30.000 QP AV(C QP AV(C QP AV(C QP AV(C QP
0.150 No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2 6 0.2 7 0.1 8 0.1 9 0.5	R req. 1500 1500 140 140 2500 2500 2500 1900	Level dBuV 41.23 25.00 31.38 28.62 31.50 17.30 10.55 1.54	Correct Factor dB 9.64 9.64 9.58 9.58 9.61 9.61 9.65 9.65	Measure- ment dBuV 50.87 34.64 40.96 38.20 41.11 26.91 20.20 11.19	dBuV 65.99 55.99 57.57 47.57 61.75 51.75 64.03 54.03 56.00	dB -15.12 -21.35 -16.61 -9.37 -20.64 -24.84 -43.83 -42.84	30.000 30.000 QP AV(C QP AV(C QP AV(C QP AV(C QP
No. Mk. F 1 0.1 2 0.1 3 0.4 4 * 0.4 5 0.2 6 0.2 7 0.1 8 0.1 9 0.5 10 0.5	R req. //Hz 500 500 140 140 2500 2500 2500 900 5299 5299	Level dBuV 41.23 25.00 31.38 28.62 31.50 17.30 10.55 1.54 -0.33	Correct Factor dB 9.64 9.64 9.58 9.58 9.61 9.61 9.65 9.65 9.65 9.58	Measure- ment dBuV 50.87 34.64 40.96 38.20 41.11 26.91 20.20 11.19 9.25	dBuV 65.99 55.99 57.57 47.57 61.75 51.75 64.03 54.03 54.03 56.00	dB -15.12 -21.35 -16.61 -9.37 -20.64 -24.84 -43.83 -42.84 -42.84	30.000 Detecto QP AV(

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	42.20	9.64	51.84	65.99	-14.15	QP
2		0.1500	26.00	9.64	35.64	55.99	-20.35	AVG
3		0.4140	30.71	9.58	40.29	57.57	-17.28	QP
4	*	0.4140	27.10	9.58	36.68	47.57	-10.89	AVG
5		0.2020	34.66	9.65	44.31	63.52	-19.21	QP
6		0.2020	18.61	9.65	28.26	53.52	-25.26	AVG
7		0.2460	27.23	9.61	36.84	61.89	-25.05	QP
8		0.2460	15.24	9.61	24.85	51.89	-27.04	AVG
9		0.4020	26.17	9.58	35.75	57.81	-22.06	QP
10		0.4020	12.32	9.58	21.90	47.81	-25.91	AVG
11		0.5500	24.42	9.58	34.00	56.00	-22.00	QP
12		0.5500	11.63	9.58	21.21	46.00	-24.79	AVG

EUT:	Table	t PC		Model:		QM806	
Temperature:	25 ℃			Relative Hu	midity:	55%	
Test Voltage:	AC 2	40V/60 Hz	-	20	60	133	
Terminal:	Line						CR1
Test Mode:	TX G	TX GFSK Mode 2402 MHz					
Remark:	Only	worse case	is reported		CON	39	
90.0 dBuV							
						QP: AVG:	
	~						
40	X dh	a Mila .					
	1° M ING A	((MANGAN AND AND AND AND AND AND AND AND AND A		A MANY	montalisman and	WWWWWWWWWWWWW	Martin who
				acilla de la companya			n pea
וואייר ב אוי א	עווזאנעי ברא א	Y YAKA WALAYA MATAKA MATAK	a kan na kan	的 化乙酰氨基乙酰氨基乙酸	Marmon	public	AV6
- LI W U I	7507 101	0 P W WANNA	TTA MANAGANANA.	ייאאי אאיע א)	March	רי יישען
V W V	YWY WI	() YUU WAN ANA ANA ANA ANA ANA ANA ANA ANA ANA		WIND THE TY	,		hite an
₩₩ ₩	/WW WV(() THE REAL PROPERTY OF THE	M.Malining Marin				
10 0.150	0.5		(MHz)	5		Munu	30.000
	0.5					(Mtrydy	30.000
	0.5 Freq.	Reading	(MHz) Correct Factor	Measure	- Limit	Over	30.000
0.150		Reading	Correct	Measure		Over	30.000
0.150 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit		
0.150 No. Mk. 1 (Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	dB	Detector
0.150 No. Mk. 1 (0 2 (0	Freq. MHz 0.1940 0.1940	Reading Level dBuV 1.71	Correct Factor dB 9.58 9.58	Measure- ment dBuV 11.29 5.95	Limit dBuV 63.86 53.86	dB -52.57	Detector QP AVG
0.150 No. Mk. 1 (0 2 (0 3 (0	Freq. MHz 0.1940 0.1940 0.2380	Reading Level dBuV 1.71 -3.63 18.45	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 11.29 5.95 28.03	Limit dBuV 63.86 53.86 62.16	dB -52.57 -47.91 -34.13	Detector QP AVG QP
0.150 No. Mk. 1 (0 2 (0 3 (0 4 (0)	Freq. MHz 0.1940 0.1940 0.2380 0.2380	Reading Level dBuV 1.71 -3.63 18.45 -1.40	Correct Factor dB 9.58 9.58 9.58 9.58	Measure- ment dBuV 11.29 5.95 28.03 8.18	Limit dBuV 63.86 53.86 62.16 52.16	dB -52.57 -47.91 -34.13 -43.98	Detector QP AVG QP AVG
0.150 No. Mk. 1 (0 2 (0 3 (0 4 (0 5 (0)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2740	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95	Correct Factor dB 9.58 9.58 9.58 9.58 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54	Limit dBuV 63.86 53.86 62.16 52.16 60.99	dB -52.57 -47.91 -34.13 -43.98 -49.45	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 () 2 () 3 () 4 () 5 () 6 ()	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99	dB -52.57 -47.91 -34.13 -43.98 -49.45 -45.66	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 (1) 2 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740 0.3220	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26 0.58	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33 10.17	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99 59.65	dB -52.57 -47.91 -34.13 -43.98 -49.45 -49.45 -49.48	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 (1) 2 (1) 3 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1) 8 (1)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740 0.3220 0.3220	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26 0.58 -4.55	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33 10.17 5.04	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99 50.99 59.65 49.65	dB -52.57 -47.91 -34.13 -43.98 -49.45 -49.45 -45.66 -49.48 -49.48	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 (1) 2 (1) 3 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1) 8 (1)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740 0.3220	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26 0.58	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33 10.17	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99 50.99 59.65 49.65	dB -52.57 -47.91 -34.13 -43.98 -49.45 -49.45 -49.48	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 (1) 2 (1) 3 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1) 8 (1) 9 (1)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740 0.3220 0.3220	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26 0.58 -4.55	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33 10.17 5.04	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99 59.65 49.65 57.49	dB -52.57 -47.91 -34.13 -43.98 -49.45 -49.45 -45.66 -49.48 -49.48	Detector QP AVG QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 (1) 2 (1) 3 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1) 8 (1) 9 (1)	Freq. MHz 0.1940 0.1940 0.2380 0.2380 0.2380 0.2740 0.2740 0.3220 0.3220 0.3220 0.4180	Reading Level dBuV 1.71 -3.63 18.45 -1.40 1.95 -4.26 0.58 -4.55 30.37	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59 9.59	Measure- ment dBuV 11.29 5.95 28.03 8.18 11.54 5.33 10.17 5.04 39.97	Limit dBuV 63.86 53.86 62.16 52.16 60.99 50.99 59.65 49.65 57.49 47.49	dB -52.57 -47.91 -34.13 -43.98 -49.45 -49.45 -45.66 -49.48 -44.61 -17.52	Detector QP AVG QP AVG QP AVG QP

EUT:	Tab	let PC		Model:		QM806	6
Temperature:	25°	C	30	Relative H	lumidity:	55%	A CONTRACT
Fest Voltage:	AC	240V/60 Hz	-	21 18	61	132	
Ferminal:	Neu	utral	ALC: NO				AR!
Fest Mode:	TX	GFSK Mode	2402 MHz	(III)	9		L'UL
Remark:	Onl	y worse case	e is reported				
90.0 dBuV						QP: AVG:	
40					petrometromet	na an a	pe A
0.150							
	0.5	5	(MHz)	5			30.000
	Freq.	Reading Level	(MHz) Correct Factor	₅ Measure- ment	- Limit	Over	30.000
		Reading	Correct	Measure		Over dB	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit		
No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	dB	Detector QP
No. Mk. 1 0 2 0	Freq. MHz .1860	Reading Level dBuV 34.48	Correct Factor dB 9.65	Measure- ment dBuV 44.13	Limit dBuV 64.21 54.21	dB -20.08	Detector QP
No. Mk. 1 0 2 0 3 0	Freq. MHz .1860 .1860	Reading Level dBuV 34.48 16.79	Correct Factor dB 9.65 9.65	Measure- ment dBuV 44.13 26.44	Limit dBuV 64.21 54.21 62.30	dB -20.08 -27.77	Detector QP AVC QP
No. Mk. 1 0 2 0 3 0 4 0	Freq. MHz .1860 .1860 .2340	Reading Level dBuV 34.48 16.79 31.65	Correct Factor dB 9.65 9.65 9.62	Measure- ment dBuV 44.13 26.44 41.27	Limit dBuV 64.21 54.21 62.30 52.30	dB -20.08 -27.77 -21.03	Detector QP AVC QP
No. Mk. 1 0 2 0 3 0 4 0 5 0	Freq. MHz .1860 .1860 .2340 .2340	Reading Level dBuV 34.48 16.79 31.65 15.90	Correct Factor dB 9.65 9.65 9.62 9.62	Measure- ment dBuV 44.13 26.44 41.27 25.52	Limit dBuV 64.21 54.21 62.30 52.30	dB -20.08 -27.77 -21.03 -26.78 -15.58	Detector QP AVG QP AVG
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65	Detector QP AVG QP AVG QP AVG
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0 7 0	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140 .6060	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34 25.31	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58 9.59	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92 34.90	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57 56.00	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65 -21.10	Detector QP AVG QP AVG QP AVG
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0 7 0 8 0	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140 .6060 .6060	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34 25.31 15.34	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58 9.59 9.59	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92 34.90 24.93	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57 56.00 46.00	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65 -9.65 -21.10 -21.07	Detector QP AVG QP AVG QP AVG QP
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0 7 0 8 0 9 0	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140 .6060 .6060 .6540	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34 25.31 15.34 23.67	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58 9.59 9.59 9.59	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92 34.90 24.93 33.26	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57 56.00 46.00 56.00	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65 -21.10 -21.07 -22.74	Detector QP AVG QP AVG QP AVG QP AVG
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0 7 0 8 0 9 0 10 0	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140 .6060 .6060 .6540 .6540	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34 25.31 15.34 23.67 12.52	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58 9.59 9.59 9.59 9.59 9.59	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92 34.90 24.93 33.26 22.11	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57 56.00 46.00 46.00	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65 -21.10 -21.07 -22.74 -23.89	Detector QP AVG QP AVG QP AVG QP AVG QP
No. Mk. 1 0 2 0 3 0 4 0 5 0 6 * 0 7 0 8 0 9 0 10 0 11 3	Freq. MHz .1860 .1860 .2340 .2340 .2340 .4140 .4140 .6060 .6060 .6540	Reading Level dBuV 34.48 16.79 31.65 15.90 32.41 28.34 25.31 15.34 23.67	Correct Factor dB 9.65 9.65 9.62 9.62 9.58 9.58 9.59 9.59 9.59	Measure- ment dBuV 44.13 26.44 41.27 25.52 41.99 37.92 34.90 24.93 33.26	Limit dBuV 64.21 54.21 62.30 52.30 57.57 47.57 56.00 46.00 56.00 46.00	dB -20.08 -27.77 -21.03 -26.78 -15.58 -9.65 -21.10 -21.07 -22.74	Detector QP AVG QP AVG QP AVG QP AVG

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.247(d)
 - 5.1.2 Test Limit

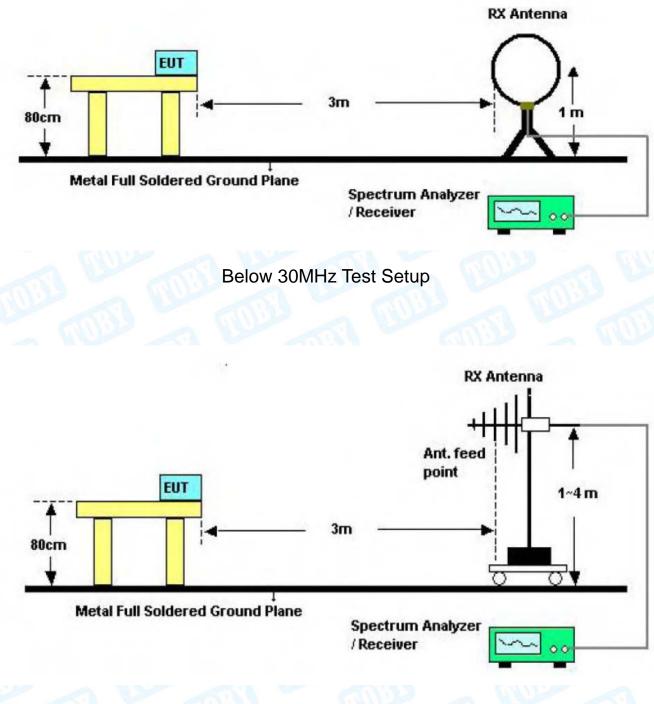
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

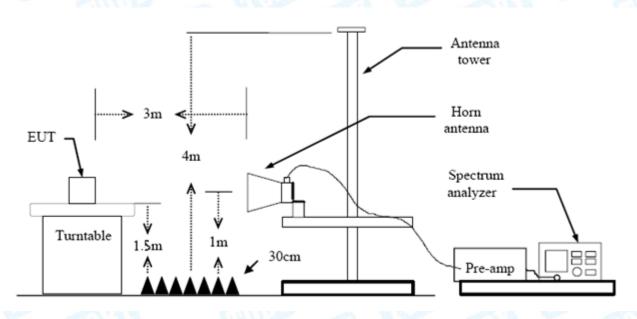
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


Report No.: TB-FCC155686 Page: 18 of 45

5.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Report No.: TB-FCC155686 Page: 20 of 45

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

TOBY

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

EUT:	Tablet PC	N	lodel:	G	M806	
emperature:	25 ℃	F	Relative Humidi	ty: 5	5%	
est Voltage:	AC 120V/60H	z		2	-	
Ant. Pol.	Horizontal		4000	-	160	
est Mode:	BLE TX 2402	Mode		88		
Remark:	Only worse ca	se is reported			-	
80.0 dBuV/m						
30	3 	5 5 6 X	Munang Man	RFJFCC 15C 3	Margin -	6 dB

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		31.6202	37.45	-14.77	22.68	40.00	-17.32	QP
2		44.1202	38.95	-21.61	17.34	40.00	-22.66	QP
3		79.2426	38.62	-22.96	15.66	40.00	-24.34	QP
4		108.6470	37.73	-21.41	16.32	43.50	-27.18	QP
5	*	140.8351	47.78	-21.47	26.31	43.50	-17.19	QP
6		175.6516	38.43	-20.29	18.14	43.50	-25.36	QP

*:Maximum data x:Over limit !:over margin

EUT			Та	blet	PC	24		Mod	del:			QM	806	A	
Tem	peratu	ure:	25	°℃		6.6	LBI	Rela	ative Hu	imidity	/:	55%	þ	10	
Test	Volta	ge:	AC	C 12	0V/6	50Hz		5			Gal		9		à
Ant.	Pol.		Ve	ertica	al			100		2	6	-	d	6	
Test	Mode):	BL	ET	X 24	102 N	lode			082		2			
Rem	nark:		Or	nly w	vorse	e cas	e is report	ted	Cor.	e	10	33			
80.0) dBuV/	m		. <u> </u>											
30	1	× ×		~~~^	Å	5	4 V / / /	whythere	ynnhhaddrefellann		(RF)FCC		Margin	-6 dB	Ywfyr
-20															
L		40 8	:0 C	20 70	n on			L-1		200	400	500 C	00 70	n 10	000 000
L).000	40 5	50 E	60 70				Hz)		300	400	500 6	00 70	0 11	000.000
30			⁵⁰ e		Rea	ading evel		ect N	leasure ment)-	400 mit		00 70 Ver	D 11	000.000
30		. F			Rea Le		g Corre	or	leasure)- Li		C			etector
30		. F	req.		Rea Le	evel	g Corre Fact	ect N or	leasure ment)- Li dE	mit	C	ver	De	
No		. F M 31.3	req. /Hz	2	Rea Le dl	evel BuV	g Corre Fact dB/m	ect N or 4	1easure ment dBuV/m	÷- Li dE	mit 3uV/m	C 1 -1)ver dB	De)	etector
30 No 1		. F M 31.3	req. /Hz 3992	2	Rea Le dl 43	evel BuV 3.04	g Corre Fact dB/m -14.6	ect N or 4	1easure ment dBuV/m 28.40	e- dE 4	mit 3uV/m 0.00	0 -1 -1)ver dB 11.60	De) 7	etector QP
30 No 1 2	o. Mk	. F M 31.3	req. /Hz 3992 8303	2 3 5	Rea Le dl 43 47 52	evel BuV 3.04 7.17	g Corre Fact dB/m -14.6 -22.7	ect Nor 44 47	Aeasure ment dBuV/m 28.40 24.43	- Li dE 4 4	mit 3uV/m 0.00 0.00	0 -1 -1 -1)ver dB 11.60	De) 7 2	etecto QP QP
No 1 2 3	o. Mk	. F M 31.3 46.0 80.9 125.	req. /Hz 3992 8303	2 3 5 57	Rea Le 43 47 52 50	evel BuV 3.04 7.17 2.25	g Corre Fact dB/m -14.6 -22.7 -22.8	ect N or 44 47 9	Aeasure ment dBuV/m 28.40 24.43 29.38	+ Li 4 4 4 4	mit 3uV/m 0.00 0.00 0.00	-1 -1 -1 -1	over dB 11.60 15.57	De) 7 2	etecto QP QP QP

*:Maximum data x:Over limit !:over margin

Above 1GHz

EU	T:		Tablet F	°C		Mod	el:		QM80	6
Ten	nperature	:	25 ℃	240		Rela	tive Hur	nidity:	55%	
es	st Voltage:		DC 3.7	V	11.0	1972		0.11	1900	
۱n	t. Pol.		Horizon	ntal		-			6	1000
es	st Mode:		BLE Mo	ode TX 2	402 MHz					
₹er	mark:			ort for the bed limit.	e emission	which n	nore tha	n 10 dB	below th	10
90.C	0 dBuV/m									
								(RF) FCC F	ART 15C (P	EAK)
		1 X						(RF) FCC	PART 15C (AVG)
		2 X								
40										
				_						
10										
10	00.000 3550.00) 6.	100.00 86	50.00 11	200.00 13750	.00 16300	0.00 18850	0.00 21400	.00	26500.00 MI

No	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.114	44.38	13.44	57.82	74.00	-16.18	peak
2	*	4803.468	34.87	13.44	48.31	54.00	-5.69	AVG

UT:	Tablet F	°C	Model:	QM806
emperature:	25 ℃	Can be	Relative Humidit	y: 55%
est Voltage:	DC 3.7	V		6000
nt. Pol.	Vertical			
est Mode:	BLE M	ode TX 2402 M	IHz	-
emark:		ort for the emis bed limit.	sion which more than 10) dB below the
00.0 dBu∀/m				
			(R	F) FCC PART 15C (PEAK)
1 X				RF) FCC PART 15C (AVG)
2				
40	•			
_				
0 1000.000 3550.00	6100.00 86	50.00 11200.00	13750.00 16300.00 18850.00	21400.00 26500.00 M

No	. Mk	. Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.145	44.05	13.44	57.49	74.00	-16.51	peak
2	*	4803.438	33.87	13.44	47.31	54.00	-6.69	AVG

UT:	Tal	olet PC			Мо	del:		QM80)6	
emperature:	25	Ĉ	10		Re	lative Hu	umidity:	55%	ALC:	
est Voltage:	DC	3.7V	1990	-	100		G	130		
nt. Pol.	Но	rizontal	-		1			2		
est Mode:	BL	E Mode	TX 24	142 MH	z					
emark:		report f		emissio	on which	hich more than 10 dB below the				
0.0 dBu∀/m										
							(RF) FCC	PART 15C (F	'EAK)	
	I A						(RF) FC	C PART 15C	AVG1	
	2						()		,	
0	×									
1000.000 3550.00	6100.00	8650.00	1120	0.00 137	50.00 163	00.00 188	50.00 2140	0.00	26500.00 MI	

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.169	43.71	13.90	57.61	74.00	-16.39	peak
2	*	4883.354	32.39	13.90	46.29	54.00	-7.71	AVG

EU.	Г:	T	ablet PC	;		Model:		QM806
Ten	nperature:	2	5℃	CIII)	5	Relative H	umidity:	55%
Tes	t Voltage:	D	C 3.7V	Com.	-	200	100	139
Ant	. Pol.	V	ertical	-	M.A			-
Tes	t Mode:	В	LE Mod	e TX 2442	2 MHz			
Rer	nark:		lo report rescribe		emission which more than 10 dB below the			below the
90.0	dBuV/m							
							(RF) FCC	PART 15C (PEAK)
		2						
	:	×					(RF) FCC	PART 15C (AVG)
40	:	1 X						
-10								

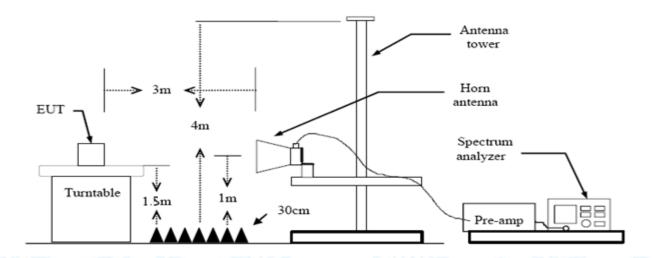
Ν	No. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4883.364	31.46	13.90	45.36	54.00	-8.64	AVG
2		4883.985	43.29	13.90	57.19	74.00	-16.81	peak

EUT:	Tablet P	С	Model:	QM806
Femperature:	25 ℃		Relative Humidity:	55%
Fest Voltage:	DC 3.7V	'		132
Ant. Pol.	Horizont	al		
Fest Mode:	BLE Mod	de TX 2480 MHz	MUDE	2
Remark:	No repor prescribe		which more than 10 dB	below the
90.0 dBu∀/m				
			(RF) FCC	PART 15C (PEAK)
2 X			(RF) FC	C PART 15C (AVG)
1 ×				
40				
10	6100.00 8650	0.00 11200.00 13750).00 16300.00 18850.00 2140	0.00 26500.00 M

No.	Mk	. Freq.	Level		ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.322	33.28	14.36	47.64	54.00	-6.36	AVG
2		4960.353	43.30	14.36	57.66	74.00	-16.34	peak

Tablet PC	Model:	QM806
25 ℃	Relative Humidity:	55%
DC 3.7V		139
Vertical		
BLE Mode TX 2480) MHz	2 194
No report for the er prescribed limit.	nission which more than 10 dB	below the
	(RF) FCC	PART 15C (PEAK)
	(RF) FC	C PART 15C (AVG)
	25°C DC 3.7V Vertical BLE Mode TX 2480 No report for the en prescribed limit.	25°C Relative Humidity: DC 3.7V Vertical BLE Mode TX 2480 MHz Image: Constraint of the emission which more than 10 dB prescribed limit. No report for the emission which more than 10 dB prescribed limit. Image: Constraint of the emission which more than 10 dB prescribed limit. Image: Constraint of the emission which more than 10 dB prescribed limit. Image: Constraint of the emission which more than 10 dB prescribed limit.

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.241	32.07	14.36	46.43	54.00	-7.57	AVG
2		4959.334	43.62	14.36	57.98	74.00	-16.02	peak



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247(d) FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Distance Me	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

(1) Radiation Test

			N I	211											6		
EUT	:		Tab	let P	С	-	8	3	Μ	odel:				QM80	6		55
Tem	nperatur	e:	25°C	2			1	-	R	elativ	e Hum	nidity:		55%			
Test	t Voltage	e:	DC	3.7V	1			60				3			1	3	
Ant	. Pol.		Hori	izont	tal	2				5	110	2	-	2	N.S.	100	
Test	t Mode:		BLE	Мо	de T	X 240	02	MHz	1				20	1			M
Ren	nark:		N/A	3				40	2		-						
110.0	0 dBu∀/m																1
60														PART 15			
10.0																	
	318.000 2320 Io. Mk.		2338 req			oo ading avel	2358.	Corre		Mea	asure- ent	2388.00 Lin	2398. nit	00 Ov		2418.00	MHz
		1	MHz		dE	BuV		dB/n	n	dB	uV/m	dB	uV/m	dl	В	Deteo	tor
1		239	0.00	00	41	.28		0.77	7	42	2.05	74	00.4	-31	.95	pea	ak
2		239	0.00	00	31	.82		0.77	7	32	2.59	54	1.00	-21	.41	AV	G
3	*	240	2.00	00	87	.19		0.82	2	88	3.01	Funda	amenta	l Frequ	ency	AV	G
4	Х	240	2.10	00	89	.37		0.82	2	90	0.19	Funda	amenta	l Frequ	ency	pea	ak

								<u>.</u>			-		-	<
EUT:				et PC	-	-		odel:				QM806	-	
	peratu		25 ℃		Call .	60	R	elativ	eΗι	umidity:		55%		
Test	Volta	ge:	DC :	3.7V			55				115	NO P		
Ant.	Pol.		Verti	ical	1		19		1			C	62	
Test	Mode	•	BLE	Mode	TX 24	402 M⊦	Ηz	5		08				
Rem	ark:		N/A				6				COURSE -			
110.0	dBu∀/n	1												_
												3		1
		_										Å		
-										(B	F) FCC F	ART 15C (PE	AK)	
												\uparrow		
60												[]		
┝										(RF) FCC	PART 15C (A	VG)	-
										1 X				1
								~		2				1
										~ ~				
-														
10.0	8.000 23	00.00	2338.00	2348	100 2	358.00	2368.00	237	D 00	2388.00	2398.	00	2418.00	
231	10.000 23	20.00	2330.00	2340		336.00	2366.00	2370	B. UU	2300.00	2336.	00	2410.00	MILZ
				Rea	ading	Cor	rect	Mea	sure	9-				
No	. Mk	. Fr	eq.		evel		ctor		ent	Lin	nit	Over		
		М	Hz	d	BuV	dB	/m	dBu	uV/m	dBu	ıV/m	dB	Dete	ctor
1		2390	.000	41	1.02	0.	77	41	.79	74	.00	-32.21	l pea	ak
2		2390	.000	31	1.64	0.	77	32	2.41	54	.00	-21.59) AV	′G
3	Х	2402	.000	89	9.12	0.8	82	89	9.94	Funda	amenta	I Frequenc	y pea	ak
4	*	2402	.100	86	6.86	0.8	82	87	.68	Funda	menta	I Frequency	, AV	′G

EUT:			Table	et PC				Mod	el:			QM80	6	
Tem	peratu	ire:	25 ℃	1	10.	30		Rela	tive H	umid	ity:	55%		
Test	Volta	ge:	DC 3	3.7V	200		5	2.8		6003				
Ant.	Pol.		Horiz	zontal			1						2	
Test	Mode	:	BLE	Mode	TX 24	180 MHz	2	- P	100					
Rem	ark:		N/A			-			100					
110.0	dBuV/π	1												
-														
-		2												
										(F	RF) FCC P	ART 15C (PE/	AK)	
60			3								(BE) ECC	PART 15C (AV	/61	
			×								(11) 1 00			
						~							- 0	
F	~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													
10.0														
246	3.000 24	73.00 2	483.00	2493.00	250	3.00 25	13.00	2523	.00 2	533.00	2543.0	00	2563.00 M	
	_			Read		Corre		Mea	sure-			~		
No	. Mk	. Fre	eq.	Lev	el	Fact	or	me	ent	Lir	nit	Over		
		MH	z	dBu	V	dB/m		dBu	ıV/m	dB	uV/m	dB	Detecto	
1	*	2480.	000	86.8	33	1.15		87	.98	Funda	amental	Frequency	AVG	

89.20

55.02

48.81

1.15

1.17

1.17

90.35

56.19

49.98

2480.200

2483.500

2483.500

2

3

4

Х

peak

peak

AVG

Fundamental Frequency

74.00

54.00

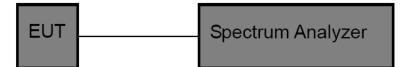
-17.81

-4.02

EUT:			Tab	let PC			M	odel:				QM806		
Temp	perati	ure:	25°	2	C.II	CB	R	elativ	e Hu	midity	:	55%	A.	
Test	Volta	ge:	DC	3.7V	125		-		1		A	132		
Ant.	Pol.		Ver	tical	-		100			3	6	0	62	
Test	Mode):	BLE	E Mode	e TX 24	480 MH	z	5	111	18				
Rem	Remark: N/A				3 ale		5			6				
110.0	dBuV/n	n												-
			2											1
			X											
			1							(F	E) ECC	PART 15C (PE	AK1	
													,	
60														
			3 X								(RF) FC	C PART 15C (A	VG)	
			×											
_														
		<u> </u>				<u> </u>								
10.0														
2463	3.000 24	73.00	2483.0	0 2493	3.00 2	503.00	2513.00	2523	3.00	2533.00	2543	.00	2563.00	мн
				Rea	ading	Corr	ect	Mea	sure-			-		
No	. Mk	. Fr	eq.	Le	evel	Fac	tor	me	ent	Lin	nit	Over		
		M	Hz	d	BuV	dB/r	n	dBu	ıV/m	dBu	ıV/m	dB	Detect	tor
1	*	2480	.000	86	6.74	1.1	5	87	.89	Funda	amenta	al Frequency	AV0	G
2	Х	2480	.100	88	8.95	1.1	5	90	.10	Funda	amenta	al Frequency	pea	ık
		2483	500	54	4.42	1.1	7	55	.59	74	.00	-18.41	pea	ık
3		2.00												

(2) Conducted Test

		Table	t PC			Mod	lel:		QM806
erature		25 ℃			-	Rela	ative Hu	nidity:	55%
oltage:		DC 3	.7V			We -			
lode:		BLE	Mode	TX 2	402MHz	/ BLE	Mode TX	2480M	IHz
rk:		The E	EUT is	s prog	gramed in	n contin	uously tr	ansmitt	ing mode
🔆 Agil	ent ·	19:36:20	Jul 1,	217					Marker
							Mkr1 2.40		IVIAIREI
Ref 15 Peak	dBm		Atten 2	5 dB			-4.7	51 dBm	Select Marker
Log 10									<u> </u>
dB/	Mar	kor							Norma
1		2000	000	GHz					
dB Dl		51 dE			4		3		Delta
-24.7 dBm	M	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	marine and the second			n water and the second	Dalta Dair
UDIII									Delta Pair (Tracking Ref)
Center	2.357	GHz					Span	100 MHz	Ref <u>Delta</u>
#Res B	3W 100	kHz	T	#VB	W 300 kHz	Sweep	10.36 ms (4	01 pts)	Span Pair Span <u>Cente</u>
Marke 1 2		race (1) (1)	Type Freq		X Axis 2.40200 GH		-4.751		<u> </u>
34		(1) (1) (1)	Freq Freq Freq		2.40000 GH 2.39000 GH 2.35700 GH	Z	-52.38 -52.61 -53.16	dBm	Off More 1 of 2
		(1) (1)	Freq Freq		2.39000 GH	Z	-52.61	dBm	More
3		(1) (1) 19:35:21	Freq Freq	217	2.39000 GH	Z	-52.61 -53.16	dBm dBm	More
3 4 ₩ Agil	ent ·	(1) (1) 19:35:21	Freq Freq		2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm	More 1 of 2
3 4	dBm	(1) (1) 19:35:21	Freq Freq Jul 1,		2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker
3 4 Ref 15 Peak Log 10	ent dBm	(1) (1) 19:35:21	Freq Freq Jul 1,		2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker Select Marker 1 2 3 4
3 4 Ref 15 Peak Log 10 dB/ Offst	ent dBm ↓	(1) (1) 19:35:21	Freq Freq Jul 1, Atten 2:	5 dB	2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker Select Marker
3 4 ₩ Agil Ref 15 Peak Log 10 dB/	enf dBm Å Mar 2.47	(1) (1) 19:35:21 ker 79750	Jul 1, Atten 2:	5 dB	2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma
3 4 Ref 15 Peak Log 10 dB/ Offst 1 dB DI	enf dBm Å Mar 2.47	(1) (1) 19:35:21	Jul 1, Atten 2:	5 dB	2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker Select Marker 1 2 3 4
3 4 Ref 15 Peak Log 10 dB/ Offst 1 dB	enf dBm Å Mar 2.47	(1) (1) 19:35:21 ker 79750	Jul 1, Atten 2:	5 dB	2.39000 GH	Z	-52.61 -53.16 Mkr1 2.47	dBm dBm 975 GHz	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta
3 4 Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6	enf dBm Å Mar 2.47	(1) (1) 19:35:21 ker 79750	Jul 1, Atten 2:	5 dB	2.39000 GH	Z	-52.61 -53.16	dBm dBm 375 GHz 38 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta
3 4 Agil Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6 dBm Center	ent dBm Å Mar 2.47 -4.6	(1) (1) 19:35:21 ker 79750 08 dE GHz	Jul 1, Atten 2:	5 dB GHz	2.39000 GH		-52.61 -53.16 Mkr1 2.47 -4.60 	dBm dBm 975 GHz 08 dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Pair (Tracking Ref) Ref <u>Delta</u>
3 4 Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6 dBm Center #Res E Marke	ent dBm ↓ Mar 2.47 -4.6 2.523 0 2.523 0 2.523 0 2.523 0 2.523 0 2.523 0 2.523 0 2.523 0 2.523 0	(1) (1) 19:35:21 4 Ker 79750 08 dE 08 dE 6 Hz kHz race	Freq Freq Jul 1, Atten 2: 0000 3m ² 3m ²	5 dB GHz	2.39000 GH 2.35700 GH	z z 	-52.61 -53.16 Mkr1 2.47 -4.6 	dBm dBm 3975 GHz 08 dBm 300 dBm 400 dB	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Pair (Tracking Ref)
3 4 Agii Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6 dBm Center #Res E Marke 1 2	ent dBm 1 2.47 -4.6 3 2.523 (3 W 100 r T	(1) (1) 19:35:21 ker 79750 08 dE 08 dE 08 dE 8 6 Hz kHz race (1)	Freq Freq Jul 1, Atten 2: DOOO 3m ³ Type Freq Freq Freq	5 dB GHz	2.39000 GH 2.35700 GH	z z	-52.61 -53.16 Mkr1 2.47 -4.60 	dBm dBm 375 GHz 28 dBm 38 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Pair (Tracking Ref) Ref <u>Delta</u> Span Pair Span <u>Cente</u>
3 4 Agii Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6 dBm Center #Res E Marke	ent dBm 1 2.47 -4.6 3 2.523 (3 W 100 r T	(1) (1) 19:35:21 4 Ker 79750 08 dE 08 dE 6 Hz kHz race	Freq Freq Jul 1, Atten 2: 0000 3m ³ 	5 dB GHz	2.39000 GH 2.35700 GH	z z z z z z z z z z z z	-52.61 -53.16 Mkr1 2.47/ -4.60 10.36 ms (4 Amp -4.608	dBm dBm dBm 975 GHz 08 dBm 100 MHz 01 pts) litude dBm dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Delta Pair (Tracking Ref) Ref <u>Delta</u>
3 4 Agii Ref 15 Peak Log 10 dB/ Offst 1 dB DI -24.6 dBm Center #Res E Marke 1 2 3	ent dBm 1 2.47 -4.6 3 2.523 (3 W 100 r T	(1) (1) 19:35:21 ker 79750 08 dE 08 dE 08 dE 8 6 Hz kHz race (1)	Freq Freq Jul 1, Atten 2: 0000 3m ³ Type Freq Freq Freq Freq	5 dB GHz	2.39000 GH 2.35700 GH	z z z z z z z z z z z z	-52.61 -53.16 Mkr1 2.47 -4.60 	dBm dBm dBm 975 GHz 08 dBm 100 MHz 01 pts) litude dBm dBm	More 1 of 2 Marker Select Marker <u>1 2 3 4</u> Norma Delta Pair (Tracking Ref) Ref <u>Delta</u> Span Pair Span <u>Cente</u>



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

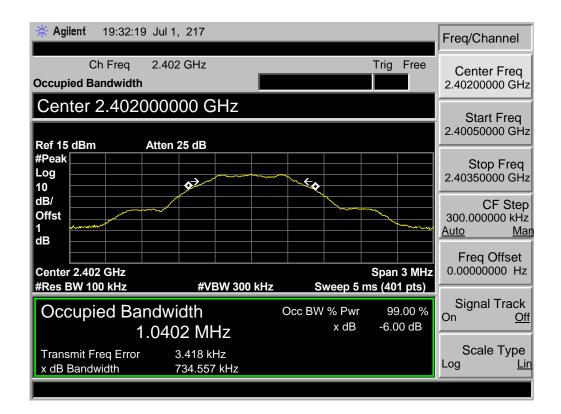
FCC	FCC Part 15 Subpart C(15.247)/RSS-247								
Test Item	Limit	Frequency Range(MHz)							
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5							

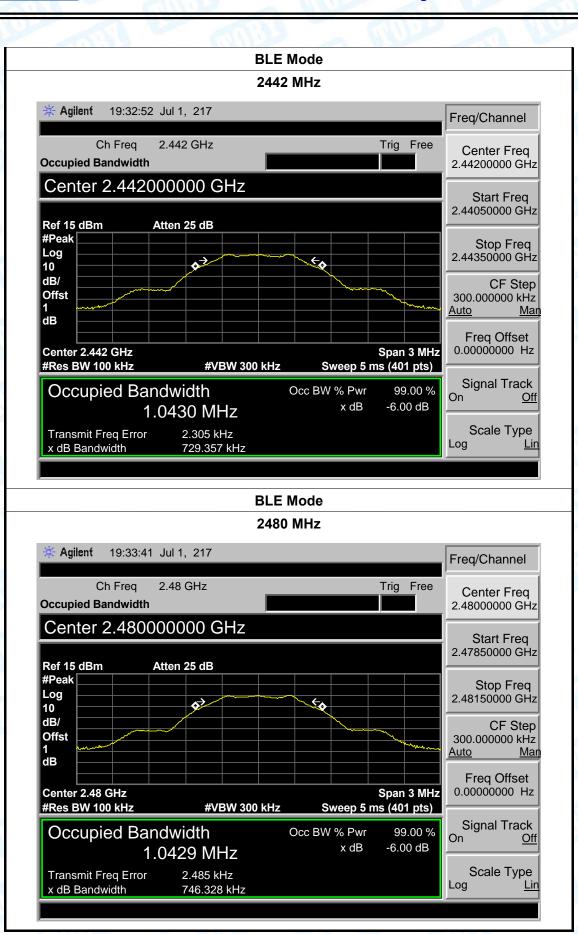
7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

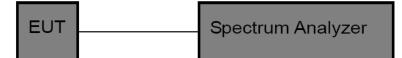

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.


7.5 Test Data

EUT:	Table	et PC	Model:	QM806			
Temperature:	25 ℃		Relative Humidity:	55%			
Test Voltage:	DC 3	3.7V	MUL				
Test Mode:	BLE	TX Mode					
Channel freque	ency	6dB Bandwidth	99% Bandwidth	Limit			
(MHz)		(kHz)	(kHz)	(kHz)			
2402		734.557	1040.2				
2442		729.357	1043.0	>=500			
2480		746.328	1042.9				
BLE Mode							

2402 MHz

TOBY



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)(3)
 - 8.1.2 Test Limit

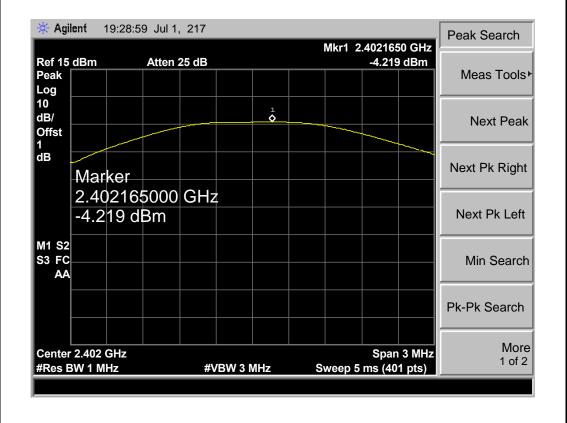
FCC Part 15 Subpart C(15.247)/RSS-247							
Test Item	Limit	Frequency Range(MHz)					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5					

8.2 Test Setup

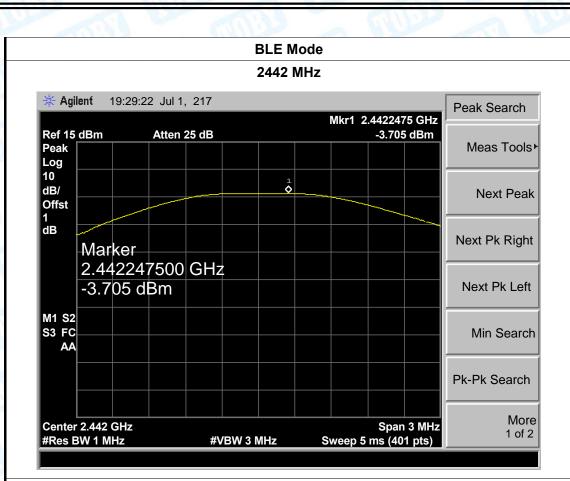
8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

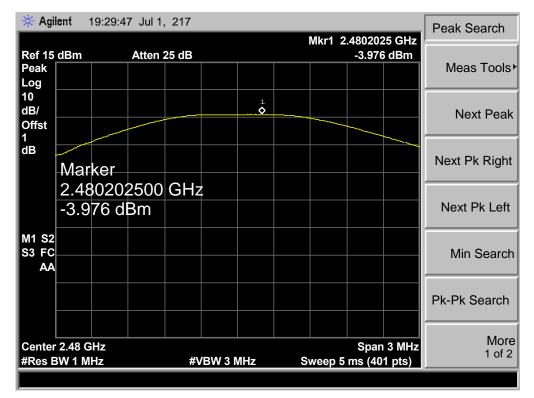

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.



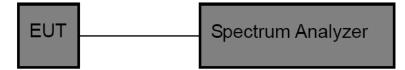
8.5 Test Data

EUT:	Tablet PC		Model:		QM806	
Temperature:	25 ℃		Relative Hu	midity:	55%	
Test Voltage:	DC 3.7V				A V	
Test Mode:	BLE TX M	lode	11	1100		
Channel frequen	cy (MHz)	Test Res	ult (dBm)		Limit (dBm)	
2402		-4.:	219			
2442		-3.705			30	
2480		-3.976				
		BLE	Mode			
		2402	MHz			



BLE Mode

2480 MHz



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

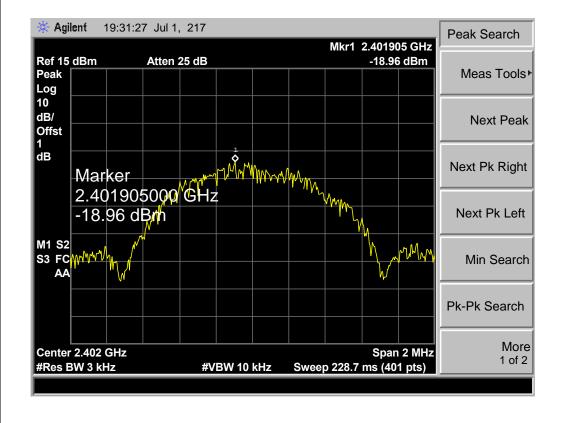
FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

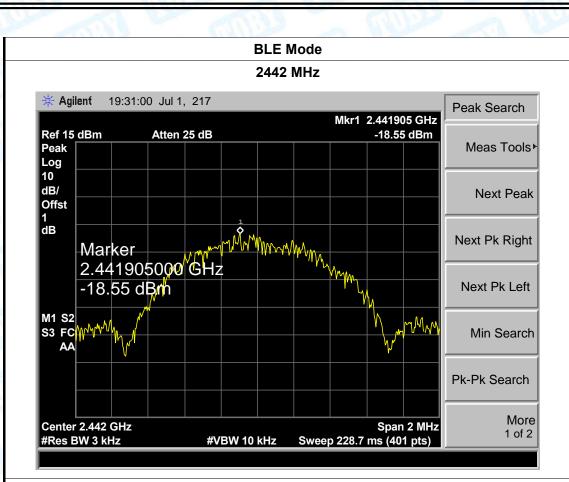
9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.



9.5 Test Data

EUT:	Tablet PC		Model:		QM806	
Temperature:	25 ℃		Relative Humidity:		55%	
Test Voltage:	DC 3.7V	~ 19			- 1	2013
Test Mode:	BLE TX M	lode	TUP		a. 1	Cherry .
Channel Frequency (MHz)		Power Density (dBm)		Limit (dBm)		Result
						Result
2402	2402 -18.96					
2442 2480		-18.55 -18.76		8		PASS
		2402 Mł	Ηz			

BLE Mode

2480 MHz

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is -0.12dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	
L'AND	Permanent attached antenna	
au	Unique connector antenna	\$
	Professional installation antenna	

----END OF REPORT-----