

Page 26 of 57

Report No.: KS2101S0424E03

Page 29 of 57

Report No.: KS2101S0424E03

Page 30 of 57

Report No.: KS2101S0424E03

Page 31 of 57

Report No.: KS2101S0424E03

3.5. Frequency Stability Measurement

Limit

FCC Part 15 Subpart C(15.407)									
Test Item	Limit	Frequency Range(MHz)							
	Specified in the user's	5150~5250							
	manual, the transmitter center frequency tolerance shall be	5250~5350							
Peak Excursion Measurement	±20 ppm maximum for the 5 GHz band (IEEE 802.11n	5470~5725							
	specification)	5725~5850							

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- (6) Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- (7) Turn EUT off and set the chamber temperature to -20℃. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- (8)Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Test Mode

Please refer to the clause 2.2.

Test Result

Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation 5180MHz which it is worse case, so only show the test data for worse case.

Band U-NII-1						
801.11a	5180 MHz					
Voltage vs. Free	quency Stability					
Voltage (V)	Measurement Frequency (Hz)					
3.7	-7000					
3.33	-7000					
4.07	-7000					
Max. Deviation (Hz)	0					
Max. Deviation (ppm)	0					
Limit (ppm)	20					
Result	Pass					
Temperature vs. F	requency Stability					
Temperature (°C)	Measurement Frequency (Hz)					
-30	-7000					
-20	-7000					
-10	-7000					
0	-7000					
10	-7000					
20	-7000					
30	-8000					
40	-7000					
50	-8000					
Max. Deviation (Hz)	1000					
Max. Deviation (ppm)	0.193051					
Limit (ppm)	20					
Result	Pass					

3.6. Band Edge Emissions(Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.407(b): Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
	10(Note 2)	105.2
5725~5850	15.6(Note 2)	110.8
	27(Note 2)	122.2

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$1000000\sqrt{30P}$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

* Increase/Decreases with the linearly of the frequency.

For emission above 1GHz and in restricted band, according to FCC KDB 789033 D02 General UNII Test Procedure, all emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit. $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz RMS detector for Average value.

Test Mode

Please refer to the clause 2.2.

Test Results

Note:

- 1.Measurement = Reading level + Correct Factor
- Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- 2.Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation which it is worse case for above 1GHz, so only show the test data for worse case.

	Over	Limit	ment	Factor	Level	Freq.	No. Mk.
Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB/m)	(dBuV)	MHz	
peak	28.83	68.20	39.37	-5.30	44.67	5090.852	1
peak	28.50	68.20	39.70	-5.28	44.98	5122.052	2
peak	25.39	68.20	42.81	-5.25	48.06	5150.000	3 *

3.7. Radiated Spurious Emissions

Limit

FCC CFR Title 47 Part 15 Subpart E Section 15.407(b):

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Mete	rs(at 3m)		
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)= 20log Emission Level (uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
5725-5950	10(Note 2)	105.2
5725~5650	15.6(Note 2)	110.8
	27(Note 2)	122.2

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{100000}$

$$\frac{1000000\sqrt{30P}}{2}$$
 uV/m, where P is the eirp (Watts)

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

Test Mode

Please refer to the clause 2.2.

Test Result

9 KHz~30 MHz and 18GHz~40GHz

From 9 KHz~30 MHz and 18GHz~40GHz: Conclusion: PASS

Note:

1) Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation 5220MHz which it is worse case for 30MHz-1GHz , so only show the test data for worse case.
- 6) Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation which it is worse case for above 1GHz, so only show the test data for worse case.

30MHz-1GHz

	5-32/15/18-1	52-542 - 240 - 140	1-245 62	State and the state of the state	1. 1.	and the second second		11 - 1 - 1 - 1 - 1 - 1 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 5	the states of the second	an shall bella	
Test	Volta	ge:	DC	3.7V			har				
Ant. Pol. Horizontal											
Test	Mode) :	ТΧ	802.11a l	Mod	e 5220MHz	z (U-NII-1)				
Rem	ark:		Onl	y worse o	case	is reported	l				
80.0	dBu∀/ı	n									
70											
60										10	
								FCC Part 150	(30MHz-1GHz	L C	
50									Margin -6		
40											
30											
								للسب الأرجا	wonterman	Marketter Contraction	
20		LAND REALING			2		a sundaling any miller	What shall be a start of the st			
10	all all and the second		mar has	Marmon Marker Mark	Rendelin	Man Parante Provident					
0.0											
30.0	000		60	10)0	(MHz)		500		1000.0	
No.	Mk.	Fre	eq.	Readin Leve	g	Correct Factor	Measure- ment	Limit	Over		
		MH	z	(dBuV)	6	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1		48.31	47	25.94		-10.41	15.53	40.00	-24.47	QP	
2		102.89	91	25.49	1	-12.80	12.69	43.50	-30.81	QP	
3		276.22	203	25.78	-	-10.93	14.85	46.00	-31.15	QP	
4		461.05	502	26.13	1	-7.10	19.03	46.00	-26.97	QP	
5		607.99	98	27.89	1	-4.24	23.65	46.00	-22.35	QP	
6	*	735 78	202	27 53		-3.60	23.03	46.00	-22.07	OP	

Measurement = Reading Level+ Correct Factor

KSIGN

Test V	oltage:	DC 3.	.7V			V.Y					
Ant. P	Ant. Pol. Vertical										
Test M											
Remar	k:	Only	worse c	ase is reporte	d						
80.0 dl	3uV/m										
60						FCC Part 15C	(30MHz-1GHz)				
50							Margin -6.d				
40											
30							0.03				
20						myungu	- Saradadadada	wither			
10	numeroundstrat	hunder	and a market water	20 July mark to plude war	how alter dear and and	wheel with the second					
0.0				1.							
30.000		60	100) (MHz)		500		1000.0			
No. N	/k. Fre	۶ ۹.	Reading Level	g Correct Factor	Measure- ment	Limit	Over				
	MH	z	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector			
1	48.55	25	25.32	-10.40	14.92	40.00	-25.08	QP			
2	66.49	89	28.24	-13.73	14.51	40.00	-25.49	QP			
3	112.64	27	25.58	-13.69	11.89	43.50	-31.61	QP			
4	228.89	14	25.72	-12.18	13.54	46.00	-32.46	QP			
5	587.66	571	27.74	-4.54	23.20	46.00	-22.80	QP			
6 *	766.86	35	27.67	-3.38	24.29	46.00	-21.71	QP			

Measurement = Reading Level+ Correct Factor

Adobe 1GHz

Test	St Voltage: DC 3.7V										
Ant.	Pol.	Horizontal									
Test	Mode:	ode: TX 802.11a Mode 5180MHz									
Rem	ark:	No report for the emission which more than 10 dB below the prescribed limit.									
80.0	dBuV/m										
-						FC	C Part 15C (PK)				
70 -								_			
БО —						FC	C Part 15C (AV)				
50					4	5 X		X CWM neak			
				2 3	Î	who we were	nontranamenta	poor			
40 -					when the ato a wind with	Man Manual					
30	a constabilit		" and when the yearth	And astrony Welling and							
90 w	Verse and a state of the second s	And when a solution of the sol	and a star star and								
20											
10.0											
1000	0.000		30	00.000 (MHz)	6000.000	9000.000		18000.000			
			-								
No	Mk	Fred	Reading	Correct	Measure-	Limit	Over				
140.	WIX.	Mul-		racio		(-1D)//)		Detector			
		MHZ	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector			
1	315	50.500	47.68	-10.31	37.37	74.00	36.63	peak			
2	380	8.400	49.21	-8.91	40.30	74.00	33.70	peak			
3	447	4.800	47.61	-6.84	40.77	74.00	33.23	peak			
4	517	6.900	53.62	-5.23	48.39	74.00	25.61	peak			
5	1035	6.800	45.71	4.68	50.39	74.00	23.61	peak			
6	* 1552	29.900	40.11	12.08	52.19	74.00	21.81	peak			

Measurement = Reading level + Correct Factor

Page 47 of 57

Test Voltage: DC 3.7V											
Ant.	Pol.	Vertical									
Test	Mode	:	TX	802.11a Mo	de 518	30MHz					
Rem	nark:		No pres	report for th scribed limit	e emis	sion w	hich more	e than 10	dB b	elow the	
80.0 dBuV/m											
-						_			FC	C Part 15C (PK)
70											
60									FC	C Part 15C (AV	
50						Ş	4 ×		5X	methosther	X Why how A peak
40					1 X	Adams a	with how when	futurent	harren	weaker ()	
30	hered we have a state of the second state of t	mannahana	nillaplation.	in manual and a second	Mundulawart	yman					
20											
10											
0.0								2 8 S			
100	0.000			30	000.000	(MHz)	6000.0	00 90	00.000		18000.000
				Reading	Cor	rect	Measur	e-			
No	. Mk.	Fre	q.	Level	Fa	ctor	ment	Lim	nit	Over	
		MH	Z	(dBuV)	(dl	3/m)	(dBuV/m) <mark>(</mark> dBu\	//m)	(dB)	Detector
1		3480.3	800	47.09	-9.	71	37.38	74.0	00	36.62	peak
2		4474.8	800	51.98	-6.	84	45.14	74.0	00	28.86	peak
3		4809.7	00	49.08	-5.	91	43.17	74.0	00	30.83	peak
4		5176.9	000	55.23	-5.	23	50.00	74.0	00	24.00	peak
5	i 1	0355.1	00	46.72	4.0	68	51.40	74.0	00	22.60	peak
6	* 1	5541.8	00	39.52	12.	.10	51.62	74.(00	22.38	peak

Measurement = Reading level + Correct Factor

Test Voltage	: DC	3.7V			all the second							
Ant. Pol.	Hor	Horizontal										
Test Mode:	ТХ	802.11a Mo	de 5220MHz	2								
Remark:	No pre	report for th scribed limit	e emission v	which more th	nan 10 dB	below the						
80.0 dBuV/m												
70					F	CC Part 15C (PI	9					
60						CC Part 15C (AV	0					
50				4 X	×	La Jah Nerlandian	K X ₩₩ ^{₩₩₩} Peak					
40			2 3 X X	warden Have a president works	and the survey when	Annua.						
30 ve Happele water to MA	desperied and the second below	Hundhamananana	Manadella									
20												
10												
0.0						-	10000 000					
1000.000		JE	JUU.UUU (MHZ)	6000.000	9000.000	U	18000.000					
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over						
	MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector					
1 31	47.100	47.42	-10.32	37.10	74.00	36.90	peak					
2 38	310.100	49.75	-8.90	40.85	74.00	33.15	peak					
3 44	73.100	48.85	-6.85	42.00	74.00	32.00	peak					
4 52	217.700	55.95	-5.19	50.76	74.00	23.24	peak					
5 104	36 700	46.67	4 81	51 48	74 00	22 52	peak					

40.01

15652.300

6 *

KSIGN(Guangdong) Testing Co., Ltd.

12.22

74.00

52.23

21.77

peak

Test Voltage:		DC	DC 3.7V								
Ant. Pol.		Vert	Vertical								
Test Mode:		ТХ	TX 802.11a Mode 5220MHz								
Remark:			No pres	No report for the emission which more than 10 dB below the prescribed limit.							
80.0	dBu	V/m			Ĩ						
						_		- 1	FCC Part 15C (PK	1	
70	<u>.,</u>										
C0											
60								ļ	CC Part 15C (AV) ₆	
50	-					2	x		s an Mark.	X July Muth peak	
40						, ×		and when any where	wither with the second		
40					1	Lubar	Marchanderstand				
30	whohow	unical company and a second	lenderet states and	he share a share with	hy Wrenwind						
20											
10	3										
0.0											
10	00.000				3000.000	(MHz)	6000.000	9000.00	0	18000.000	
				Destin	0						
No	м	k Ere	Da	Reading		rect	Measure-	Limit	Over		
140		K. 1 K	· 4 ·	Level	га	CLOI	ment			-	
		MH	z	(dBuV)	(dE	3/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1		3810.1	100	46.96	-8.	90	38.06	74.00	35.94	peak	
2	2	4474.8	300	52.43	-6.	84	45.59	74.00	28.41	peak	
3	5	4638.0	000	47.87	-6.	37	41.50	74.00	32.50	peak	
4		5221.	100	56.85	-5 .	19	51.66	74.00	22.34	peak	
5	; *	10438.4	100	48.22	4.8	31	53.03	74.00	20.97	peak	

39.85

12.24

52.09

74.00

21.91

peak

15667.600

6

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1		3811.800	47.71	-8.90	38.81	74.00	35.19	peak	
2		4471.400	47.27	-6.85	40.42	74.00	33.58	peak	
3	*	5239.800	57.33	-5.17	52.16	74.00	21.84	peak	
4		10479.200	46.54	4.89	51.43	74.00	22.57	peak	
5		13954.000	38.72	11.17	49.89	74.00	24.11	peak	
6		15716.900	39.38	12.30	51.68	74.00	22.32	peak	

Page 51 of 57

Test Voltage: Do		DC 3.7V							
Ant. Pol.	Ve	Vertical							
Test Mod	le: TX	TX 802.11a Mode 5240MHz							
Remark:	No	report for th scribed limit	e emiss	sion v	which more th	nan 10 dB	below the		
80.0 dBuV	/m			1					
70							FCC Part 15C (Pl	(<u>)</u>	
60							FCC Part 15C (AV	4	
50				3	*		X about the second second	X Mar ^A wW peak	
40			1	×	(hughe low moundary	when have have been	with the second s		
30 and hand and	hand	Manda and a stand and	whereaster						
20				1					
10									
0.0									
1000.000		3	000.000	(MHz)	6000.000	9000.0	00	18000.000	
No. Mk	. Freq.	Reading Level	Corre Fac	ect tor	Measure- ment	Limit	Over		
	MHz	(dBuV)	(dB/	m)	(dBuV/m)	(dBuV/m)) (dB)	Detector	
1	3478.600	46.36	-9.7	2	36.64	74.00	37.36	peak	
2	3811.800	48.93	-8.9	0	40.03	74.00	33.97	peak	
3	4476.500	50.67	-6.8-	4	43.83	74.00	30.17	peak	
4	5238.100	55.58	-5.1	7	50.41	74.00	23.59	peak	

Measurement = Reading level + Correct Factor

46.07

39.23

4.87

12.30

50.94

51.53

74.00

74.00

23.06

22.47

peak

peak

10474.100

15718.600

5

6 *

3.8. Conducted Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Conducted Emission Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

(1) *Decreasing linearly with logarithm of the frequency.

- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.2.

Test Results

Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation

5220MHz which it is worse case, so only show the test data for worse case.

Test Voltage: A		AC	120V/60 Hz	XXX				
Terminal:		Line		Y.		19 Section		
80.0	dBuV							
70								
60 -						FC	C Part 15 C (QP)
50 🕺	An				_	FCC	Part 15 C (AVG	
40 2	M	hours	5	- married and		_		
30	MM	- MARANA AND	11 When when here	Bally add to a	when prover and	MAAM	the way of the	
20	I WW			Shurth Manual Manual We	wat the the hard hard hard hard	Man 1	2. where	Wind the peak
10			1.11			W WANG	allow an work	AVG
0.0				(444-2)				20,000
0.15	0		Deadline	(MHZ)	Manager			30.000
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	39.44	10.82	50.26	65.79	-15.53	QP
2		0.1539	27.72	10.82	38.54	55.79	-17.25	AVG
3	C	0.1819	37.48	10.86	48.34	64.40	-16.06	QP
4		0.1819	21.91	10.86	32.77	54.40	-21.63	AVG
5		0.5977	30.71	10.90	41.61	56.00	-14.39	QP
6	*	0.5977	26.81	10.90	37.71	46.00	-8.29	AVG
7		1.2257	25.75	10.88	36.63	56.00	-19.37	QP
8	_	1.2257	14.13	10.88	25.01	46.00	-20.99	AVG
9		3.4100	21.58	10.93	32.51	56.00	-23.49	QP
10		3.4100	12.03	10.93	22.96	46.00	-23.04	AVG
11	1	10.6615	21.21	10.96	32.17	60.00	-27.83	QP
12	1	10.6615	4.54	10.96	15.50	50.00	-34.50	AVG

Remarks:

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit

Remarks:

1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

4. EUT TEST PHOTOS

Radiated Emissions (Above 1GHz)

Conducted Emission

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the document No.: KS2101S0424E01

******THE END******