

Report No: CCISE181204205

FCC REPORT

Applicant:	SSB Trading Inc
Address of Applicant:	1750 Regal Row Suite 180 Dallas Tx Zip code 75235 United States
Equipment Under Test (E	EUT)
Product Name:	SMART PHONE
Model No.:	SSB504A
Trade mark:	SOHO SMART
FCC ID:	2AL4O-K5016C
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	12 Dec., 2018
Date of Test:	12 Dec., to 02 Jan., 2019
Date of report issued:	16 Jan., 2019
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jan., 2019	Original

Tested by:

ang Test Enginder

Date:

Date:

16 Jan., 2019

16 Jan., 2019

Reviewed by:

Dimer hand

Project Engineer

<u>CCIS</u>

Report No: CCISE181204205

3 Contents

		Pa	je
1	С	OVER PAGE	.1
2	v	ERSION	.2
3	С	ONTENTS	.3
4	т	EST SUMMARY	.4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	.5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	Test Mode	
	5.4	Measurement Uncertainty	.5
	5.5	DESCRIPTION OF SUPPORT UNITS	.6
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	.6
	5.8	LABORATORY FACILITY	.6
	5.9	LABORATORY LOCATION	.6
	5.10	Test Instruments list	.7
6	т	EST RESULTS AND MEASUREMENT DATA	.8
	6.1	CONDUCTED EMISSION	
	6.2	Radiated Emission	
7	т	EST SETUP PHOTO	17
8	Е	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT not applicable of the test item.				

5 General Information

5.1 Client Information

Applicant:	SSB Trading Inc
Address of Applicant:	1750 Regal Row Suite 180 Dallas Tx Zip code 75235 United States
Manufacturer:	JIANGSU JINYIDANENG TECHNOLOGY CO., LTD.
Address:	Building 6, aerospace small industrial park, jingkou industrial park, jinyang avenue, Jianbi town, jingkou district, zhenjiang city, jiangsu province China
Factory:	JIANGSU JINYIDANENG TECHNOLOGY CO., LTD.
Address:	3/F Block 2, Lianjian Industrial Park, Dalang Longhua District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	SMART PHONE
Model No.:	SSB504A
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
AC adapter :	Model: SSB504A Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Detail description		
Keep the EUT in Downloading mode(Worst case)		
Keep the EUT in Charging+Recording mode		
Keep the EUT in Charging+Playing mode		
Keep the EUT in FM receiver mode		
Keep the EUT in GPS receiver mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

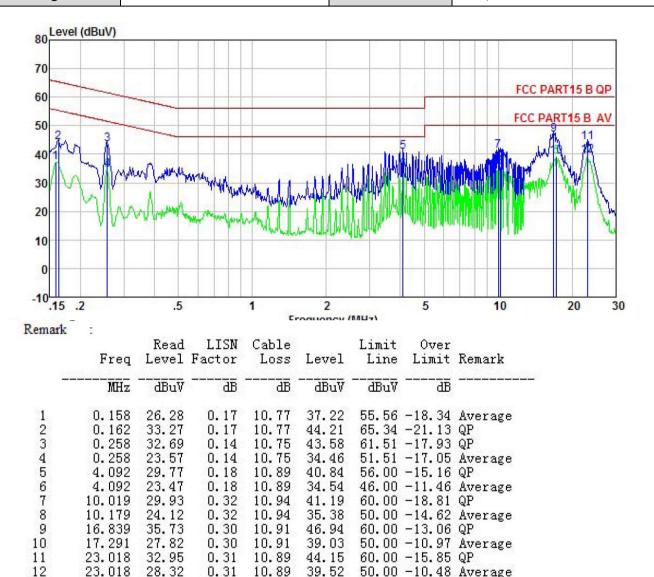
Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.10 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019		
EMI Test Software	AUDIX	E3	V	/ersion: 6.110919	b		
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	17					
Test Method:	ANSI C63.4:2014						
	150kHz to 30MHz						
Test Frequency Range:							
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (Quasi-peak	(dBµV) Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30	60	50				
	* Decreases with the logarith	nm of the frequency.					
Test setup:	Reference Pla	ne	_				
	LISN 40cm 80ci AUX Equipment E.U.T Test table/Insulation plane E.U.T Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver					
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network(L.I.S.N.). The bedance for the measur e also connected to the ohm/50uH coupling imp s to the block diagram of e checked for maximun and the maximum emiss d all of the interface cal	ne provide a ring equipment. main power through bedance with 500hm of the test setup and n conducted ion, the relative bles must be changed				
Test environment:	Temp.: 22.5 °C Hun	nid.: 55% Pre	ess.: 101kPa				
Test Instruments:	Refer to section 5.9 for detai	ls	i				
Test mode:	Refer to section 5.3 for detai	ls					
Test results:	Pass						

CCIS

Measurement data:

Product name:	SMART PHONE	Product model:	SSB504A
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

D 1

Product name:	3G Smart Phone	Product model:	SSB504A		
est by:	YT	Test mode:	PC mode		
est frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
est voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		
80 Level (dBuV) 70 60 50 30 40 40 20 10 0 -10,15,2		10000000000000000000000000000000000000	FCC PART15 B QP FCC PART15 B AV		

	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu⊽	<u>ab</u>	∃≣	 dBu∛	 dBu∛	āē	
1	0.154	33.11	0.98	10.78	44.87	65.78	-20.91	QP
2	0.158	28.04	0.98	10.77	39.79	55.56	-15.77	Average
3	0.190	32.70	0.93	10.76	44.39		-19.63	
4	0.258	30.99	0.95	10.75	42.69	61.51	-18.82	QP
5	0.258	26.03	0.95	10.75	37.73	51.51	-13.78	Average
6	1.418	24.14	0.98	10.92	36.04	56.00	-19.96	QP
1 2 3 4 5 6 7 8 9	1.418	17.19	0.98	10.92	29.09	46.00	-16.91	Average
8	9.552	21.37	1.02	10.92	33.31	50.00	-16.69	Average
9	16.486	26.75	0.83	10.91	38.49	50.00	-11.51	Average
10	16.573	34.15	0.83	10.91	45.89	60.00	-14.11	QP
11	23.018	31.86	0.68	10.89	43.43	60.00	-16.57	QP
12	23.140	26.62	0.68	10.89	38.19	50.00	-11.81	Average

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

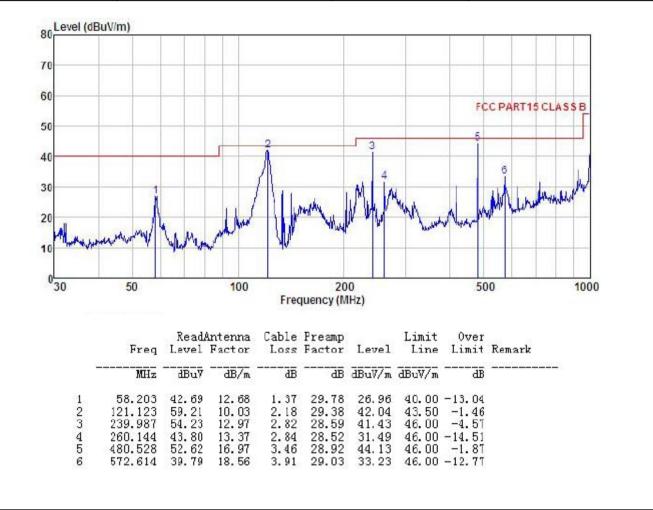
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

CCIS

6.2 Radiated Emission

FCC Part 15 B S	FCC Part 15 B Section 15.109					
ANSI C63.4:201	14					
30MHz to 6000	MHz					
Measurement D	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Frequency	Frequency Detection			VB۱	Ν	Remark
30MHz-1GHz		-peak 120kHz		300kHz		Quasi-peak Value
Above 1GHz				3MHz		Peak Value
Fraguana					HZ	Average Value
		LIMIL	•	/311)	0	Remark
						Quasi-peak Value Quasi-peak Value
						Quasi-peak Value
						Quasi-peak Value
						Average Value
Above 1G	Hz –		74.0			Peak Value
EUT Tum Table Bround Plane – Above 1GHz		Ground R		RF Test Receiver		
	ANSI C63.4:201 30MHz to 60001 Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz EUT Tum Table 0 Ground Plane Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3 Frequency Detection 30MHz-1GHz Quasi- Above 1GHz Pea RM3 Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Ground Plane Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Below 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz RMS 1MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz FUT 4m	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Char Frequency Detector RBW VBI 30MHz-1GHz Quasi-peak 120KHz 300k Above 1GHz Peak 1MHz 3MH Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Fundamental and the second	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz Trequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 C 88MHz-216MHz 43.5 C 216MHz-960MHz 46.0 C 960MHz-1GHz 54.0 C Above 1GHz 74.0 Below 1GHz Frequency I and Frequency Antenna Tower Further and the second seco



Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 						
	 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa	
Test Instruments:	Refer to se	ection 5.9 for	details				
Test mode:	Refer to se	ection 5.3 for	details				
Test results:	Passed						
Remark:	All of the c recorded	bserved valu	e above 6GH	Iz ware the r	niose floor ,	which were no	

Measurement Data:

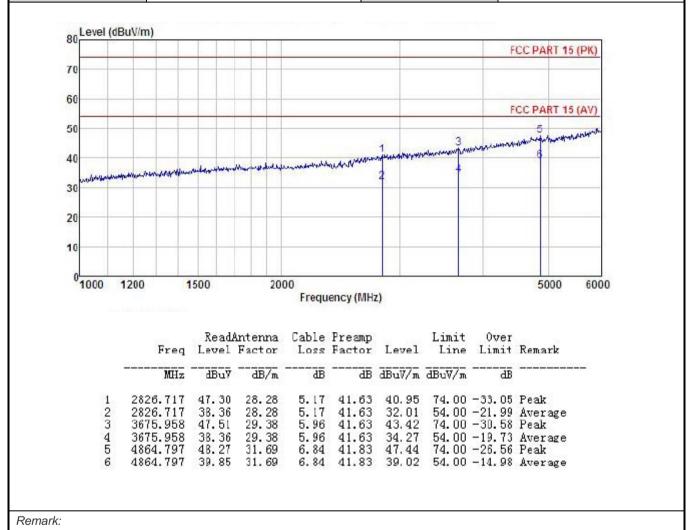
Below TOTIZ.			
Product Name:	3G Smart Phone	Product Model:	SSB504A
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	3G Sma	art Phone		Pro	oduct N	lodel:	SS	SSB504A		
Test By:	YT			Tes	Test mode:			PC mode		
Test Frequency:	30 MHz	30 MHz ~ 1 GHz		Pol	Polarization:		Ho	rizontal		
Test Voltage:	AC 120/60Hz		Env	vironm	ent:	Te	mp: 24 ℃	Huni: 57%		
80 Level (dBu 70 60 50 40	W/m)		1 m	2	4		5	PART15 CLA	₽ <u></u>	
20 My Human	manth	under town out	V	V	M	What when	have been	ninthin		
1 L	50	nder and harrow	Freque	200 ency (MHz))	What h	500	Ann	1000	
10 Headland		100 ReadAntenna Level Factor	a Cable 1	ency (MHz) Preamp		Limit	500 Over			
10 Hendleman		ReadAntenna	a Cable Loss	ency (MHz) Preamp Factor	Level	Limit	500 Over			


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Above 1GHz:

Product Name:	3G Smart Phone	Product Model:	SSB504A
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	3G Smart Phone				Ρ	roduct	Model:	SS	SB504A		
Test By:	ΥT				т	Test mode:			PC mode		
Test Frequency:	1 GHz ~ 6 GHz		Р	olarizat	ion:	H	orizontal				
Test Voltage:	AC 120/60Hz		E	nvironn	nent:	Te	emp: 24℃	Huni: 57%			
80 Level (dBu	V/m)								FOR DART A	-	
70									FCC PART 1	5 (NY)	
60									FCC PART 1	5 (AV)	
50								3.	5	a grant with the	
40					makhanta	1 minutes	Norman manufin	- warfredware	and a second		
aspendent prestructure	mithermouse	horsen and all		adar withold have	and an alternation	2		4			
30											
20								_			
10				-							
[°] 1000 12	00	1500	20	000 Erea	uency (M	H7)			5000	6000	
	Freq	ReadA	ntenna Factor	Cable	Preamp Factor	Level	Limit	Over Limit	Remark		
	MHz		dB/m		dB					22	
31	2973.411		28.55		41.53				DL		
2	2973.411	37.49	28.55	5.32	41.53	31.71	54.00	-22.29	Average		
4	3912.134 3912.134	38.56	29.98	6.10	41.80 41.80	35.04	54.00	-18.96	Average		
	4893.279 4893.279		31.74 31.74		41.84 41.84				Peak Average		