TEST REPORT

KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>		Report No.: KR18-SRF0053-A Page (1) of (46)	KCTL		
1. Client					
∘ Name	: SELVA	S Healthcai	re,Inc.		
 Address 	s : 174 Gaj	ung-ro, Yuse	eong-gu Daejeon Sout	h Korea	
∘ Date of	Receipt : 2018-03	3-20			
2. Use of Re	port : -				
3. Name of F	Product and Model	: Braille	Sense Polaris MINI /	H520B	
4. Manufactu	rer and Country of Or	igin ∶SELV	/AS Healthcare,Inc. /	Korea	
5. FCC ID		: 2AL4	DH520B		
6. Date of Te	est : 2018-05	5-01 to 2018	8-05-08		
7. Test Stan	dards : FCC Pa	art 15 Subp	art E, 15.407		
8. Test Resu	Ilts : Refer to	the test re	sult in the test report		
	Tested by	NID	Technical Manag	ger	
Affirmation		que	- (Man	
	Name : Euijung Kim	(Signatur	e) Name : Jongha	Choi (Signature)	
2018-06-20					
KCTL Inc.					
As a test result of the sample which was submitted from the client, this report does not guarantee					
the whole pro				ithout a written agreement	
by KCTL Inc.	by KCTE Inc.				

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (2) of (47)

REPORT REVISION HISTORY

Date	Revision	Page No
2018-05-10	Originally issued	-
2018-06-20	Added emission mask results	40 ~ 42

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (3) of (47)

[Contents]

1. Client information	
2. Laboratory information	
3. Description of E.U.T.	6
3.1 Basic description	3
3.2 General description	3
3.3 Test frequency	3
3.4 Test Voltage	
4. Summary of test results	9
4.1 Standards & results	9
4.2 Uncertainty	
5. Test results	D
5.1 Antenna Requirement	
5.2 Maximum Conducted Output Power1	
5.3 Bandwidth Measurement	
5.4 Peak Power Spectral Density	7
5.5 Spurious Emission, Band Edge And Restricted Bands	3
5.6 Frequency Stability	3
5.7 Conducted Emission	
6. Test equipment used for test	7

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (4) of (47)

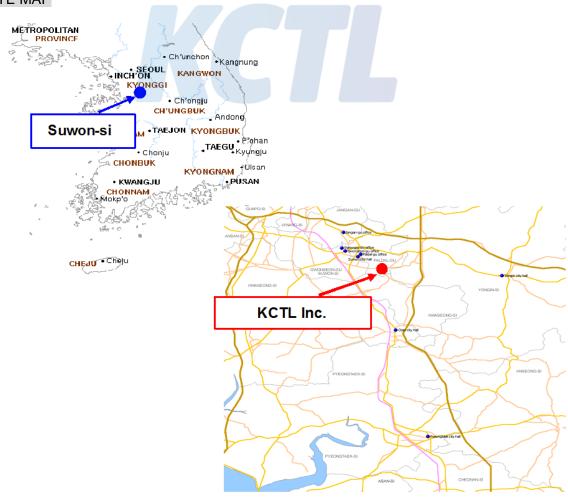
1. Client information

Applicant:	SELVAS Healthcare, Inc.	
Address:	174 Gajung-ro, Yuseong-gu Daejeon South Korea	
Telephone number:	+82 42 864 4460	
Contact person:	Hyeondong Jeong / flynn.h.jeong@selvas.com	

Manufacturer:	SELVAS Healthcare,Inc.		
Address:	155, Sinseong-ro, Yuseong-gu, Daejeon, Republic of Korea		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (5) of (47)

2. Laboratory information


Address

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Telephone Number: +82 31 285 0894 Facsimile Number: +82 505 299 8311

FCC Site Designation No: KR0040, FCC Site Registration No: 687132 VCCI Registration No. : R-3327, G-198, C-3706, T-1849 Industry Canada Registration No. : 8035A-2 KOLAS NO.: KT231

SITE MAP

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

Page (6) of (47)

3. Description of E.U.T.

3.1 Basic description

Applicant	SELVAS Healthcare, Inc.	
Address of Applicant	174 Gajung-ro, Yuseong-gu Daejeon South Korea	
Manufacturer	SELVAS Healthcare, Inc.	
Address of Manufacturer	155, Sinseong-ro, Yuseong-gu, Daejeon, Republic of Korea	
Type of equipment	BrailleSense Polaris MINI	
Basic Model	H520B	
Serial number	N/A	

3.2 General description

Frequency Range	2 412 M₂ ~ 2 462 M₂ (802.11b/g/n HT20) 2 422 M₂ ~ 2 452 M₂ (802.11n HT40) 5 180 M₂ ~ 5 240 M₂ (802.11ac VHT20) 5 745 M₂ ~ 5 825 M₂ (802.11ac VHT20) 2 402 M₂ ~ 2 480 M₂ (Bluetooth, Bluetooth Low Energy)
Type of Modulation	802.11b : DSSS, 802.11g/n/ac : OFDM, Bluetooth : GFSK, π/4DQPSK, 8DPSK Bluetooth Low Energy : GFSK
The number of channels	2.4 GHz: 11 ch (802.11b/g/n HT20), 7 ch (802.11n HT40), 79 ch (Bluetooth), 40 ch (Bluetooth Low Energy) 5 GHz: 5 150 MHz Band: 4 (802.11ac VHT20) 5 725 MHz Band: 5 (802.11ac VHT20)
Type of Antenna	FPCB Antenna
Antenna Gain	2.4 GHz: -0.97 dBi (WiFi) 2.45 dBi (Bluetooth, Bluetooth Low Energy) 5 GHz: 1.99 dBi (5 150 MHz ~ 5 250 MHz) -0.49 dBi (5 725 MHz ~ 5 850 MHz)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

Page (7) of (47)

Transmit Power	7.21 dBm
Power supply	DC 3.70 V
Product SW/HW version	V0.3 / 5.32.15.25468
Radio SW/HW version	V5.32.01 / V6.1
Test SW Version	Dut labtool 2.0.0.89
RF power setting in TEST SW	9 (5 150 ₩z Band), 15 (5 725 ₩z Band)

Note : The above EUT information was declared by the manufacturer.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (8) of (47)

3.3 Test frequency

- 802.11ac VHT20

Frequency	Band 1	Band 4
Lowest frequency	5 180 Mt	5 745 M±z
Middle frequency	5 200 MHz	5 785 M±z
Highest frequency	5 240 Mt	5 825 M ¹ z

3.4 Test Voltage

Mode	Voltage
Nominal Voltage	DC 3.70 V

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (9) of (47) KCTL

4. Summary of test results

4.1 Standards & results

FCC Rule	Parameter	Report Section	Test Result
15.203 15.407(a)(1)(2)(3)	Antenna Requirement	5.1	С
15.407(a)(1)(2)	Maximum Conducted Output Power	5.2	С
15.403(i), 15.407(e)	Bandwidth Measurement	5.3	С
15.407(a)(1)(2)(5)	Peak Power Spectral Density	5.4	С
15.205(a), 15.209(a), 15.407(b)(1), 15.407(b)(2), 15.407(b)(3) 15.407(b)(4)(i)	Spurious Emission, Band Edge and Restricted bands	5.5	С
15.407(g)	Frequency Stability	5.6	С
15.207(a)	Conducted Emissions	5.7	С
Note: C = Complies, NC = Not Complies, NT = Not Tested, NA = Not Applicable			

4.2 Uncertainty

Measurement Item	Expanded Uncertainty U = kUc (k = 2)		
Conducted RF power	1.42 dB		
Conducted Spurious Emissions	1.58 dB		
	30 Młz ~ 300 Młz:	+4.94 dB, -5.06 dB	
		+4.93 dB, -5.05 dB	
Radiated Spurious Emissions	300 Młz ~ 1 000 Młz:	+4.97 dB, -5.08 dB	
		+4.84 dB, -4.96 dB	
	1 GHz ~ 25 GHz:	+6.03 dB, -6.05 dB	
Conducted Emissions	9 kHz ~ 150 kHz:	3.75 dB	
	150 kHz ~ 30 MHz:	3.36 dB	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A Page (10) of (47)

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to \$15.407(a)(1)(2)(3), If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has permanently attached FPCB Antenna (internal antenna) on board.

5.2 Maximum Conducted Output Power

5.2.1 Regulation

According to §15.407(a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximumConducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to §15.407(a) (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dBthat the directional gain of the antenna exceeds 6 dBi.

According to §15.407(a) (3) For the band 5.725-5.85 GL, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kL band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2.2 Measurement Procedure

These test measurement settings are specified in section C of 789033 D02 General UNII Test Procedures.

5.2.2.1 Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- (viii) Trace average at least 100 traces in power averaging (rms) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

5.2.2.2 Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (iii) Set RBW = 1 MHz.
- (iv) Set VBW ≥ 3 MHz.
- (v) Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- (vi) Sweep time = auto.
- (vii) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (viii) Do not use sweep triggering. Allow the sweep to "free run."
- (ix) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.
- (x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (xi) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (14) of (47)

- Duty Cycle Correction Factor
- 802.11ac VHT20

●1Pk Clrw				D3	[1]		0.03 d
20 d8m	M1				p	2	 1.000000
20 0000				MI	[1] 4		19.68 dB
10 dBm TR	G 10.000 dBr	n					 374.800 n
	11						
0 dBm							
-10 dBm							
-20 dBm							
20 0011							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
CF 5.18 GHz			1000	1		1	200.0 ms/

Note₁) : period : 1 000 ms, On time : 997 ms Note₂) : DCCF = $10 \log(1 / x) = 10 \log(1 / 0.997) = 0.01$, x = 0.997 Note₃) : 802.11ac mode is a continuous transmission (duty cycle >=98 %)"

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A Page (15) of (47)

5.2.3 Test Result

-Complied

- 5 150 Band

-802.11ac VHT20

Channel	Frequency [\#b]	Average power [dBm]	D.C.C.F [dB]	Result [dBm]	Limit [dBm]	Margin [dB]
Lowest	5 180	7.20	0.01	7.21	30.00	22.79
Middle	5 200	6.64	0.01	6.65	30.00	23.35
Highest	5 240	6.04	0.01	6.05	30.00	23.95

- 5 725 Band

-802.11ac VHT20

Channel	Frequency [ᢂᡌ]	Average power [dBm]	D.C.C.F [dB]	Result [dBm]	Limit [dBm]	Margin [dB]
Lowest	5 745	1.70	0.01	1.71	30.00	28.29
Middle	5 785	1.26	0.01	1.27	30.00	28.73
Highest	5 825	2.27	0.01	2.28	30.00	27.72

Note 1 : D.C.C.F(Duty cycle correction factor) = $10\log(1/x)$, x = 0.997 Note 2 : Result = Average power + D.C.C.F

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (16) of (47)

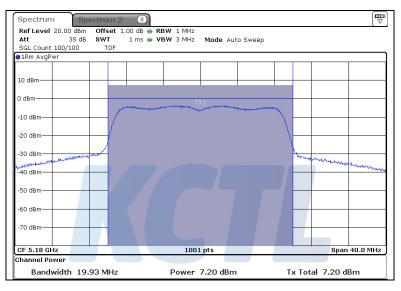

5.2.4 Test Plot

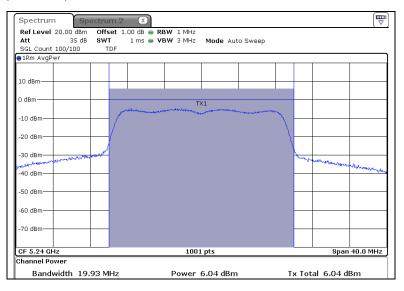
Figure 1. Conducted Output Power

- 5 150 Band

-802.11ac VHT20

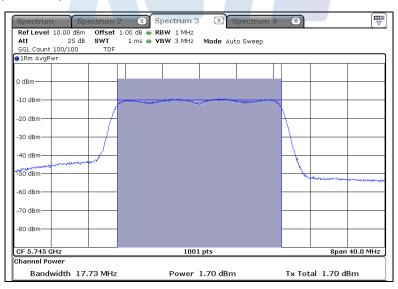
Lowest Channel (5 180 Mz)

Middle Channel (5 200 Mz)


Spectrun	n Spe	ectrui	n 2	X)								
Att SGL Count		SWT		00 dB (1 ms (WI 1 MHz WI 3 MHz	Mode	Aut	o Sweep				
⊜1Rm AvgP	wr											1	
10 dBm													
0 dBm						т	X1						
-10 dBm			(-loundervanis	k),-exercity	angen generation and	and the second	n an	5				
-20 dBm			(
-30 dBm	www.appenstreaksport	wanner									Lunger and	and an and an age of a second	man harring reported
-50 dBm													
-60 dBm													
-70 dBm													
CF 5.2 GH						100	1 pts					Spar	40.0 MHz
Channel Po Bandy	wer width 19.	93 M	Hz			Power	6.64 d	Bm		т	x Tot	al 6.64 d	Bm

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

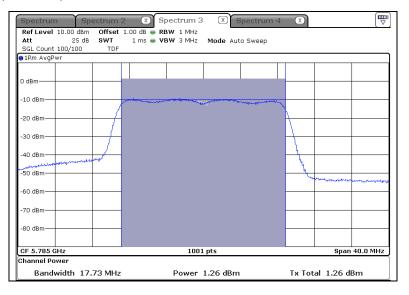
Page (17) of (47)


Highest Channel (5 240 Mb)

- 5 725 Band

-802.11ac VHT20

Lowest Channel (5 745 Mz)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

Page (18) of (47)

Middle Channel (5 785 Mz)

Highest Channel (5 825 Mz)

Spectrum	pectrum 2	Spectrum 3	X Spect	rum 4 🛛 🔊		₽
Ref Level 10.00 dBm Att 25 dB SGL Count 100/100		-	Mode Auto Swe	ер		
1Rm AvgPwr						
0 dBm						
-10 dBm		and the second		mentionetice		
-20 dBm	+-Á			\rightarrow		
-30 dBm				+		
-40 dBm	tom an ord			<u> </u>		
-50 dBm					munner	warmen and a second
-60 dBm						
-70 dBm	+					
-80 dBm	+					
CF 5.825 GHz		1001	ots		Span	40.0 MHz
Channel Power						
Bandwidth 17	7.73 MHz	Power 2	.27 dBm	Tx To	tal 2.27 di	Bm

5.3 Bandwidth Measurement

5.3.1 Regulation

According to §15.403,(i) Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

According to §15.407,(e) Within the 5.725-5.85 ^{GHz} band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.3.2 Measurement Procedure

1.Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeatmeasurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725 - 5.85 ${\rm Gh}$

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 kHz for theband 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by6 dB relative to the maximum level measured in the fundamental emission.
- Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A Page (20) of (47)

5.3.3 Test Result

-Complied

- 5 150 Band

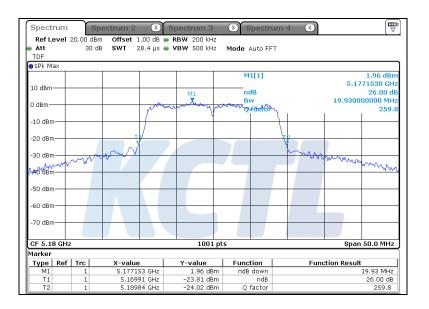
- 802.11ac VHT20

Channel	Frequency [Mz]	26 dB Bandwidth [Mtz]	Min. Limit [₩z]	OBW [Mb]
Lowest	5 180	19.93	0.50	17.78
Middle	5 200	19.93	0.50	17.78
Highest	5 240	19.93	0.50	17.78

- 5 725 Band

- 802.11ac VHT20

Channel	Frequency [Mz]	6 dB Bandwidth [Mtz]	Min. Limit [₩z]	OBW [Mb]
Lowest	5 745	17.73	0.50	17.73
Middle	5 785	17.73	0.50	17.73
Highest	5 825	17.73	0.50	17.73


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (21) of (47)

5.3.4 Test Plot

- Figure 2. Plot of Bandwidth Measurement
- 5 150 Band
- 802.11ac VHT20
- 5 180 MHz

EBW

Spectrum	Spectrum 2	X Sp	bectrum 3	×s	pectrum -	4 X		
	0 dBm Offset 1 35 dB SWT	.00 dB 🛑 RE 19 µs 🖶 VE		Mode A	uto FFT			x
●1Pk Max				м	1[1]		5.17	4.40 dBn 63540 GH:
10 dBm			M1	0	cc Bw	l		17782 MH
0 dBm		Trom	Muy	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-10 dBm		1						
-20 dBm	~ ^ ^					20.00		
-30 dBm						V V A	more.	ww
-40 dBm								100
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.18 GHz			1001	ptc			Pnan	50.0 MHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A KCTL

Page (22) of (47)

- 5 200 MHz

EBW

Spect	um		Spectrum 2	X	Spectrum 3		X Spe	ectru	ım 4	1 X		(T
Ref Le	evel 3	20.00 c	Bm Offset	1.00 dB	■ RBW 200 kH	z						
Att 🛛		30	dB SWT	28.4 µs (● VBW 500 kH	z N	lode Aut	o FF	Г			
TDF												
∋1Pk Ma	эх											
							M1[1	1]				1.81 dB
10 dBm-											5.19	63540 GH
TO UBIII-					M1		ndB					26.00 c
0 dBm—					X.s		BW				19.9300	00000 MH
o ubili—				- Marine	man prover of	water	^{জাতান্দ} প্ৰিণিষ্ঠা	et6r\	τ.			260
-10 dBm				17					$\mathbf{\Lambda}$			
10 0011				17								
-20 dBm				· V					\downarrow			
				x					- A			
-30 dBm			mana	1						Montern		
	mo	ww	Come of the								worm w	mon.
-40 dBm	-		www.									* **¥
-50 dBm						<u> </u>			-			
-60 dBm									-			
-70 dBm												
CF 5.2	GHz				1001	pts					Spar	50.0 MH
Marker												
	Ref		X-valu		Y-value		Functio			Fun	ction Result	
M1		1		54 GHz	1.81 dB		ndB do					19.93 MHz
Τ1		1		91 GHz	-24.04 dB			ndB				26.00 dB
T2		1	5.209	84 GHz	-24.43 dB	m	Q fac	tor				260.7

Ref Level 2 Att	35 dB	SWT	19 µs 👄 🕻	RBW 300 kHz /BW 1 MHz		uto FET			
TDF					induc A				
∎1Pk Max									
					M	1[1]		5.00	2.46 dBn 21480 GH
10 dBm					0	cc Bw			21480 GH. 17782 MH:
					M1				
0 dBm			m	mony	mitin				
			∳		1	¥			
-10 dBm						$\left \right\rangle$			
			/						
-20 dBm						- \			
		~ 1					\sim	\sim	
-30 dBm	www	m						I'm free	han
much									-
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A KCTL

Page (23) of (47)

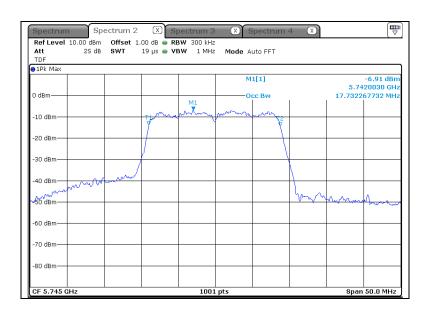
- 5 240 Mb

EBW

Spectrum		Spectrum 2	× Sp	bectrum 3	×s	pectru	um 4	4 X		
Ref Level				BW 200 kHz						
Att	30	dB SWT 28.	4 µs 👄 V	'BW 500 kHz	Mode /	Auto FF	т			
TDF										
●1Pk Max										-0.47 dBr
					IVI	1[1]			5.95	-0.47 aBi 28070 GH
10 dBm					n	1B			0.20	26.00 d
			M1		B				19.9300	00000 MH
0 dBm			Maria	mannen p	www.	factor				262
-10 dBm				r v	0.0		1			
-10 0011										
-20 dBm		/								
		4					- ¥			
-30 dBm		1 dell					- 4			
0 010 00 BOM	mon	mohmme						Vanhra	Mellerin	. A.
<mark>∧</mark> ¶0/dBfii <u>>(*</u>	.0						_			- Manual
-50 dBm										
-50 ubiii										
-60 dBm										
-70 dBm										
CF 5.24 GHz	z			1001 p	ots				Span	50.0 MHz
Marker										
	Trc	X-value	011	Y-value	Func			Func	tion Result	
M1 T1	1	5.232807		-0.47 dBm -26.42 dBm		down ndB		_	_	19.93 MHz 26.00 dB
T2	1	5.24964		-26.42 dBm		factor				26.00 dB 262.6

			-		pectian	Ű		(₩
35 dB	SWT				uto FFT			
				M	1[1]			2.30 dBn
					D			19980 GH:
					CC BW	1	17.7822	17782 MH2
		-	and have					
		TF.	disco and		J2			
		Y			Y			
		1						
		V			\			
					(
0.000	nn M					m	Λ	
1-1-1-1-1						· · ·	have been	m
			-					
			-					
	35 dB	0.00 dBm Offset 1	0.00 dBm Offset 1.00 dB F F 35 dB SWT 19 μs F	0.00 dBm Offset 1.00 dB RBW 300 kHz 35 dB SWT 19 µs VBW 1 MHz	0.00 dbm Offset 1.00 dB RBW 300 kHz 35 dB SWT 19 µs VBW 1 MHz Mode A	0.00 dbm Offset 1.00 db RBW 300 kHz 35 db SWT 19 µs VBW 1 MHz Mode Auto FFT M1[1] Occ Bw TT	0.00 dbm Offset 1.00 db RBW 300 kHz 35 db SWT 19 µs VBW 1 MHz Mode Auto FFT M1[1] Occ Bw M1 Tr	0.00 dbm Offset 1.00 db RBW 300 kHz 35 db SWT 19 µs VBW 1 MHz Mode Auto FFT M1[1] 5.24 0cc Bw 17.7822

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (24) of (47)



- 5 725 Band

- 802.11ac VHT20
- 5 745 Mtz

EBW

Specti	um	S	pectrum	2 X	Spect	rum 3	X	Spectru	um 4	t X		
Ref Le	vel 1	0.00 dBr	n Offset	1.00 dB 🧉	RBW 1	.00 kHz						
Att		29 d	B SWT	56.9 µs 🧉	VBW 3	100 kHz	Mode	Auto FFT				
TDF												
1Pk Vie	ЭW											
								D3[1]				-0.26 dE
) dBm—											1	7.7320 MH:
J UBIII-								M1[1]				-11.74 dBn
10 dBm							M1				5.74	170980 GH
10 0011				Mann	any more	mentry pro	uting	uppound.	then .			
-20 dBm	D	1 -17.74	0 dBm	-				-	U3			
20 000						1			Ţ			
-30 dBm				1					1			
				8					୍ୟ			
40 dBm				1				_	1			
		1. Ash	NUMANA	Ún l						λ.		
50,d8Å	meren	0000	_	_				_		Justian	Mall How hat h	Mappinghandhar
											-4-64-6-64-64	
-60 dBm			-	-				-	-			
-70 dBm				_					_			
-80 dBm				1 7			7		-			
CF 5.74	IS GH	z				1001 pt	5				Spar	50.0 MHz
larker											· · ·	
Type	Ref	Trc	X-val	ue	Y-v	alue	Fu	nction		Fun	ction Resul	
M1		1		7098 GHz	-1	1.74 dBm						
M2		1	5.73	5009 GHz	-18	3.18 dBm						
D3	M2	1	17	732 MHz		-0.26 dB						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A KCTL

Page (25) of (47)

- 5 785 MHz

EBW

Spect	rum	4	Spectrum 2	X	Spectrum 3	×	Spectru	um «	4 X		
Ref Le	vel 1	0.00 dB	m Offset 1	.00 dB 🥃	RBW 100 kHz						
Att		29 0	IB SWT 5	6.9 µs 👄	VBW 300 kHz	Mode	Auto FFT				
TDF											
∎1Pk Vi	ew										
						[03[1]				0.01 d
										1	7.7320 MH
0 dBm—						P	41[1]				-12.44 dBi
-10 dBrr						M1				5.78	370980 GH
-10 080				M2 allow	aneumaningary	mentionen					
-20 dBrr	n	1 -18.4	40 dBm	- Contraction	addenter	1. a	(manual and	ųз			
-20 UBII											
-30 dBrr				1				1			
-30 ubii	-			1				T			
40 d0 m				1				- 7			
-40 UBII			www.manuMill								
	J.M.W	h ohum							A.		
K-MANDEN									aman	monor	hunner
-60 dBrr											
-00 ubn											
-70 dBm											
70 abri											
-80 dBm											
oo ubn											
CF 5.7	85 GH	z			1001	l pts				Spar	1 50.0 MHz
1arker											
Туре	Ref	Trc	X-valu		Y-value		ction		Fund	tion Result	t
M1		1		98 GHz	-12.44 dB						
M2		1		59 GHz	-18.71 dB						
D3	M2	1	17.7	32 MHz	0.01 (HB					

Spectrum	Spe	ect <mark>ru</mark> m 2	× s	pectrum 3	XS	Spectrum -	4 🛛		
Ref Level 10									
Att TDF	25 dB	SWT	19 µs 👄 🗸	BW 1 MHz	Mode A	uto FFT			
●1Pk Max									
					м	1[1]			-7.59 dBm
0 dBm						-			25920 GHz
U UBIII					0	CC BW M1	1	17.7322	67732 MHz
-10 dBm			Mart	mm	man.	J.			
-10 UBIII			T¥ V		~~~~	₩ ²			
-20 dBm									
20 00			/						
-30 dBm									
						'			
-40 dBm	mont	mm					\		
man							han		
-50 dBm							0 ~ 10	mma	man and a second
-60 dBm									
-70 dBm									
00 10									
-80 dBm									
CF 5.785 GH	z		-	1001	pts			Span	50.0 MHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (26) of (47) KCTL

- 5 825 MHz

EBW

Spect	rum		Spectrum 2	×	Spectrum 3	X S	Spectrur	n 4	X		
Ref Le	vel 1				RBW 100 kHz						
Att TDF		29 (IB SWT 5	6.9 µs 👄	VBW 300 kHz	Mode A	uto FFT				
) 1Pk Vi	BW										
						D	3[1]				-0.49 d
0 dBm—											7.7320 MH
						M1 M	1[1]				-11.33 dBi 69980 GF
-10 dBrr					1					3.82	:09980 GF
		1 -17.3	30 dBm	Maunhur	wontermenting	antertaing	mannya	3			
-20 dBm											
-30 dBm				1							
-50 050	' I			1				N I			
-40 dBm	-			r				<u>\</u>			
		L. Marth	mphinker					- N -			
-50, dBr	1,000 ALANA	ller	mpdumuhub					1	Murrel	- the work to pretty a	4 marchallan
-60 dBm											
-70 dBm	_										
/0 400											
-80 dBrr			-								
CF 5.8	25 GH	z		1	1001	pts	1			Span	50.0 MHz
Marker											
Туре	Ref		X-valu		Y-value	Func	tion		Func	tion Result	t
M1		1	5.8269		-11.33 dBr				_		
M2	M2	1	5.8160 17.7		-18.34 dBr -0.49 d						

Spectrum	Spe	ect <mark>ru</mark> m 2	×	Spectrum	3 X 8	Spectrum -	4 X		
Ref Level 1 Att TDF	0.00 dBm 25 dB	Offset 1 SWT	.00 dB 👄 19 µs 👄	RBW 300 kH VBW 1 MH		uto FFT			·
1Pk Max						1[1]			-6.74 dBm 26020 GHz
0 dBm			- Aug	M1	o	CC BW		17.7322	67732 MH:
-20 dBm					<u> </u>				
-30 dBm									
-40 dBm	www.ww	mm							
-60 dBm							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mm
-70 dBm									
-80 dBm									
CF 5.825 GH	1-			100	1 pts			0	50.0 MHz

Report No.: KR18-SRF0053-A Page (27) of (47)

5.4 Peak Power Spectral Density

5.4.1 Regulation

According to \$15.407(a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximumConducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to §15.407(a) (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dBthat the directional gain of the antenna exceeds 6 dBi.

According to §15.407(a) (3) For the band 5.725-5.85 Gz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (28) of (47)

5.4.2 Measurement Procedure

These test measurement settings are specified in section F of 789033 D02 General UNII Test Procedures New Rules v01.

5.4.2.1 Maximum power spectral density (PSD)

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

- 2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3. Make the following adjustments to the peak value of the spectrum, if applicable:
- a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
- b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 d^B to the final result to compensate for the difference between linear averaging and power averaging.
- 4. The result is the Maximum PSD over 1 ^{Mz} reference bandwidth.
- 5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply: a) Set RBW ≥ 1/T, where T is defined in section II.B.I.a).
- c) Set VBW \geq 3 RBW.
- d) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- e) If measurement bandwidth of Maximum PSD is specified in 1 Mb, add 10log(1Mb/RBW) to the measured result, whereas RBW (< 1 Mb) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- f) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.
- Note: As a practical matter, it is recommended to use reduced RBW of 100 klz for the sections 5.c) and 5.d) above, since RBW=100 klz is available on nearly all spectrum analyzers.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A

Page (29) of (47)

5.4.3 Test Result

-Complied

- 5 150 Band

- 802.11ac VHT20

Frequency [₩½]	Measured PSD [dBm//₩]	Duty Factor [dB]	Result [dBm/₩z]	Limit [dBm/Mtz]	Margin [dB]
5 180	-4.04	0.01	-4.03	17.00	21.03
5 200	-4.81	0.01	-4.80	17.00	21.80
5 240	-5.78	0.01	-5.77	17.00	22.77

- 5 725 Band

- 802.11ac VHT20

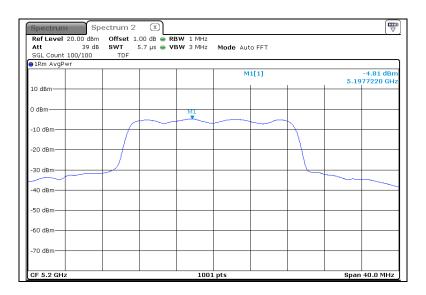
Frequency [Mb]	Measured PSD [dBm/500klz]	Duty Factor [dB]	Result [dBm/500k批]	Limit [dBm/500kl/z]	Margin [dB]
5 745	-12.38	0.01	-12.37	30.00	42.37
5 785	-12.48	0.01	-12.47	30.00	42.47
5 825	-11.76	0.01	-11.75	30.00	41.75

Note 1 : D.C.C.F(Duty cycle correction factor) = 10log(1/x), x = 0.997 Note 2 : Result = Measured PSD + D.C.C.F

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (30) of (47)

5.4.4 Test Plot

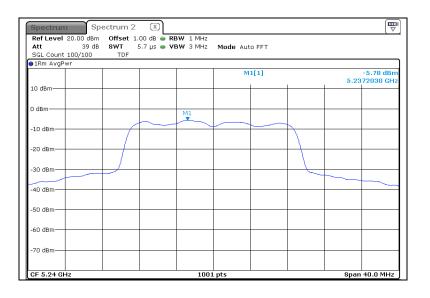
Figure 3. Plot of the Power Spectral Density


- 5 150 Band

802.11ac VHT20

5 180 Młz

5 200 Mtz



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

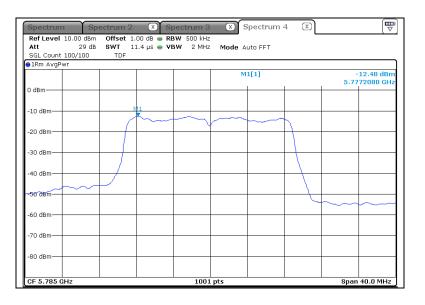
Page (31) of (47)

5 240 Mb

- 5 725 Band

802.11ac VHT20

5 745 Mb



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A

Page (32) of (47)

5 785 Mb

5 825 Mtz

Ref Level 10.0 Att SGL Count 100	29 dB			BW 500 kHz BW 2 MHz	Mode A	uto FFT	-		
1Rm AvgPwr									
					М	1[1]			-11.76 dBr 278370 GH
0 dBm									
10.10					M1				
-10 dBm			$\sim\sim$			~~			
-20 dBm							<u> </u> }		
-30 dBm									
-40 dBm		_/							
	~~~~								
-50 d8m								5~	
-60 dBm								Ŭ	
-70 dBm									
-80 dBm									



### 5.5 Spurious Emission, Band Edge And Restricted Bands

### 5.5.1 Regulation

According to 15.407(b)(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

According to \$15.407(b)(2) For transmitters operating in the 5.25-5.35 GHzband: All emissions outside of the 5.15-5.35 GHzband shall not exceed an e.i.r.p. of -27 dBm/Mb.

According to 15.407(b)(3) For transmitters operating in the 5.47-5.725 ^{GHz}band: All emissions outside of the 5.47-5.725 ^{GHz}band shall not exceed an e.i.r.p. of -27 dBm/MHz.

According to \$15.407(b)(4)(i) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

According to §15.407(b)(6) Unwanted emissions below 1 G must comply with the general field strength limits set forth in §15.209.

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 -1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

** The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 Mb are based on the average value of measured emissions.

According to §15.407(b)(7) The provisions of §15.205 apply to intentional radiators operating under this section. (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A Page (34) of (47)



According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.009 - 0.110\\ 0.495 - 0.505\\ 2.173 5 - 2.190 5\\ 4.125 - 4.128\\ 4.177 25 - 4.177 75\\ 4.207 25 - 4.207 75\\ 6.215 - 6.218\\ 6.267 75 - 6.268 25\\ 6.311 75 - 6.312 25\\ 8.291 - 8.294\\ 8.362 - 8.366\\ 8.376 25 - 8.386 75\\ 8.414 25 - 8.414 75\\ 12.29 - 12.293\\ 12.519 75 - 12.520 25\\ 12.576 75 - 12.577 25\\ 13.36 - 13.41\\ \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.694  75 - 16.695  25 \\ 16.804  25 - 16.804  75 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.524  75 - 156.525 \\ 25 \\ 156.7 - 156.9 \\ 162.012  5 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \\ 322 - 335.4 \end{array}$	$\begin{array}{c} 399.9 - 410 \\ 608 - 614 \\ 960 - 1 240 \\ 1 300 - 1 427 \\ 1 435 - 1 626.5 \\ 1 645.5 - 1 646.5 \\ 1 660 - 1 710 \\ 1 718.8 - 1 722.2 \\ 2 200 - 2 300 \\ 2 310 - 2 390 \\ 2 483.5 - 2 500 \\ 2 690 - 2 900 \\ 3 260 - 3 267 \\ 3 332 - 3 339 \\ 3 345.8 - 3 358 \\ 3 600 - 4 400 \end{array}$	$\begin{array}{c} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \\ Above 38.6 \end{array}$

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr



### 5.5.2 Measurement Procedure

These test measurement settings are specified in section G of 789033 D02 General UNII Test Procedures New Rules v01.

For all radiated emissions tests, measurements must correspond to the direction of maximum emission level for each measured emission (see ANSI C63.10 for guidance).

### 5.5.2.1 Unwanted Emission Measurement

5.5.2.1.1 1. Unwanted Emissions in the Restricted Bands

- a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1 000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements Below 1 000 MHz."
- c) At frequencies above 1 000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.
- d) For conducted measurements above 1 000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172): (i) E[dBµV/m] = EIRP[dBm] 20 log (d[meters]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules; (ii) E[dBµV/m] = EIRP[dBm] + 95.2, for d = 3 meters.
- e) For conducted measurements below 1 000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1 000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.



- 5.5.2.1.1 2. Unwanted Emissions that fall Outside of the Restricted Bands
  - a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
  - b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements Below 1000 MHz."
  - c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1 000 MHz."
  - (i) Section 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
  - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.
  - d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
  - (i)  $EIRP = ((E \times d)^2) / 30$  where:
    - E is the field strength in V/m;
    - d is the measurement distance in meters;
    - EIRP is the equivalent isotropically radiated power in watts.
  - (ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = E[dBµV/m] + 20 log (d[meters]) 104.77
  - (iii) Or, if d is 3 meters: EIRP[dBm] = E[dB $\mu$ V/m] 95.2

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (37) of (47)



### 5.5.2.2 Spurious Radiated Emissions:

- 1. The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna, and from

1 000  ${\rm Mz}$  to 40 000  ${\rm Mz}$  using the horn antenna.

- 4. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 5. The 0.8m height is measurement for below 1  ${\rm Ghz}$  and 1.5m is for above 1  ${\rm Ghz}$  measurement.

Note

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 klz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 Glz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr



# 5.5.3 Test Result

### -complied

- 1. Band-edge & Conducted Spurious Emissions was shown in figure 3. Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Measured value of the Field strength of spurious Emissions (Radiated)
- 3. It tested x,y and z 3 axis each, mentioned only worst case data at this report.

#### - Below 1 🕀 data (Worst-case: 5 150 Band 802.11ac VHT20)

#### 802.11ac VHT20_Lowest Channel (5 180 Mb)

				•	,					
Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB <b>(</b> µV)]	[dB]	[dB]	[dB]	[dB]	[dB <b>(</b> µN/m)]	[dB <b>(</b> µN/m)]	[dB]
Quasi-Pea	ak DATA. E	missio	ons below	30 M±						
4.42	9	V	41.20	1.00	-32.69	19.69	-12.00	29.20	69.50	40.30
23.53	9	Н	43.10	1.45	-32.68	19.23	-12.00	31.10	69.50	38.40
Quasi-Pea	ak DATA. E	missio	ons below	1 GHz						
45.04	120	V	38.49	1.37	-31.52	16.38	-13.77	24.72	40.00	15.28
120.09	120	Н	51.98	2.36	-37.62	18.30	-16.96	35.02	43.50	8.48
191.99	120	Н	52.01	3.05	-34.27	15.26	-15.96	36.05	43.50	7.45
203.99	120	Н	48.86	3.15	-33.80	15.53	-15.12	33.74	43.50	9.76
288.26	120	Н	47.50	3.79	-35.15	18.97	-12.39	35.11	46.00	10.89
300.27	120	Н	49.99	3.88	-35.16	19.21	-12.07	37.92	46.00	8.08

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

NOTE 2. Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (39) of (47) KCTL

#### - Above 1 🕀 data

- 5 150 Band

#### 802.11ac VHT20_Lowest channel (5 180 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB( µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB <b>(</b> µN/m <b>)</b> ]	dB <b>(</b> µN/m)]	[dB]
Peak DATA. Emissions above 1 🕮											
1 199.72 ¹⁾	1 000	V	52.52	2.66	-38.86	24.60	-11.60	-	40.92	74.00	33.08
1 593.51 ¹⁾	1 000	V	58.23	3.04	-38.99	26.18	-9.77	-	48.46	74.00	25.54
2 522.64	1 000	Н	59.21	3.80	-38.33	28.79	-5.74	-	53.48	68.20	14.72
5 149.93 ¹⁾	1 000	Н	57.67	5.57	-40.26	33.12	-1.57	-	56.09	74.00	17.91
8 982.56	1 000	V	60.79	7.59	-60.97	37.68	-15.70	-	45.09	68.20	23.11
17 271.19	1 000	Н	57.66	10.55	-56.88	41.93	-4.40	-	53.26	68.20	14.94
21 966.88	1 000	V	47.05	12.10	-49.61	45.10	7.59	-	54.64	68.20	13.56
34 682.19	1 000	Н	45.69	15.50	-49.60	49.90	15.80	-	61.49	68.20	6.71
Average D	OATA. Emis	sions	above 1	GHz							
1 199.72 ¹⁾	1 000	V	36.75	2.66	-38.86	24.60	-11.60	-	25.15	54.00	28.85
1 593.51 ¹⁾	1 000	V	43.70	3.04	-38.98	26.17	-9.77	-	33.93	54.00	20.07
5 149.93 ¹⁾	1 000	Н	41.32	5.57	-40.26	33.12	-1.57	-	39.75	54.00	14.25
1) Poetri	cted hand										

¹⁾ Restricted band.

### 802.11ac VHT20_Middle channel (5 200 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB( <i>µN</i> )]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB <b>(</b> µN/m <b>)</b> ]	dB <b>(</b> µN/m <b>)]</b>	[dB]
Peak DAT	A. Emissio	ns abo	ove 1 🕮								
1 597.89 ¹⁾	1 000	V	53.36	3.04	-38.96	26.20	-9.72	-	43.63	74.00	30.37
4 489.06	1 000	V	47.72	5.12	-39.99	32.64	-2.23	-	45.49	68.20	22.71
9 868.06	1 000	Н	61.06	7.87	-58.66	37.87	-12.92	-	48.15	68.20	20.05
17 659.67	1 000	V	58.91	10.73	-59.56	44.26	-4.57	-	54.34	68.20	13.86
21 500.75	1 000	V	47.81	11.90	-49.39	45.00	7.51	-	55.33	68.20	12.87
34 850.63	1 000	V	46.42	15.60	-49.71	50.10	15.99	-	62.41	68.20	5.79
Average DATA. Emissions above 1 🕀											
1 597.89 ¹⁾	1 000	V	42.20	3.04	-38.95	26.19	-9.72	-	32.48	54.00	21.52
1) Deetri	atad band										

¹⁾ Restricted band.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR18-SRF0053-A



Page (40) of (47)

#### 802.11ac VHT20_Highest channel (5 240 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB( <i>µ</i> N)]	[dB]	[dB]	[dB]	[dB]	[dB]	dB <b>(</b> µN/m)]	dB <b>(</b>	[dB]
Peak DATA. Emissions above 1 🕮											
2 063.56	1 000	V	48.12	3.47	-38.27	27.92	-6.88	-	41.24	68.20	26.96
5 371.91 ¹⁾	1 000	V	49.00	5.71	-40.37	33.46	-1.20	-	47.81	74.00	26.19
9 625.13	1 000	V	61.93	7.79	-59.24	37.83	-13.62	-	48.31	68.20	19.89
16 549.20	1 000	V	58.42	10.29	-53.81	39.04	-4.48	-	53.93	68.20	14.27
21 680.88	1 000	V	47.69	12.00	-49.46	45.00	7.54	-	55.23	68.20	12.97
34 909.06	1 000	V	46.67	15.60	-49.65	50.10	16.05	-	62.72	68.20	5.48
Average DATA. Emissions above 1 础											
5 371.91 ¹⁾	1 000	V	39.10	5.71	-40.37	33.46	-1.20	-	37.90	54.00	16.10
1) Postri	rted hand										

¹⁾ Restricted band.

- 5 745 Band

#### 802.11ac VHT20_Lowest channel (5 745 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	dB <b>(</b> µV/m <b>)</b> ]	dB <b>(</b>	[dB]
Peak DAT	A. Emissio	ns abo	ove 1 GHz								
2 441.52	1 000	V	56.12	3.74	-38.01	28.64	-5.63	-	50.49	68.20	23.51
8 968.19	1 000	V	62.03	7.58	-60.98	37.67	-15.73	-	46.30	68.20	21.90
16 549.20	1 000	V	58.52	10.29	-53.81	39.04	-4.48	-	54.04	68.20	14.16
21 913.25	1 000	Н	46.67	12.10	-49.52	45.00	7.58	-	54.25	68.20	13.95
34 628.56	1 000	V	46.35	15.40	-49.56	49.90	15.74	-	62.09	68.20	6.11

#### 802.11ac VHT20_Lowest channel (5 745 Mz)_Emission Mask

Frequency	Receiver Bandwidth [kltz]	Pol. [V/H]	Reading [dB(µN)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	DCCF [dB]	Result [dB( <i>µ</i> //m)]	<b>Limit</b> [dB <b>(</b> μV/m)]	Margin [dB]
Peak DAT	A. Emissio	ns abo									
5 664.52	1 000	V	48.20	5.89	-40.55	33.90	-0.76	-	47.44	78.94	31.50
5 706.28	1 000	Н	49.79	5.92	-40.18	33.96	-0.30	-	49.49	106.96	57.47
5 717.45	1 000	H	51.26	5.92	-40.29	33.98	-0.39	-	50.87	110.09	59.22
5 724.33	1 000	H	62.00	5.93	-40.37	33.99	-0.45	-	61.56	120.67	59.11
5 853.58	1 000	V	46.34	6.01	-40.92	34.18	-0.73	-	45.61	114.04	68.43
5 863.03	1 000	H	48.12	6.01	-40.87	34.19	-0.67	-	47.45	108.55	61.10
5 874.72	1 000	Н	47.99	6.02	-40.83	34.21	-0.60	-	47.39	105.28	57.88
5 907.89	1 000	V	49.65	6.04	-40.69	34.26	-0.39	-	49.26	80.86	31.60

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A



Page (41) of (47)

#### 802.11ac VHT20_Middle channel (5 785 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB( µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	dB <b>(</b> µV/m)]	dB <b>(</b> µN/m <b>)]</b>	[dB]
Peak DAT	A. Emissio	ns abo	ove 1 GHz								
2 438.59	1 000	V	61.75	3.74	-37.99	28.63	-5.62	-	56.13	68.20	12.07
4 482.88	1 000	Н	48.42	5.12	-39.95	32.64	-2.19	-	46.23	68.20	21.97
8 925.42	1 000	V	61.92	7.56	-61.01	37.63	-15.82	-	46.10	68.20	22.10
16 741.83	1 000	V	58.41	10.34	-54.15	39.58	-4.23	-	54.18	68.20	14.02
21 532.38	1 000	V	47.59	12.00	-49.48	45.00	7.52	-	55.11	68.20	13.09
34 990.88	1 000	V	45.13	15.70	-49.76	50.20	16.14	-	61.28	68.20	6.92

#### 802.11ac VHT20_Middle channel (5 785 Mz)_Emission Mask

Frequency [Mtz]	Receiver Bandwidth [㎞]	Pol. [V/H]	Reading [dB(µN)]	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	DCCF [dB]	Result [dB( <i>µ</i> //m)]	Limit [dB <b>(</b>	Margin [dB]
Peak DAT	A. Emissio	ns abo	ove 1 🕮								
5 674.48	1 000	Н	49.60	5.90	-40.43	33.91	-0.62	-	48.98	86.32	37.33
5 708.69	1 000	Н	48.04	5.92	-40.20	33.96	-0.32	-	47.72	107.63	59.91
5 716.77	1 000	Н	47.80	5.92	-40.28	33.98	-0.38	-	47.41	109.89	62.48
5 724.50	1 000	Н	48.65	5.93	-40.37	33.99	-0.45	-	48.20	121.06	72.86
5 852.89	1 000	V	47.91	6.01	-40.92	34.18	-0.73	-	47.18	115.61	68.43
5 861.83	1 000	V	49.27	6.01	-40.88	34.19	-0.68	-	48.59	108.89	60.29
5 868.70	1 000	Н	49.09	6.02	-40.85	34.20	-0.63	-	48.46	106.96	58.51
5 908.58	1 000	V	49.67	6.04	-40.69	34.26	-0.39	-	49.28	80.35	31.07

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A



Page (42) of (47)

#### 802.11ac VHT20_Highest channel (5 825 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB( <i>µ</i> N)]	[dB]	[dB]	[dB]	[dB]	[dB]	dB <b>(</b> µV/m)]	dB <b>(</b> µN/m <b>)]</b>	[dB]
Peak DAT	A. Emissio	ns abo	ove 1 🕮								
2 438.59	1 000	V	59.09	3.74	-37.99	28.63	-5.62	-	53.47	68.20	14.73
8 954.53	1 000	Н	62.54	7.57	-60.98	37.65	-15.76	-	46.78	68.20	21.42
16 651.98	1 000	V	57.85	10.32	-54.00	39.33	-4.35	-	53.50	68.20	14.70
21 867.19	1 000	V	47.49	12.10	-49.53	45.00	7.57	-	55.06	68.20	13.14
34 508.25	1 000	Н	46.70	15.30	-49.49	49.80	15.61	-	62.31	68.20	5.89

#### 802.11ac VHT20_Highest channel (5 825 Mz)_Emission Mask

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB <b>(</b> µV/m <b>)</b> ]	dB <b>(</b> µN/m)]	[dB]
Peak DATA. Emissions above 1 🕸											
5 660.91	1 000	н	48.11	5.89	-40.59	33.89	-0.81	-	47.30	76.27	28.97
5 706.80	1 000	Н	48.47	5.92	-40.18	33.96	-0.30	-	48.17	107.10	58.93
5 714.70	1 000	Н	48.78	5.92	-40.26	33.97	-0.37	-	48.41	109.32	60.90
5 723.47	1 000	Н	47.74	5.93	-40.36	33.99	-0.44	-	47.31	118.71	71.40
5 853.41	1 000	V	47.26	6.01	-40.92	34.18	-0.73	-	46.53	114.43	67.91
5 863.38	1 000	Н	48.56	6.01	-40.88	34.20	-0.67	-	47.89	108.46	60.56
5 873.52	1 000	V	48.18	6.02	-40.83	34.21	-0.60	-	47.57	105.62	58.04
5 908.23	1 000	V	50.17	6.04	-40.69	34.26	-0.39	-	49.78	80.61	30.82



# 5.6 Frequency Stability

### 5.6.1 Regulation

According to §15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

### 5.6.2 Measurement Procedure

The frequency stability of the carrier frequency of the intentional radiator shall be maintained all conditions of normal operation as specified in the users manual. The frequency stability shall be maintained over a temperature variation of specified in the users manual at normal supply voltage, and over a variation in the primary supply voltage of specified in the users manual of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

- 1. The EUT was placed inside the environmental test chamber.
- 2. The temperature was incremented by 10 °C intervals from lowest temperature.
- 3. Each increase step of temperature measured the frequency.
- 4. The test temperature was set 20°C and the supply voltage was then adjusted on the EUT from 85 % to 115% and the frequency record.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0053-A Page (44) of (47)



### 5.6.3 Test Result

#### -Complied

#### - 5 150 Band

#### -5 180 M±

Voltage [%]	Power [V]	Temp. [°C]	Reading Frequency [Hz]	Frequency Error [Hz]	Frequency Error [%]
		-20	5 180 027 360	27 360	0.000 5
		-10	5 180 031 683	31 683	0.000 6
		0	5 180 026 208	26 208	0.000 5
		10	5 180 009 215	9 215	0.000 2
100	3.70	20	5 179 998 824	-1 176	0.000 0
100	3.70	30	5 179 972 285	-27 715	-0.000 5
		40	5 179 966 816	-33 184	-0.000 6
		50	5 179 951 841	-48 159	-0.000 9
		60	5 179 948 180	-51 820	-0.001 0
		23	5 179 966 645	-33 355	-0.000 6
85	3.15	23	5 179 967 668	-32 332	-0.000 6
115	4.26	23	5 179 965 310	-34 690	-0.000 7

### - 5 725 Band

#### -5 745 Mb

Voltage [%]	Power [V]	Temp. [°C]	Reading Frequency [Hz]	Frequency Error [Hz]	Frequency Error [%]
		-20	5 745 028 451	28 451	0.000 5
		-10	5 745 028 589	28 589	0.000 5
		0	5 745 018 088	18 088	0.000 3
		10	5 745 004 711	4 711	0.000 1
100	2.70	20	5 744 982 324	-17 676	-0.000 3
100	3.70	30	5 744 966 709	-33 291	-0.000 6
		40	5 744 951 975	-48 025	-0.000 8
		50	5 744 945 149	-54 851	-0.001 0
		60	5 744 939 493	-60 507	-0.001 1
		23	5 744 957 671	-42 329	-0.000 7
85	3.15	23	5 744 957 718	-42 282	-0.000 7
115	4.26	23	5 744 954 046	-45 954	-0.000 8



### 5.7 Conducted Emission

### 5.7.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted I	imit (dBµV)
Frequency of emission (Mb)	Qausi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

* Decreases with the logarithm of the frequency.

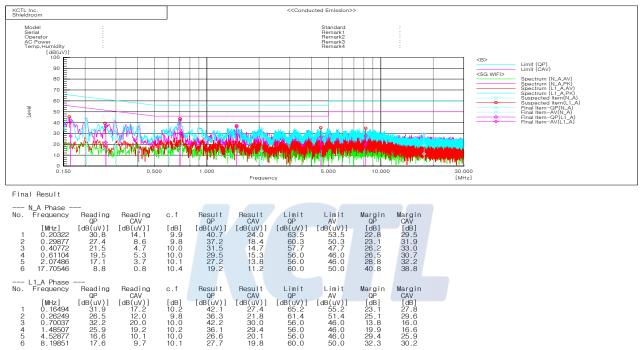
According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

### 5.7.2 Measurement Procedure

- 1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- Each current-carrying conductor of the EUT power cord was individually connected through a 50Ω/50µH LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mz to 30 Mz.
- 5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 klb or to QUASI-PEAK and AVERAGE within a bandwidth of 9 klb. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR18-SRF0053-A Page (46) of (47)




### 5.7.3 Test Result

- Complied

Figure 4. plot of Conducted Emission

#### - Conducted worst-case data : 802.11ac VHT20_Lowest Chanel (5 180 Mb)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0053-A Page (47) of (47)



### 6. Test equipment used for test

	Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
	Spectrum Analyzer	R & S	FSV30	100807	18.08.01
	Spectrum Analyzer	R & S	FSV40	100988	19.01.05
	Wideband Power Sensor	R & S	NRP-Z81	102398	19.01.31
	DC Power Supply	AGILENT	E3632A	MY40016393	18.12.21
	Temp & Humid Chamber	ESPEC CORP.	SH-641	92005476	18.08.01
•	ATTENUATOR	R & S	DNF Dämpfungsglied 10 dB in N-50 Ohm	31212	18.05.15
	EMI TEST RECEIVER	R & S	ESCI	100732	18.08.24
	Bi-Log Antenna	SCHWARZBECK	VULB 9163	552	18.05.10
	Amplifier	SONOMA INSTRUMENT	310N	186280	19.04.05
	Amplifier	SONOMA INSTRUMENT	310N	284608	18.08.24
	ATTENUATOR	Weinschel ENGINEERING	1	AE7348	18.05.15
	Horn antenna	ETS.lindgren	3116	00086632	19.04.20
	Horn antenna	ETS.lindgren	3117	155787	18.10.20
	AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800- 22-10P	2003683	18.06.12
	AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33- 8P	2000997	18.08.09
	LOOP Antenna	R & S	HFH2-Z2	892665/035	19.01.25
	Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
	Turn Table	Innco Systems	DT2000	79	-
	Antenna Mast	Innco Systems	MA4000-EP	303	-
	Turn Table	Innco Systems	DT2000	79	-
	Highpass Filter	WT	WT-A1699-HS	WT160411002	18.05.15
	Vector Signal Generator	R & S	SMBV100A	257566	19.01.05
	Signal Generator	R & S	SMR40	100007	18.05.15
	Cable Assembly	RadiAll	2301761768000PJ	17.30.38	-
	Cable Assembly	gigalane	RG-400	-	-
	Cable Assembly	HUER+SUHNER	SUCOFLEX 104	MY4342/4	-