## **FCC TEST REPORT**

For

Shenzhen Xunman Technology Co., Ltd

USB wifi adapter

Test Model: M-600Y

List Model No.: Please Refer to Page 6

Prepared for Shenzhen Xunman Technology Co., Ltd

Address 2/F., #3 Building, New Development Zone., Baishixia, Fuyong St.,

Baoan Dist., 518103, Shenzhen, China

Prepared by Shenzhen LCS Compliance Testing Laboratory Ltd.

Address 1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd., Bao'an

District, Shenzhen, Guangdong, China

Tel (+86)755-82591330 Fax (+86)755-82591332 Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample June 13, 2017

Number of tested samples

Serial number Prototype

Date of Test June 13, 2017~July 11, 2017

Date of Report July 11, 2017

## FCC TEST REPORT FCC CFR 47 PART 15 E(15.407): 2015

Report Reference No. .....: LCS170613065AE

Date of Issue .....: July 11, 2017

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address ...... : 1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd., Bao'an

District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards ■

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Shenzhen Xunman Technology Co., Ltd

Address ...... 2/F., #3 Building, New Development Zone., Baishixia, Fuyong St.,

Baoan Dist., 518103, Shenzhen, China

**Test Specification** 

Standard...... : FCC CFR 47 PART 15 E(15.407): 2015

Test Report Form No. .....: LCSEMC-1.0

TRF Originator .....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF .....: Dated 2011-03

### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description.....: USB wifi adapter

Trade Mark.....: N/A

Model/ Type reference .....: M-600Y

Ratings .....: DC 5V, 0.15A

Result .....: Positive

Compiled by:

Supervised by:

Approved by:

Linda He/ Administrators

linda He

Glin Lu/ Technique principal

Gavin Liang/ Manager

## **FCC -- TEST REPORT**

July 11, 2017 **Test Report No.:** LCS170613065AE Date of issue

EUT.....: : USB wifi adapter Type / Model..... : M-600Y Applicant..... : Shenzhen Xunman Technology Co., Ltd Address..... : 2/F., #3 Building, New Development Zone., Baishixia, Fuyong St., Baoan Dist., 518103, Shenzhen, China Telephone.....:: Fax..... Manufacturer..... : Shenzhen Xunman Technology Co., Ltd Address..... : 2/F., #3 Building, New Development Zone., Baishixia, Fuyong St., Baoan Dist., 518103, Shenzhen, China Telephone..... Fax..... : Shenzhen Xunman Technology Co., Ltd Factory..... Address..... : 2/F., #3 Building, New Development Zone., Baishixia, Fuyong St., Baoan Dist., 518103, Shenzhen, China Telephone.....: Fax.....

| Test Result: | Positive |
|--------------|----------|
|              |          |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

## **Revision History**

| Revision | Issue Date    | Revisions     | Revised By  |
|----------|---------------|---------------|-------------|
| 00       | July 11, 2017 | Initial Issue | Gavin Liang |
|          |               |               |             |
|          |               |               |             |

# **TABLE OF CONTENTS**

| 1. | GENERAL INFORMATION                             | 6  |
|----|-------------------------------------------------|----|
|    | 1.1. DESCRIPTION OF DEVICE (EUT)                | 6  |
|    | 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS | 6  |
|    | 1.3. External I/O Port                          |    |
|    | 1.4. DESCRIPTION OF TEST FACILITY               | 6  |
|    | 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY   |    |
|    | 1.6. MEASUREMENT UNCERTAINTY                    | 7  |
|    | 1.7. DESCRIPTION OF TEST MODES                  |    |
| 2. | TEST METHODOLOGY                                | 9  |
|    | 2.1. EUT CONFIGURATION                          | 9  |
|    | 2.2. EUT EXERCISE                               |    |
|    | 2.3. GENERAL TEST PROCEDURES                    | 9  |
| 3. | SYSTEM TEST CONFIGURATION                       | 10 |
| -  | 3.1. JUSTIFICATION                              |    |
|    | 3.2. EUT EXERCISE SOFTWARE                      |    |
|    | 3.3. SPECIAL ACCESSORIES                        |    |
|    | 3.4. BLOCK DIAGRAM/SCHEMATICS                   | 10 |
|    | 3.5. EQUIPMENT MODIFICATIONS                    |    |
|    | 3.6. Test Setup                                 | 10 |
| 4. | SUMMARY OF TEST RESULTS                         | 11 |
| 5. | TEST RESULT                                     | 12 |
|    | 5.1. On Time and Duty Cycle                     | 12 |
|    | 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT | 15 |
|    | 5.3. POWER SPECTRAL DENSITY MEASUREMENT         |    |
|    | 5.4. 26DB OCCUPIED BANDWIDTH MEASUREMENT        |    |
|    | 5.5. 6DB OCCUPIED BANDWIDTH MEASUREMENT         |    |
|    | 5.6. RADIATED EMISSIONS MEASUREMENT             |    |
|    | 5.8. POWER LINE CONDUCTED EMISSIONS             |    |
|    | 5.9. ANTENNA REQUIREMENTS                       |    |
| _  |                                                 |    |
|    | LIST OF MEASURING EQUIPMENTS                    |    |
| 7. | TEST SETUP PHOTOGRAPHS                          | 66 |
| 8. | EXTERIOR PHOTOGRAPHS OF THE EUT                 | 66 |
| 9. | INTERIOR PHOTOGRAPHS OF THE EUT                 | 66 |

## 1. GENERAL INFORMATION

## 1.1. Description of Device (EUT)

EUT : USB wifi adapter

Test Model : M-600Y

List Model No. : M-600L, M-600P, M-600V, M-600R

Model Declaration : PCB board, structure and internal of these model(s) are the same.

So no additional models were tested.

Power Supply : DC 5V, 0.15A

Frequency Range : 5180.00-5240.00MHz/5745.00-5825.00MHz

Channel Number : 9 Channels for 20MHz Bandwidth 4 channels for 40MHz Bandwidth

2 channels for 80MHz Bandwidth

Modulation Technology : 802.11a/n/ac: OFDM

Data Rates : 433Mb/s

Antenna Type And Gain : External Antenna, 2.0dBi (Max.)

### 1.2. Host System Configuration List and Details

| Manufacturer | Description   | Model     | Serial Number | Certificate |
|--------------|---------------|-----------|---------------|-------------|
| Lenovo       | PC            | B470      |               | DOC         |
| Lenovo       | AC/DC ADAPTER | ADP-90DDB |               | DOC         |

### 1.3. External I/O Port

| I/O Port Description | Quantity | Cable |
|----------------------|----------|-------|
| USB Port             | 1        | N/A   |

## 1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

## 1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

## 1.6. Measurement Uncertainty

| Test Item              |   | Frequency Range | Uncertainty | Note |
|------------------------|---|-----------------|-------------|------|
|                        |   | 9KHz~30MHz      | ±3.10dB     | (1)  |
|                        |   | 30MHz~200MHz    | ±2.96dB     | (1)  |
| Radiation Uncertainty  | : | 200MHz~1000MHz  | ±3.10dB     | (1)  |
|                        |   | 1GHz~26.5GHz    | ±3.80dB     | (1)  |
|                        |   | 26.5GHz~40GHz   | ±3.90dB     | (1)  |
| Conduction Uncertainty | : | 150kHz~30MHz    | ±1.63dB     | (1)  |
| Power disturbance      | : | 30MHz~300MHz    | ±1.60dB     | (1)  |

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11a mode (Low Channel).

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case;

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 80211.a mode(Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11a Mode: 6 Mbps, OFDM.
IEEE 802.11n HT20 Mode: MCS0, OFDM.
IEEE 802.11n HT40 Mode: MCS0, OFDM.
IEEE 802.11ac VHT20 Mode: MCS0, OFDM.
IEEE 802.11ac VHT40 Mode: MCS0, OFDM.
IEEE 802.11ac VHT80 Mode: MCS0, OFDM.

## Support Bandwidth For 5G WIFI Part:

| Bandwidth Mode      | 20MHz     | 40MHz     | 80MHz |
|---------------------|-----------|-----------|-------|
| IEEE 802.11a        |           |           |       |
| IEEE 802.11n HT20   | Ø         |           |       |
| IEEE 802.11n HT40   |           | $\square$ |       |
| IEEE 802.11ac VHT20 | $\square$ |           |       |
| IEEE 802.11ac VHT40 |           |           |       |
| IEEE 802.11ac VHT80 |           |           |       |

165

5825

Channel & Frequency:

| Frequency Band    | Channel No.                                                          | Frequency(MHz)      | Channel No. | Frequency(MHz) |  |  |  |
|-------------------|----------------------------------------------------------------------|---------------------|-------------|----------------|--|--|--|
|                   | 36                                                                   | 5180                | 44          | 5220           |  |  |  |
| 5180~5240MHz      | 38                                                                   | 5190                | 46          | 5230           |  |  |  |
| 3100~3240IVITZ    | 40                                                                   | 5200                | 48          | 5240           |  |  |  |
|                   | 42                                                                   | 5210                | /           | /              |  |  |  |
| For IEEE 802.11a/ | For IEEE 802.11a/n HT20/ac VHT20, Channel 36, 44 and 48 were tested. |                     |             |                |  |  |  |
| For IEEE 802.11n  | HT40/ac VHT40, C                                                     | Channel 38 and 46 w | ere tested. |                |  |  |  |
| For IEEE 802.11ad | VHT80, Channel                                                       | 42 was tested       |             |                |  |  |  |
|                   | 149                                                                  | 5745                | 155         | 5775           |  |  |  |
| 5745~5825MHz      | 151                                                                  | 5755                | 159         | 5795           |  |  |  |
| 3745~3623WITZ     | 153                                                                  | 5765                | 161         | 5805           |  |  |  |

157 5785 For IEEE 802.11a/n HT20/ac VHT20, Channel 149, 157 and 165 were tested.

For IEEE 802.11n HT40/ac VHT40, Channel 151 and 159 were tested.

For IEEE 802.11ac VHT80, Channel 155 was tested

## 2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

## 2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

### 2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure 789033 D02 General UNII Test Procedures New Rules are required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E

#### 2.3. General Test Procedures

#### 2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

#### 2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

## 3. SYSTEM TEST CONFIGURATION

### 3.1. Justification

The system was configured for testing in a continuous transmit condition. The duty cycle is 100% and the average correction factor is 0.

## 3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (MPTool-1.5.2) provided by application.

## 3.3. Special Accessories

| Manufacturer | Description   | Model     | Serial Number | Certificate |
|--------------|---------------|-----------|---------------|-------------|
| Lenovo       | PC            | B470      |               | DOC         |
| Lenovo       | AC/DC ADAPTER | ADP-90DDB |               | DOC         |

## 3.4. Block Diagram/Schematics

Please refer to the related document

## 3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

## 3.6. Test Setup

Please refer to the test setup photo.

## 4. SUMMARY OF TEST RESULTS

| Applied Standard: FCC Part 15 Subpart E |                                |           |  |  |  |
|-----------------------------------------|--------------------------------|-----------|--|--|--|
| FCC Rules                               | FCC Rules Description of Test  |           |  |  |  |
| §15.407(a)                              | Maximum Conducted Output Power | Compliant |  |  |  |
| §15.407(a)                              | Power Spectral Density         | Compliant |  |  |  |
| §15.407(e)                              | 6dB Bandwidth                  | Compliant |  |  |  |
| §15.407(b)                              | Radiated Emissions             | Compliant |  |  |  |
| §15.407(b)                              | Band edge Emissions            | Compliant |  |  |  |
| §15.407(g)                              | Frequency Stability            | Note      |  |  |  |
| §15.207(a)                              | Line Conducted Emissions       | Compliant |  |  |  |
| §15.203                                 | Antenna Requirements           | Compliant |  |  |  |
| §2.1093                                 | RF Exposure                    | Compliant |  |  |  |

Note: "N/A" is not applicable.

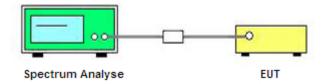
The customer declared frequency stability is better than 20ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

## 5. TEST RESULT

## 5.1. On Time and Duty Cycle

## 5.1.1. Standard Applicable

None; for reporting purpose only.


## 5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer.

## 5.1.3. Test Procedures

- 1. Set the centre frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.

## 5.1.4. Test Setup Layout




## 5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

### 5.1.6. Test result

| Mode                                                   | On Time<br>B<br>(ms) | Period<br>(ms) | Duty Cycle<br>x<br>(Linear) | Duty Cycle<br>(%) | Duty Cycle<br>Correction<br>Factor (dB) | 1/B<br>Minimum<br>VBW<br>(KHz) |
|--------------------------------------------------------|----------------------|----------------|-----------------------------|-------------------|-----------------------------------------|--------------------------------|
|                                                        |                      | U              | NII Band 1                  |                   |                                         | 7                              |
| IEEE 802.11a                                           | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11n HT20                                      | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11n HT40                                      | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT20                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT40                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT80                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| UNII Band 3                                            |                      |                |                             |                   |                                         |                                |
| IEEE 802.11a                                           | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11n HT20                                      | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11n HT40                                      | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT20                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT40                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| IEEE 802.11ac VHT80                                    | 5                    | 5              | 1                           | 100               | 0                                       | 0.01                           |
| Note: Duty Cycle Correction Factor=10log(1/Duty cycle) |                      |                |                             |                   |                                         |                                |





## 5.2. Maximum Conducted Output Power Measurement

### 5.2.1. Standard Applicable

According to §15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

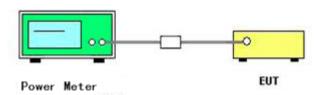
According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

According to §15.407(a)(1)(iv), For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

According to §15.407(a) (3), for the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the power meter.


### 5.2.3. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

According to KDB 789033 D02 Section 3 (a) Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
  - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
  - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
  - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25%).

## 5.2.4. Test Setup Layout



## 5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

## 5.2.6. Test Result of Maximum Conducted Output Power

| Temperature   | 24.5℃         | Humidity       | 52.2%             |
|---------------|---------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 |                |                   |

|                        | UNII Band 1 |                    |                                           |                              |                 |         |  |
|------------------------|-------------|--------------------|-------------------------------------------|------------------------------|-----------------|---------|--|
| Test Mode              | Channel     | Frequency<br>(MHz) | Measured Output<br>Average Power<br>(dBm) | Duty Cycle<br>factor<br>(dB) | Limits<br>(dBm) | Verdict |  |
|                        | 36          | 5180               | 7.80                                      | 0.00                         |                 |         |  |
| IEEE 802.11a           | 44          | 5220               | 7.00                                      | 0.00                         | 24              | PASS    |  |
|                        | 48          | 5240               | 7.14                                      | 0.00                         |                 |         |  |
| IEEE 802.11n           | 36          | 5180               | 7.22                                      | 0.00                         |                 | PASS    |  |
| HT20                   | 44          | 5220               | 7.14                                      | 0.00                         | 24              |         |  |
| 11120                  | 48          | 5240               | 7.49                                      | 0.00                         |                 |         |  |
| IEEE 802.11n           | 38          | 5190               | 7.65                                      | 0.00                         | 24              | PASS    |  |
| HT40                   | 46          | 5230               | 7.28                                      | 0.00                         | 24              | PASS    |  |
| IEEE 802.11ac          | 36          | 5180               | 7.34                                      | 0.00                         |                 |         |  |
| VHT20                  | 44          | 5220               | 7.49                                      | 0.00                         | 24              | PASS    |  |
|                        | 48          | 5240               | 7.53                                      | 0.00                         |                 |         |  |
| IEEE 802.11ac          | 38          | 5190               | 7.25                                      | 0.00                         | 24              | PASS    |  |
| VHT40                  | 46          | 5230               | 7.69                                      | 0.00                         | 24              | FASS    |  |
| IEEE 802.11ac<br>VHT80 | 42          | 5210               | 7.57                                      | 0.00                         | 24              | PASS    |  |

|                        | UNII Band 1 |                    |                                           |                              |                 |         |  |
|------------------------|-------------|--------------------|-------------------------------------------|------------------------------|-----------------|---------|--|
| Test Mode              | Channel     | Frequency<br>(MHz) | Measured Output<br>Average Power<br>(dBm) | Duty Cycle<br>factor<br>(dB) | Limits<br>(dBm) | Verdict |  |
|                        | 149         | 5745               | 6.92                                      | 0.00                         |                 |         |  |
| IEEE 802.11a           | 157         | 5785               | 6.12                                      | 0.00                         | 30              | PASS    |  |
|                        | 165         | 5825               | 6.18                                      | 0.00                         |                 |         |  |
| IEEE 802.11n           | 149         | 5745               | 6.11                                      | 0.00                         |                 | PASS    |  |
| HT20                   | 157         | 5785               | 6.55                                      | 0.00                         | 30              |         |  |
|                        | 165         | 5825               | 6.19                                      | 0.00                         |                 |         |  |
| IEEE 802.11n           | 151         | 5755               | 6.92                                      | 0.00                         | 30              | PASS    |  |
| HT40                   | 159         | 5795               | 6.20                                      | 0.00                         | 30              | FASS    |  |
| IEEE 802.11ac          | 149         | 5745               | 6.00                                      | 0.00                         |                 | PASS    |  |
| VHT20                  | 157         | 5785               | 6.82                                      | 0.00                         | 30              |         |  |
| VIIIZO                 | 165         | 5825               | 6.02                                      | 0.00                         |                 |         |  |
| IEEE 802.11ac          | 151         | 5755               | 6.80                                      | 0.00                         | 30              | PASS    |  |
| VHT40                  | 159         | 5795               | 6.18                                      | 0.00                         | 30              | F 733   |  |
| IEEE 802.11ac<br>VHT80 | 155         | 5775               | 6.00                                      | 0.00                         | 30              | PASS    |  |

### Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;

## 5.3. Power Spectral Density Measurement

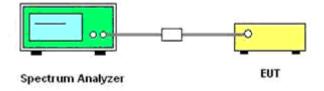
### 5.3.1. Standard Applicable

According to §15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

According to §15.407(a) (1) (iv), for mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

According to §15.407(a) (3), for the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.


#### 5.3.2. Test Procedures

- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3) Set the RBW/VBW = 1MHz/3MHz for the 5.15-5.25GHz band;

Set the RBW/VBW = 300 KHz/1000 KHz for the 5.725-5.85 GHz band.

- 4) Set the span to encompass the entire emission bandwidth of the signal.
- 5) Detector = RMS.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.

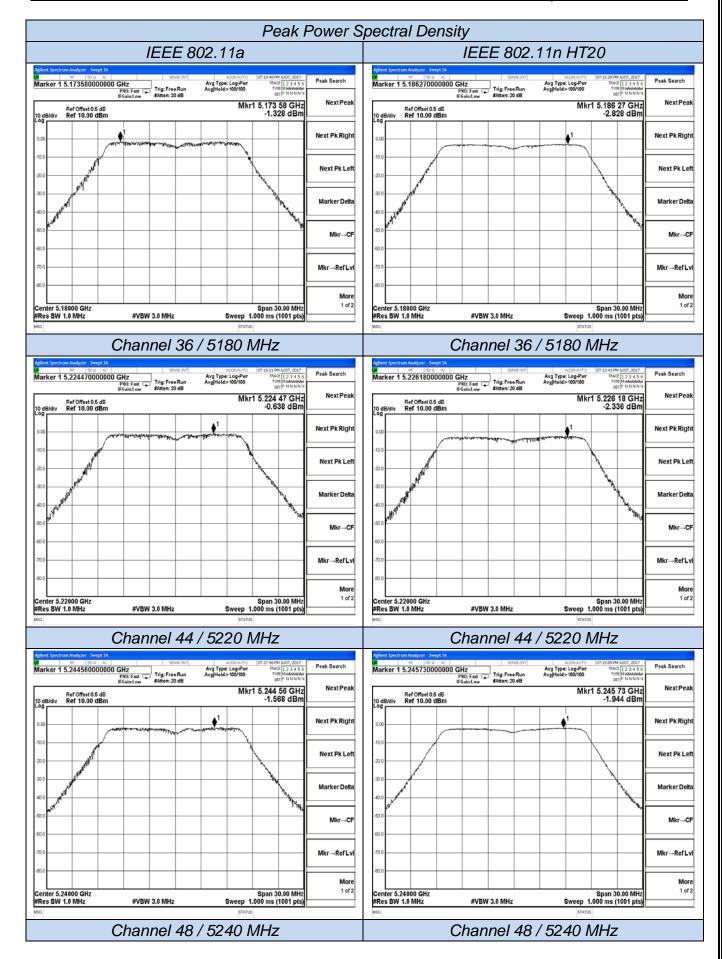
### 5.3.3. Test Setup Layout

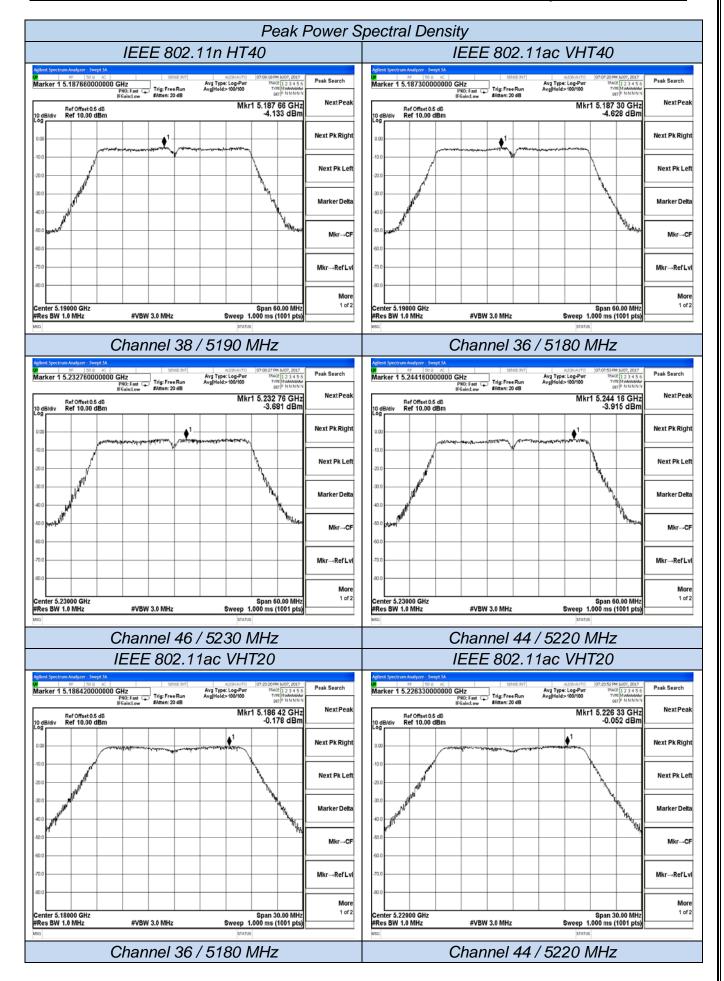


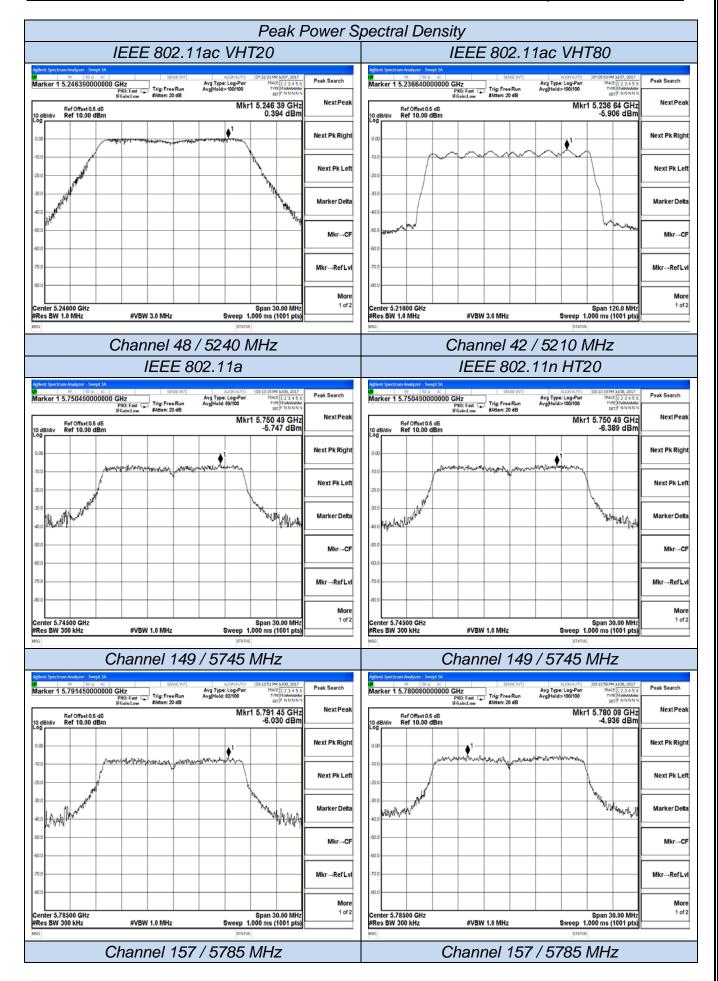
## 5.3.4. EUT Operation during Test

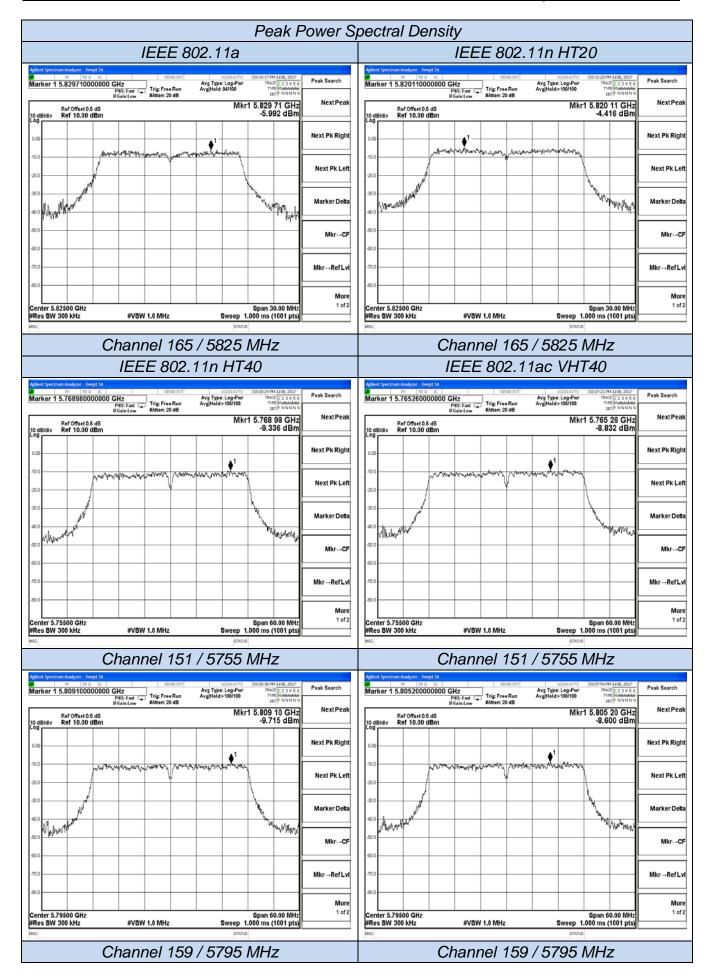
The EUT was programmed to be in continuously transmitting mode.

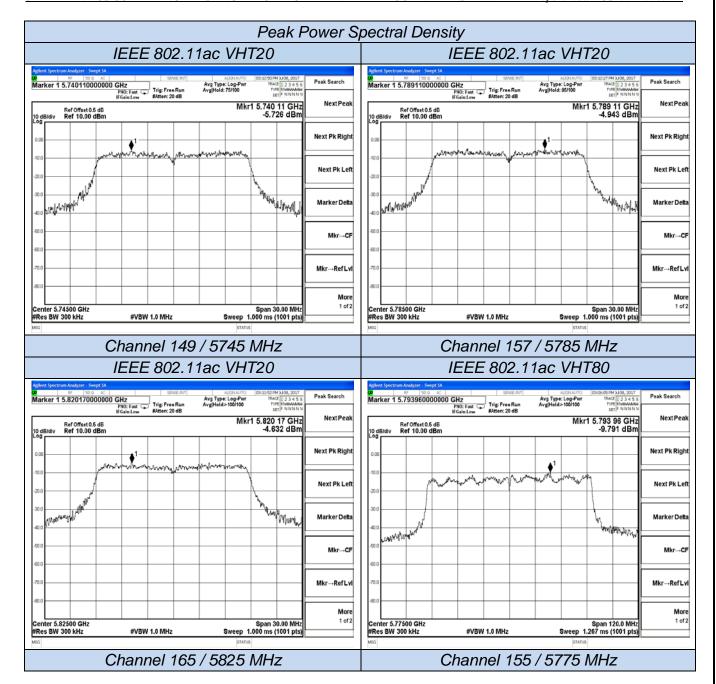
### 5.3.5. Test Result of Power Spectral Density


| Temperature   | 24.5℃         | Humidity       | 52.2%             |
|---------------|---------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 |                |                   |


|                        | UNII Band 1 |                    |                                                 |                                 |                       |                      |         |  |
|------------------------|-------------|--------------------|-------------------------------------------------|---------------------------------|-----------------------|----------------------|---------|--|
| Test Mode              | Channel     | Frequency<br>(MHz) | Reported Peak Power Spectral Density (dBm/1MHz) | Duty<br>Cycle<br>factor<br>(dB) | RBW<br>factor<br>(dB) | Limits<br>(dBm/1MHz) | Verdict |  |
|                        | 36          | 5180               | -1.328                                          | 0.000                           | 0.000                 |                      |         |  |
| IEEE 802.11a           | 44          | 5220               | -0.638                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
|                        | 48          | 5240               | -1.568                                          | 0.000                           | 0.000                 |                      |         |  |
| IEEE 802.11n           | 36          | 5180               | -2.828                                          | 0.000                           | 0.000                 |                      |         |  |
| HT20                   | 44          | 5220               | -2.336                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
| ПІ20                   | 48          | 5240               | -1.944                                          | 0.000                           | 0.000                 |                      |         |  |
| IEEE 802.11n           | 38          | 5190               | -4.133                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
| HT40                   | 46          | 5230               | -3.681                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
| IEEE 802.11ac          | 36          | 5180               | -0.178                                          | 0.000                           | 0.000                 |                      |         |  |
| VHT20                  | 44          | 5220               | -0.052                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
| V11120                 | 48          | 5240               | 0.394                                           | 0.000                           | 0.000                 |                      |         |  |
| IEEE 802.11ac          | 38          | 5190               | -4.628                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |
| VHT40                  | 46          | 5230               | -3.915                                          | 0.000                           | 0.000                 | 11                   | FASS    |  |
| IEEE 802.11ac<br>VHT80 | 42          | 5210               | -5.906                                          | 0.000                           | 0.000                 | 11                   | PASS    |  |


|                        | UNII Band 3 |                    |                                                   |                                 |                       |                        |         |  |
|------------------------|-------------|--------------------|---------------------------------------------------|---------------------------------|-----------------------|------------------------|---------|--|
| Test Mode              | Channel     | Frequency<br>(MHz) | Reported Peak Power Spectral Density (dBm/500KHz) | Duty<br>Cycle<br>factor<br>(dB) | RBW<br>factor<br>(dB) | Limits<br>(dBm/500KHz) | Verdict |  |
|                        | 149         | 5745               | -3.529                                            | 2.218                           | 0.000                 |                        |         |  |
| IEEE 802.11a           | 157         | 5785               | -3.812                                            | 2.218                           | 0.000                 | 30                     | PASS    |  |
|                        | 165         | 5825               | -3.774                                            | 2.218                           | 0.000                 |                        |         |  |
| IEEE 802.11n           | 149         | 5745               | -4.171                                            | 2.218                           | 0.000                 |                        | PASS    |  |
| HT20                   | 157         | 5785               | -2.718                                            | 2.218                           | 0.000                 | 30                     |         |  |
| 11120                  | 165         | 5825               | -2.198                                            | 2.218                           | 0.000                 |                        |         |  |
| IEEE 802.11n           | 151         | 5755               | -7.118                                            | 2.218                           | 0.000                 | 30                     | PASS    |  |
| HT40                   | 159         | 5795               | -7.497                                            | 2.218                           | 0.000                 | 30                     | FASS    |  |
| IEEE 802.11ac          | 149         | 5745               | -3.508                                            | 2.218                           | 0.000                 |                        |         |  |
| VHT20                  | 157         | 5785               | -2.725                                            | 2.218                           | 0.000                 | 30                     | PASS    |  |
| V11120                 | 165         | 5825               | -2.414                                            | 2.218                           | 0.000                 |                        |         |  |
| IEEE 802.11ac          | 151         | 5755               | -6.614                                            | 2.218                           | 0.000                 | 30                     | PASS    |  |
| VHT40                  | 159         | 5795               | -6.382                                            | 2.218                           | 0.000                 | 30                     | 1 733   |  |
| IEEE 802.11ac<br>VHT80 | 155         | 5775               | -7.573                                            | 2.218                           | 0.000                 | 30                     | PASS    |  |


#### Remark:


- 1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;
- 4. RBW factor = 10 log (1000 KHz/RBW) = 10\*log (1000KHz/1000KHz) = 0 dB for UNII Band 1;
- 5. RBW factor = 10 log (500 KHz/RBW) = 10\*log (500KHz/300KHz) = 2.218 dB for UNII Band 1;
- 6. Report peak power spectral density = Measure peak power spectral density + RBW factor + Duty Cycle factor
- 7. Please refer to following plots;







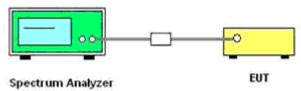




## 5.4. 26dB Occupied Bandwidth Measurement

## 5. 4.1. Standard Applicable

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.


### 5. 4.2. Measuring Instruments and Setting

| 26dB & 99%Bandwidth Measurement (Only for 5180~5240MHz Band) |                  |  |  |
|--------------------------------------------------------------|------------------|--|--|
| Attenuation                                                  | Auto             |  |  |
| Span                                                         | > 26dB Bandwidth |  |  |
| Detector                                                     | Peak             |  |  |
| Trace                                                        | Max Hold         |  |  |
| Sweep Time                                                   | 100ms            |  |  |

### 5. 4.3. Test Procedures

- 1) The transmitter output (antenna port) was connected to the spectrum analyses in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB 789033 D02 General UNII Test Procedures New Rules v01
- 3) For 5745~5825MHz Band, Measured the maximum width of the emission that is 6dB down from the peak of the emission.
- 4) For 5180~5240MHz Band, Measured the maximum width of the emission that is 26dB down from the peak of the emission. Record the 26dB & 99% Bandwidth.

## 5. 4.4. Test Setup Layout



## 5. 4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

## 5. 4.6. Test Result of Spectrum Bandwidth

| Temperature   | 24.5℃         | Humidity       | 52.2%             |
|---------------|---------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 |                |                   |

75.750

**PASS** 

No Limit

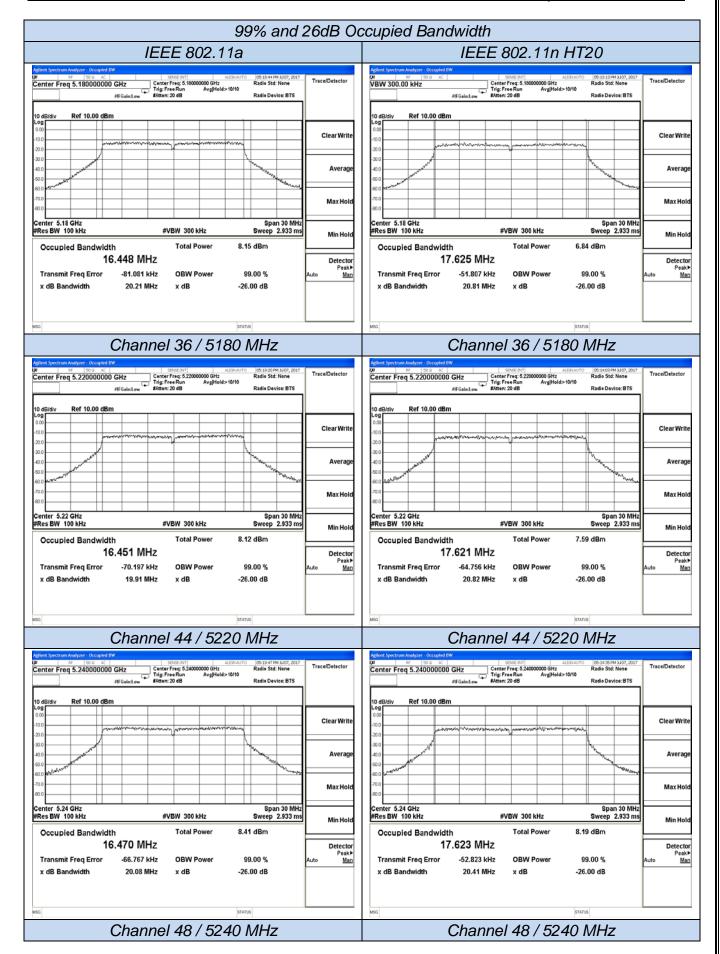
42

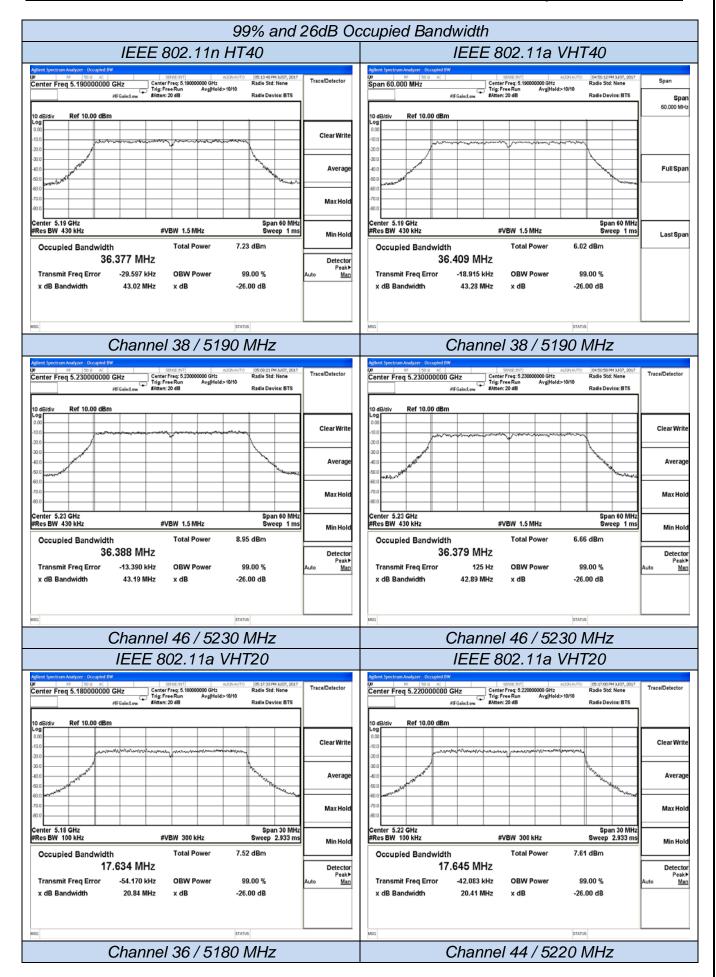
| Test Mode              | Channel | Frequency<br>(MHz) | 26dB<br>Bandwidth<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | Limits<br>(MHz) | Verdict |
|------------------------|---------|--------------------|----------------------------|---------------------------|-----------------|---------|
|                        | 36      | 5180               | 20.210                     | 16.448                    |                 |         |
| IEEE 802.11a           | 44      | 5220               | 19.910                     | 16.451                    | No Limit        | PASS    |
|                        | 48      | 5240               | 20.080                     | 16.470                    |                 |         |
| IEEE 802.11n           | 36      | 5180               | 20.810                     | 17.625                    |                 |         |
| HT20                   | 44      | 5220               | 20.820                     | 17.621                    | No Limit        | PASS    |
|                        | 48      | 5240               | 20.410                     | 17.623                    |                 |         |
| IEEE 802.11n           | 38      | 5190               | 43.020                     | 36.377                    | No Limit        | PASS    |
| HT40                   | 46      | 5230               | 43.190                     | 36.388                    | INO LITTIL      | PASS    |
| IEEE 902 1100          | 36      | 5180               | 20.840                     | 17.634                    |                 |         |
| IEEE 802.11ac<br>VHT20 | 44      | 5220               | 20.410                     | 17.645                    | No Limit        | PASS    |
|                        | 48      | 5240               | 20.860                     | 17.643                    | 1               |         |
| IEEE 802.11ac          | 38      | 5190               | 43.280                     | 36.409                    | No Limit        | PASS    |
| VHT40                  | 46      | 5230               | 42.890                     | 36.379                    | INO LITTIL      | FASS    |

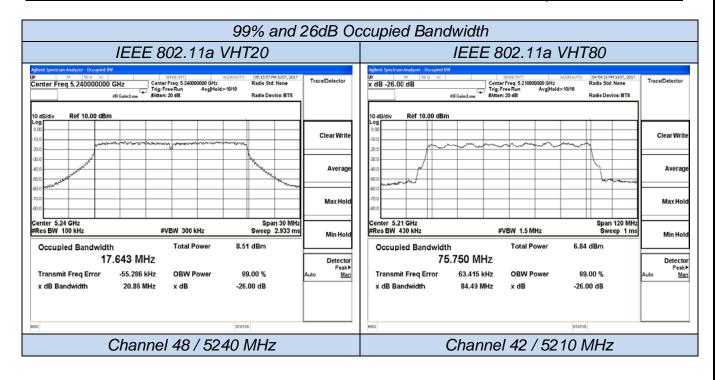
### Remark:

1. Measured 99% and 26dB bandwidth at difference data rate for each mode and recorded worst case for each mode.

84.490


5210


2. Test results including cable loss;


EEE 802.11ac

VHT80

- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;
- 4. Please refer to following plots;





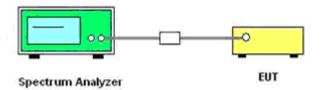


## 5.5. 6dB Occupied Bandwidth Measurement

### 5.5.1. Standard Applicable

According to §15.407(e): Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

### 5.5.2. Measuring Instruments and Setting


The following table is the setting of the Spectrum Analyzer.

| 6dB Bandwidth Measurement (Only For 5745~5825MHz Band) |           |  |  |
|--------------------------------------------------------|-----------|--|--|
| Spectrum Parameter                                     | Setting   |  |  |
| Attenuation                                            | Auto      |  |  |
| RBW                                                    | 100KHz    |  |  |
| VBW                                                    | ≥ 3 x RBW |  |  |
| Detector                                               | Peak      |  |  |
| Trace                                                  | Max Hold  |  |  |

#### 5.5.3. Test Procedures

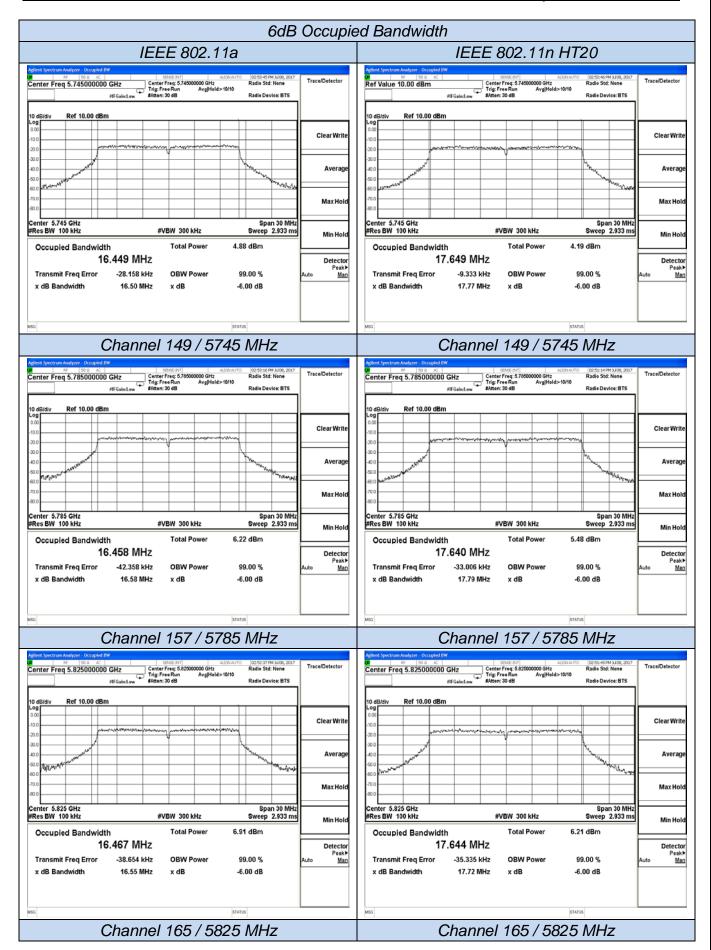
- 1) The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB 789033 D02 General UNII Test Procedures New Rules.
- 3) For 5745~5825MHz Band, Measured the maximum width of the emission that is 6dB down from the peak of the emission.

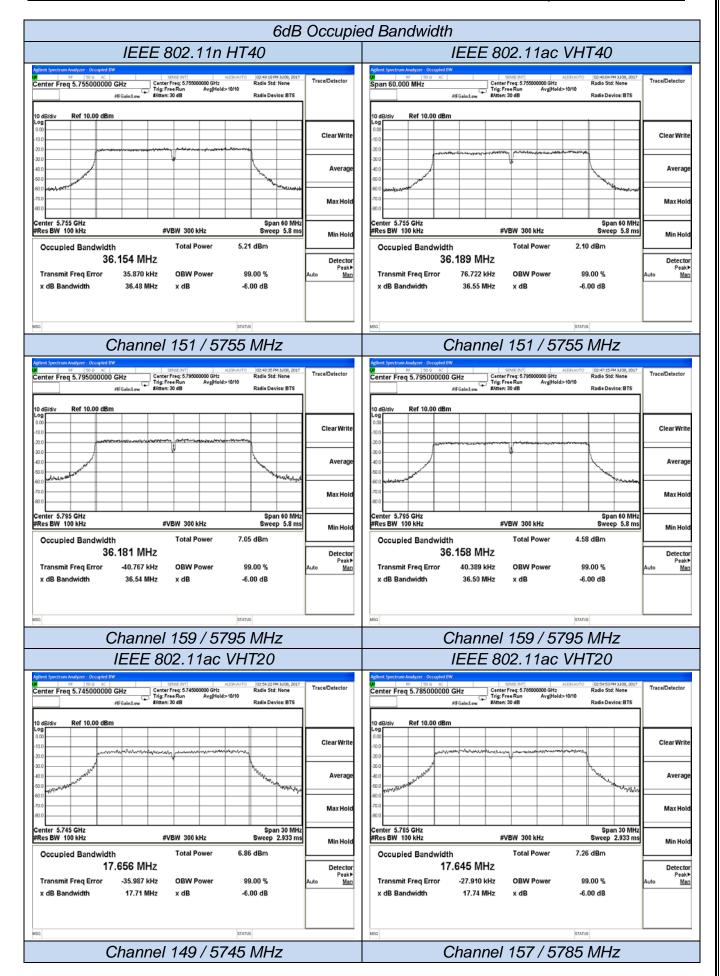
### 5.5.4. Test Setup Layout

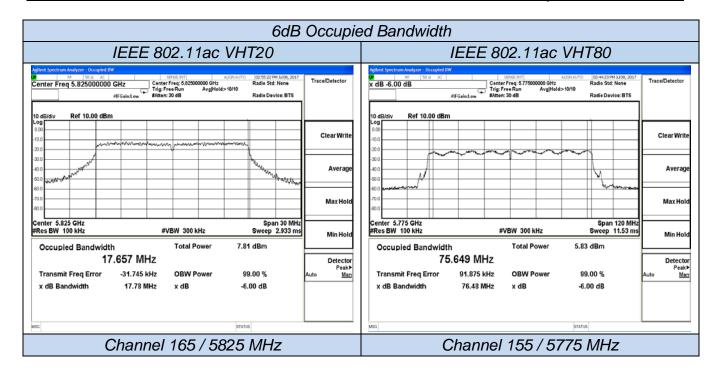


## 5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


### 5.5.6. Test Result of 6dB Occupied Bandwidth


| Temperature   | 24.5℃         | Humidity       | 52.2%             |
|---------------|---------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 |                |                   |


| Test Mode             | Channel | Frequency<br>(MHz) | 6dB Bandwidth (MHz) | Limits<br>(MHz) | Verdict |
|-----------------------|---------|--------------------|---------------------|-----------------|---------|
|                       | 149     | 5745               | 16.500              |                 |         |
| IEEE 802.11a          | 157     | 5785               | 16.580              | 0.500           | PASS    |
|                       | 165     | 5825               | 16.550              |                 |         |
|                       | 149     | 5745               | 17.770              |                 | PASS    |
| IEEE 802.11n HT20     | 157     | 5785               | 17.790              | 0.500           |         |
|                       | 165     | 5825               | 17.720              |                 |         |
| IEEE 802.11n HT40     | 151     | 5755               | 36.480              | 0.500           | PASS    |
| ILLL 802.111111140    | 159     | 5795               | 36.540              | 0.300           |         |
| IEEE 802.11ac         | 149     | 5745               | 17.710              |                 |         |
| VHT20                 | 157     | 5785               | 17.740              | 0.500           | PASS    |
| VH120                 | 165     | 5825               | 17.780              |                 |         |
| IEEE 802.11ac         | 151     | 5755               | 36.550              | 0.500           | PASS    |
| VHT40                 | 159     | 5795               | 36.500              | 0.300           | FASS    |
| EEE 802.11ac<br>VHT80 | 155     | 5775               | 76.480              | 0.500           | PASS    |

### Remark:

- 1. Measured 6dB bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;
- 4. Please refer to following plots;







#### 5.6. Radiated Emissions Measurement

### 5.6.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                              | MHz                 | MHz           | GHz         |
|----------------------------------|---------------------|---------------|-------------|
| 0.090-0.110                      | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| \1\ 0.495-0.505                  | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905                    | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128                      | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775                  | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775                  | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218                      | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825                  | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225                  | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294                      | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366                      | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675                  | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475                  | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293.                    | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025                | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725<br>13.36-13.41 | 322-335.4           | 3600-4400     | (\2\)       |
| 13.30-13.41                      |                     |               |             |

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m at 3m).

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz(68.2dBuV/m at 3m) at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz(105.2dBuV/m at 3m) at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6(110.8dBuV/m at 3m) dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz(122.2dBuV/m at 3m) at the band edge

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

### 5.6.2. Measuring Instruments and Setting

The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                        | Setting                                           |
|-------------------------------------------|---------------------------------------------------|
| Attenuation                               | Auto                                              |
| Start Frequency                           | 1000 MHz                                          |
| Stop Frequency                            | 10 <sup>th</sup> carrier harmonic                 |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |

| Receiver Parameter     | Setting                                    |
|------------------------|--------------------------------------------|
| Attenuation            | Auto                                       |
| Start ~ Stop Frequency | 9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG  |
| Start ~ Stop Frequency | 150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB/VB 120kHz/1MHz for QP   |

#### 5.6.3. Test Procedures

### 1) Sequence of testing 9 kHz to 30 MHz

#### Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Premeasurement:**

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### **Final measurement:**

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

### 2) Sequence of testing 30 MHz to 1 GHz

#### Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Premeasurement:**

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement:**

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

### 3) Sequence of testing 1 GHz to 18 GHz

#### Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Premeasurement:**

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

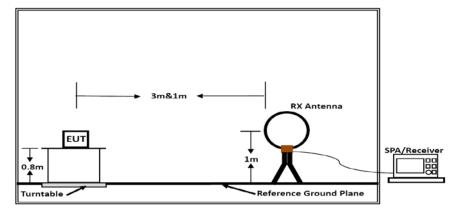
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

## 4) Sequence of testing above 18 GHz

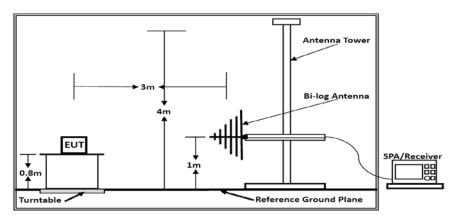
#### Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

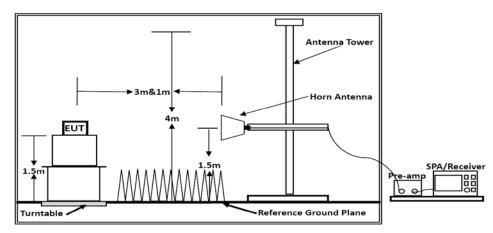
#### **Premeasurement:**


--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

#### Final measurement:


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

## 5.6.4. Test Setup Layout


#### For radiated emissions below 30MHz



Below 30MHz



Below 1GHz



Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.0m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

## 5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

# 5.6.6. Results of Radiated Emissions (9 KHz~30MHz)

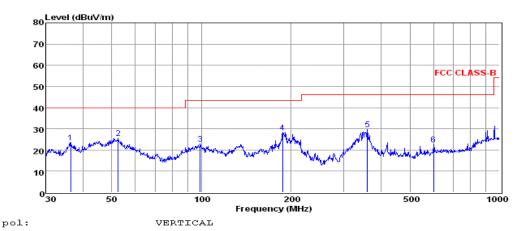
| Temperature   | 25.3℃         | Humidity       | 52.7%        |
|---------------|---------------|----------------|--------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a |
| Test Date     | July 07, 2017 |                |              |

| Freq. | Level  | Over Limit | Over Limit | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| -     | -      | -          | -          | See Note |

#### Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

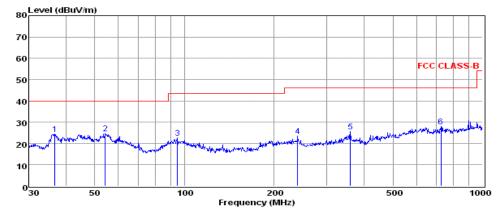
Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

## 5.5.7. Results of Radiated Emissions (30MHz~1GHz)

| Temperature   | 25.3℃                   | Humidity       | 52.7%                      |
|---------------|-------------------------|----------------|----------------------------|
| Test Engineer | Jayden Zhuo             | Configurations | IEEE 802.11a (Low Channel) |
| Test Date     | July 07, 2017 – July 08 | 3, 2017        |                            |

# Test result for IEEE 802.11a (Low Channel)


#### Vertical:



|   | Freq   | Reading | CabLos | Antfac | Measured | Limit  | Over   | Remark |
|---|--------|---------|--------|--------|----------|--------|--------|--------|
|   | MHz    | dBuV    | dВ     | dB/m   | dBuV/m   | dBuV/m | dВ     |        |
| 1 | 36.38  | 10.50   | 0.41   | 12.65  | 23.56    | 40.00  | -16.44 | QP     |
| 2 | 52.58  | 11.96   | 0.46   | 13.13  | 25.55    | 40.00  | -14.45 | QP     |
| 3 | 98.83  | 9.17    | 0.61   | 13.09  | 22.87    | 43.50  | -20.63 | QP     |
| 4 | 187.10 | 17.12   | 0.98   | 10.30  | 28.40    | 43.50  | -15.10 | QP     |
| 5 | 360.45 | 14.01   | 1.18   | 14.43  | 29.62    | 46.00  | -16.38 | QP     |
| 6 | 601.43 | 2.67    | 1.43   | 18.46  | 22.56    | 46.00  | -23.44 | QP     |
|   |        |         |        |        |          |        |        |        |

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

#### Horizontal:



pol: HORIZONTAL

|   | Freq   | Reading | CabLos | Antfac | Measured | Limit  | Over   | Remark |
|---|--------|---------|--------|--------|----------|--------|--------|--------|
|   | MII    | dBuV    | dВ     | dB/m   | dPosts/m | dBuV/m | dВ     |        |
|   | MHz    | авич    | аь     | QB/M   | dBuV/m   | авиу/т | аь     |        |
| 1 | 36.77  | 11.14   | 0.41   | 12.75  | 24.30    | 40.00  | -15.70 | QP     |
| 2 | 54.26  | 11.29   | 0.46   | 13.05  | 24.80    | 40.00  | -15.20 | QP     |
| 3 | 94.76  | 9.08    | 0.58   | 12.79  | 22.45    | 43.50  | -21.05 | QP     |
| 4 | 239.99 | 10.35   | 1.01   | 12.09  | 23.45    | 46.00  | -22.55 | QP     |
| 5 | 360.45 | 9.84    | 1.18   | 14.43  | 25.45    | 46.00  | -20.55 | QP     |
| 6 | 724.26 | 7.03    | 1.72   | 19.11  | 27.86    | 46.00  | -18.14 | QP     |

- Note: 1. All readings are Quasi-peak values.
  2. Measured= Reading + Antenna Factor + Cable Loss
  3. The emission that ate 20db blow the offficial limit are not reported

#### Note:

Pre-scan all mode and recorded the worst case results in this report (802.11a-5785MHz). Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

# 5.6.8. Results for Radiated Emissions (Above 1GHz)

| Temperature   | 25.3℃                   | Humidity       | 52.7%             |
|---------------|-------------------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo             | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 – July 08 | 3, 2017        |                   |

## For UNII Band 1

IEEE 802.11a

# Channel 36 / 5180 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.54       | 60.27                 | 33.06            | 35.04             | 3.94          | 62.23                     | 74.00                   | -11.77              | Peak    | Horizontal |
| 15.54       | 44.39                 | 33.06            | 35.04             | 3.94          | 46.35                     | 54.00                   | -7.65               | Average | Horizontal |
| 15.54       | 59.02                 | 33.06            | 35.04             | 3.94          | 60.98                     | 74.00                   | -13.02              | Peak    | Vertical   |
| 15.54       | 42.40                 | 33.06            | 35.04             | 3.94          | 44.36                     | 54.00                   | -9.64               | Average | Vertical   |

#### Channel 44 / 5220 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.60       | 60.00                 | 33.16               | 35.15             | 3.96          | 61.97                     | 74.00                   | -12.03              | Peak    | Horizontal |
| 15.60       | 44.25                 | 33.16               | 35.15             | 3.96          | 46.22                     | 54.00                   | -7.78               | Average | Horizontal |
| 15.60       | 58.32                 | 33.16               | 35.15             | 3.96          | 60.29                     | 74.00                   | -13.71              | Peak    | Vertical   |
| 15.60       | 41.85                 | 33.16               | 35.15             | 3.96          | 43.82                     | 54.00                   | -10.18              | Average | Vertical   |

# Channel 48 / 5240 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.72       | 60.27                 | 33.26               | 35.14             | 3.98          | 62.37                     | 74.00                   | -11.63              | Peak    | Horizontal |
| 15.72       | 43.99                 | 33.26               | 35.14             | 3.98          | 46.09                     | 54.00                   | -7.91               | Average | Horizontal |
| 15.72       | 57.08                 | 33.26               | 35.14             | 3.98          | 59.18                     | 74.00                   | -14.82              | Peak    | Vertical   |
| 15.72       | 41.16                 | 33.26               | 35.14             | 3.98          | 43.26                     | 54.00                   | -10.74              | Average | Vertical   |

## IEEE 802.11n HT20

# Channel 36 / 5180 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.54       | 60.55                 | 33.06            | 35.04             | 3.94          | 62.51                     | 74.00                   | -11.49              | Peak    | Horizontal |
| 15.54       | 43.09                 | 33.06            | 35.04             | 3.94          | 45.05                     | 54.00                   | -8.95               | Average | Horizontal |
| 15.54       | 57.14                 | 33.06            | 35.04             | 3.94          | 59.10                     | 74.00                   | -14.90              | Peak    | Vertical   |
| 15.54       | 42.94                 | 33.06            | 35.04             | 3.94          | 44.90                     | 54.00                   | -9.10               | Average | Vertical   |

# Channel 44 / 5220 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.60       | 61.85                 | 33.16               | 35.15             | 3.96          | 63.82                     | 74.00                   | -10.18              | Peak    | Horizontal |
| 15.60       | 42.93                 | 33.16               | 35.15             | 3.96          | 44.90                     | 54.00                   | -9.10               | Average | Horizontal |
| 15.60       | 58.52                 | 33.16               | 35.15             | 3.96          | 60.49                     | 74.00                   | -13.51              | Peak    | Vertical   |
| 15.60       | 42.77                 | 33.16               | 35.15             | 3.96          | 44.74                     | 54.00                   | -9.26               | Average | Vertical   |

# Channel 48 / 5240 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.72       | 59.63                 | 33.26               | 35.14             | 3.98          | 61.73                     | 74.00                   | -12.27              | Peak    | Horizontal |
| 15.72       | 42.99                 | 33.26               | 35.14             | 3.98          | 45.09                     | 54.00                   | -8.91               | Average | Horizontal |
| 15.72       | 57.35                 | 33.26               | 35.14             | 3.98          | 59.45                     | 74.00                   | -14.55              | Peak    | Vertical   |
| 15.72       | 43.19                 | 33.26               | 35.14             | 3.98          | 45.29                     | 54.00                   | -8.71               | Average | Vertical   |

IEEE 802.11n HT40

## Channel 38 / 5190 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.57       | 58.47                 | 33.06            | 35.04             | 3.94          | 60.43                     | 74.00                   | -13.57              | Peak    | Horizontal |
| 15.57       | 42.15                 | 33.06            | 35.04             | 3.94          | 44.11                     | 54.00                   | -9.89               | Average | Horizontal |
| 15.57       | 58.24                 | 33.06            | 35.04             | 3.94          | 60.20                     | 74.00                   | -13.80              | Peak    | Vertical   |
| 15.57       | 42.05                 | 33.06            | 35.04             | 3.94          | 44.01                     | 54.00                   | -9.99               | Average | Vertical   |

# Channel 46 / 5230 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.69       | 59.54                 | 33.16               | 35.15             | 3.96          | 61.51                     | 74.00                   | -12.49              | Peak    | Horizontal |
| 15.69       | 42.20                 | 33.16               | 35.15             | 3.96          | 44.17                     | 54.00                   | -9.83               | Average | Horizontal |
| 15.69       | 56.95                 | 33.16               | 35.15             | 3.96          | 58.92                     | 74.00                   | -15.08              | Peak    | Vertical   |
| 15.69       | 41.94                 | 33.16               | 35.15             | 3.96          | 43.91                     | 54.00                   | -10.09              | Average | Vertical   |

# *IEEE 802.11ac VHT20*

# Channel 36 / 5180 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.54       | 59.75                 | 33.06            | 35.04             | 3.94          | 61.71                     | 74.00                   | -12.29              | Peak    | Horizontal |
| 15.54       | 42.35                 | 33.06            | 35.04             | 3.94          | 44.31                     | 54.00                   | -9.69               | Average | Horizontal |
| 15.54       | 57.00                 | 33.06            | 35.04             | 3.94          | 58.96                     | 74.00                   | -15.04              | Peak    | Vertical   |
| 15.54       | 41.59                 | 33.06            | 35.04             | 3.94          | 43.55                     | 54.00                   | -10.45              | Average | Vertical   |

## Channel 44 / 5220 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.60       | 61.34                 | 33.16               | 35.15             | 3.96          | 63.31                     | 74.00                   | -10.69              | Peak    | Horizontal |
| 15.60       | 41.97                 | 33.16               | 35.15             | 3.96          | 43.94                     | 54.00                   | -10.06              | Average | Horizontal |
| 15.60       | 57.15                 | 33.16               | 35.15             | 3.96          | 59.12                     | 74.00                   | -14.88              | Peak    | Vertical   |
| 15.60       | 41.17                 | 33.16               | 35.15             | 3.96          | 43.14                     | 54.00                   | -10.86              | Average | Vertical   |

#### Channel 48 / 5240 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.72       | 61.46                 | 33.26               | 35.14             | 3.98          | 63.56                     | 74.00                   | -10.44              | Peak    | Horizontal |
| 15.72       | 41.29                 | 33.26               | 35.14             | 3.98          | 43.39                     | 54.00                   | -10.61              | Average | Horizontal |
| 15.72       | 56.81                 | 33.26               | 35.14             | 3.98          | 58.91                     | 74.00                   | -15.09              | Peak    | Vertical   |
| 15.72       | 40.65                 | 33.26               | 35.14             | 3.98          | 42.75                     | 54.00                   | -11.25              | Average | Vertical   |

# IEEE 802.11ac VHT40

# Channel 38 / 5190 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.57       | 58.48                 | 33.06            | 35.04             | 3.94          | 60.44                     | 74.00                   | -13.56              | Peak    | Horizontal |
| 15.57       | 41.67                 | 33.06            | 35.04             | 3.94          | 43.63                     | 54.00                   | -10.37              | Average | Horizontal |
| 15.57       | 57.63                 | 33.06            | 35.04             | 3.94          | 59.59                     | 74.00                   | -14.41              | Peak    | Vertical   |
| 15.57       | 40.35                 | 33.06            | 35.04             | 3.94          | 42.31                     | 54.00                   | -11.69              | Average | Vertical   |

# Channel 46 / 5230 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.69       | 58.38                 | 33.16               | 35.15             | 3.96          | 60.35                     | 74.00                   | -13.65              | Peak    | Horizontal |
| 15.69       | 42.32                 | 33.16               | 35.15             | 3.96          | 44.29                     | 54.00                   | -9.71               | Average | Horizontal |
| 15.69       | 57.91                 | 33.16               | 35.15             | 3.96          | 59.88                     | 74.00                   | -14.12              | Peak    | Vertical   |
| 15.69       | 41.09                 | 33.16               | 35.15             | 3.96          | 43.06                     | 54.00                   | -10.94              | Average | Vertical   |

IEEE 802.11ac VHT80

# Channel 42 / 5210 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant. Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 15.57       | 56.59                 | 33.16            | 35.15             | 3.96          | 58.56                     | 74.00                   | -15.44              | Peak    | Horizontal |
| 15.57       | 40.73                 | 33.16            | 35.15             | 3.96          | 42.70                     | 54.00                   | -11.30              | Average | Horizontal |
| 15.57       | 54.96                 | 33.16            | 35.15             | 3.96          | 56.93                     | 74.00                   | -17.07              | Peak    | Vertical   |
| 15.57       | 40.53                 | 33.16            | 35.15             | 3.96          | 42.50                     | 54.00                   | -11.50              | Average | Vertical   |

# For UNII Band 3

IEEE 802.11a

### Channel 149 / 5745 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.235      | 60.82                 | 33.23               | 35.04             | 3.91          | 62.92                     | 68.20                   | -11.08              | Peak    | Horizontal |
| 17.235      | 45.45                 | 33.23               | 35.04             | 3.91          | 47.55                     | 54.00                   | -6.45               | Average | Horizontal |
| 17.235      | 57.62                 | 33.23               | 35.04             | 3.91          | 59.72                     | 68.20                   | -14.28              | Peak    | Vertical   |
| 17.235      | 41.17                 | 33.23               | 35.04             | 3.91          | 43.27                     | 54.00                   | -10.73              | Average | Vertical   |

# Channel 157 / 5785 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.355      | 60.81                 | 33.27               | 35.15             | 3.93          | 62.86                     | 68.20                   | -11.14              | Peak    | Horizontal |
| 17.355      | 44.18                 | 33.27               | 35.15             | 3.93          | 46.23                     | 54.00                   | -7.77               | Average | Horizontal |
| 17.355      | 58.16                 | 33.27               | 35.15             | 3.93          | 60.21                     | 68.20                   | -13.79              | Peak    | Vertical   |
| 17.355      | 41.49                 | 33.27               | 35.15             | 3.93          | 43.54                     | 54.00                   | -10.46              | Average | Vertical   |

# Channel 163 / 5825 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.475      | 61.05                 | 33.32               | 35.14             | 3.97          | 63.20                     | 68.20                   | -10.80              | Peak    | Horizontal |
| 17.475      | 43.39                 | 33.32               | 35.14             | 3.97          | 45.54                     | 54.00                   | -8.46               | Average | Horizontal |
| 17.475      | 57.86                 | 33.32               | 35.14             | 3.97          | 60.01                     | 68.20                   | -13.99              | Peak    | Vertical   |
| 17.475      | 40.20                 | 33.32               | 35.14             | 3.97          | 42.35                     | 54.00                   | -11.65              | Average | Vertical   |

IEEE 802.11n HT20

# Channel 149 / 5745 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.235      | 60.09                 | 33.23               | 35.04             | 3.91          | 62.19                     | 68.20                   | -11.81              | Peak    | Horizontal |
| 17.235      | 44.87                 | 33.23               | 35.04             | 3.91          | 46.97                     | 54.00                   | -7.03               | Average | Horizontal |
| 17.235      | 58.00                 | 33.23               | 35.04             | 3.91          | 60.10                     | 68.20                   | -13.90              | Peak    | Vertical   |
| 17.235      | 41.05                 | 33.23               | 35.04             | 3.91          | 43.15                     | 54.00                   | -10.85              | Average | Vertical   |

# Channel 157 / 5785 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.355      | 59.72                 | 33.27               | 35.15             | 3.93          | 61.77                     | 68.20                   | -12.23              | Peak    | Horizontal |
| 17.355      | 43.46                 | 33.27               | 35.15             | 3.93          | 45.51                     | 54.00                   | -8.49               | Average | Horizontal |
| 17.355      | 58.22                 | 33.27               | 35.15             | 3.93          | 60.27                     | 68.20                   | -13.73              | Peak    | Vertical   |
| 17.355      | 42.10                 | 33.27               | 35.15             | 3.93          | 44.15                     | 54.00                   | -9.85               | Average | Vertical   |

## Channel 163 / 5825 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.475      | 60.20                 | 33.32               | 35.14             | 3.97          | 62.35                     | 68.20                   | -11.65              | Peak    | Horizontal |
| 17.475      | 44.67                 | 33.32               | 35.14             | 3.97          | 46.82                     | 54.00                   | -7.18               | Average | Horizontal |
| 17.475      | 58.23                 | 33.32               | 35.14             | 3.97          | 60.38                     | 68.20                   | -13.62              | Peak    | Vertical   |
| 17.475      | 40.06                 | 33.32               | 35.14             | 3.97          | 42.21                     | 54.00                   | -11.79              | Average | Vertical   |

## IEEE 802.11n HT40

# Channel 151 / 5755 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.265      | 57.47                 | 33.23               | 35.04             | 3.91          | 59.57                     | 68.20                   | -14.43              | Peak    | Horizontal |
| 17.265      | 42.59                 | 33.23               | 35.04             | 3.91          | 44.69                     | 54.00                   | -9.31               | Average | Horizontal |
| 17.265      | 55.40                 | 33.23               | 35.04             | 3.91          | 57.50                     | 68.20                   | -16.50              | Peak    | Vertical   |
| 17.265      | 40.78                 | 33.23               | 35.04             | 3.91          | 42.88                     | 54.00                   | -11.12              | Average | Vertical   |

## Channel 159 / 5795 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.385      | 57.63                 | 33.27               | 35.15             | 3.93          | 59.68                     | 68.20                   | -14.32              | Peak    | Horizontal |
| 17.385      | 43.00                 | 33.27               | 35.15             | 3.93          | 45.05                     | 54.00                   | -8.95               | Average | Horizontal |
| 17.385      | 56.61                 | 33.27               | 35.15             | 3.93          | 58.66                     | 68.20                   | -15.34              | Peak    | Vertical   |
| 17.385      | 41.21                 | 33.27               | 35.15             | 3.93          | 43.26                     | 54.00                   | -10.74              | Average | Vertical   |

## IEEE 802.11ac VHT20

## Channel 149 / 5745 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.235      | 59.01                 | 33.23               | 35.04             | 3.91          | 61.11                     | 68.20                   | -12.89              | Peak    | Horizontal |
| 17.235      | 42.54                 | 33.23               | 35.04             | 3.91          | 44.64                     | 54.00                   | -9.36               | Average | Horizontal |
| 17.235      | 57.38                 | 33.23               | 35.04             | 3.91          | 59.48                     | 68.20                   | -14.52              | Peak    | Vertical   |
| 17.235      | 41.01                 | 33.23               | 35.04             | 3.91          | 43.11                     | 54.00                   | -10.89              | Average | Vertical   |

# Channel 157 / 5785 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.355      | 59.18                 | 33.27               | 35.15             | 3.93          | 61.23                     | 68.20                   | -12.77              | Peak    | Horizontal |
| 17.355      | 43.96                 | 33.27               | 35.15             | 3.93          | 46.01                     | 54.00                   | -7.99               | Average | Horizontal |
| 17.355      | 58.53                 | 33.27               | 35.15             | 3.93          | 60.58                     | 68.20                   | -13.42              | Peak    | Vertical   |
| 17.355      | 41.73                 | 33.27               | 35.15             | 3.93          | 43.78                     | 54.00                   | -10.22              | Average | Vertical   |

# Channel 163 / 5825 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.475      | 59.26                 | 33.32               | 35.14             | 3.97          | 61.41                     | 68.20                   | -12.59              | Peak    | Horizontal |
| 17.475      | 42.43                 | 33.32               | 35.14             | 3.97          | 44.58                     | 54.00                   | -9.42               | Average | Horizontal |
| 17.475      | 56.13                 | 33.32               | 35.14             | 3.97          | 58.28                     | 68.20                   | -15.72              | Peak    | Vertical   |
| 17.475      | 42.07                 | 33.32               | 35.14             | 3.97          | 44.22                     | 54.00                   | -9.78               | Average | Vertical   |

IEEE 802.11ac VHT40

# Channel 151 / 5755 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.265      | 58.16                 | 33.23               | 35.04             | 3.91          | 60.26                     | 68.20                   | -13.74              | Peak    | Horizontal |
| 17.265      | 43.00                 | 33.23               | 35.04             | 3.91          | 45.10                     | 54.00                   | -8.90               | Average | Horizontal |
| 17.265      | 56.33                 | 33.23               | 35.04             | 3.91          | 58.43                     | 68.20                   | -15.57              | Peak    | Vertical   |
| 17.265      | 39.92                 | 33.23               | 35.04             | 3.91          | 42.02                     | 54.00                   | -11.98              | Average | Vertical   |

# Channel 159 / 5795 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.385      | 59.01                 | 33.27               | 35.15             | 3.93          | 61.06                     | 68.20                   | -12.94              | Peak    | Horizontal |
| 17.385      | 41.49                 | 33.27               | 35.15             | 3.93          | 43.54                     | 54.00                   | -10.46              | Average | Horizontal |
| 17.385      | 55.92                 | 33.27               | 35.15             | 3.93          | 57.97                     | 68.20                   | -16.03              | Peak    | Vertical   |
| 17.385      | 41.23                 | 33.27               | 35.15             | 3.93          | 43.28                     | 54.00                   | -10.72              | Average | Vertical   |

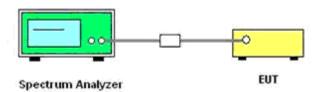
#### IEEE 802.11ac VHT80

#### Channel 155 / 5775 MHz

| Freq<br>GHz | Read<br>Level<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.Los<br>dB | Measured<br>Level<br>dBuV | Limit<br>Line<br>dBuV/m | Over<br>limit<br>dB | Remark  | Pol/Phase  |
|-------------|-----------------------|---------------------|-------------------|---------------|---------------------------|-------------------------|---------------------|---------|------------|
| 17.325      | 56.69                 | 33.27               | 35.15             | 3.93          | 58.74                     | 68.20                   | -15.26              | Peak    | Horizontal |
| 17.325      | 39.58                 | 33.27               | 35.15             | 3.93          | 41.63                     | 54.00                   | -12.37              | Average | Horizontal |
| 17.325      | 55.43                 | 33.27               | 35.15             | 3.93          | 57.48                     | 68.20                   | -16.52              | Peak    | Vertical   |
| 17.325      | 41.03                 | 33.27               | 35.15             | 3.93          | 43.08                     | 54.00                   | -10.92              | Average | Vertical   |

# Notes:

- 1). Measuring frequencies from 9 KHz~40GHz, No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~40GHz were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;


# 5.7. Undesirable Emissions Measurement

## 5. 7.1 Test Requirements

According to ξ15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
  - (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
  - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

# 5. 7.2 Test Configuration



## 5. 7.3 Test Procedure

According to KDB789033 D02 General UNII Test Procedures New Rules v01 Section G: Unwanted **Emission Measurement** 

- 1. Unwanted Emissions in the Restricted Bands
  - a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
  - b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
  - c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5, and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.

- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
  - (i) E[dBμV/m] = EIRP[dBm] 20 log (d[meters]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules;
  - (ii)  $E[dB\mu V/m] = EIRP[dBm] + 95.2$ , for d = 3 meters
- e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.
- 2. Unwanted Emissions that fall Outside of the Restricted Bands
  - a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
  - b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
  - c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."
    - (i) Section 15.407(b) (1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
    - (ii) Section 15.407(b) (4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b) (4) (i). An alternative to the band emissions mask is specified in Section 15.407(b) (4) (ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.
  - d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
    - (i)  $EIRP = ((E \times d)^2) / 30$

Where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotopically radiated power in watts;
- (ii) Working in dB units, the above equation is equivalent to:

EIRP [dBm] = E [dB $\mu$ V/m] + 20 log (d [meters]) - 104.77

(iii) Or, if d is 3 meters:

 $EIRP [dBm] = E [dB\mu V/m] - 95.23$ 

# 5. 7.4. Test Results

| Temperature   | 24.5℃         | Humidity       | 52.2%             |
|---------------|---------------|----------------|-------------------|
| Test Engineer | Jayden Zhuo   | Configurations | IEEE 802.11a/n/ac |
| Test Date     | July 07, 2017 |                |                   |

# For UNII Band 1

|                    |                             | IE                    | EEE 802.11a                            |                                                    |          |                   |         |
|--------------------|-----------------------------|-----------------------|----------------------------------------|----------------------------------------------------|----------|-------------------|---------|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert<br>Radiated<br>E Level<br>At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |
| 4500.000           | -51.728                     | 2.000                 | 0.000                                  | 45.472                                             | Peak     | 54.00             | PASS    |
| 5150.000           | -50.232                     | 2.000                 | 0.000                                  | 46.968                                             | Peak     | 54.00             | PASS    |
| 5320.000           | -50.206                     | 2.000                 | 0.000                                  | 46.994                                             | Peak     | 54.00             | PASS    |
| 5460.000           | -50.454                     | 2.000                 | 0.000                                  | 46.746                                             | Peak     | 54.00             | PASS    |

|                    | IEEE 802.11n HT20           |                          |                                        |                                                    |          |                   |         |  |  |
|--------------------|-----------------------------|--------------------------|----------------------------------------|----------------------------------------------------|----------|-------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert<br>Radiated<br>E Level At<br>3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |
| 4500.000           | -51.052                     | 2.000                    | 0.000                                  | 46.148                                             | Peak     | 54.00             | PASS    |  |  |
| 5150.000           | -49.184                     | 2.000                    | 0.000                                  | 48.016                                             | Peak     | 54.00             | PASS    |  |  |
| 5320.000           | -51.981                     | 2.000                    | 0.000                                  | 45.219                                             | Peak     | 54.00             | PASS    |  |  |
| 5460.000           | -51.573                     | 2.000                    | 0.000                                  | 45.627                                             | Peak     | 54.00             | PASS    |  |  |

|                    | IEEE 802.11n HT40           |                       |                                        |                                                    |          |                   |         |  |  |
|--------------------|-----------------------------|-----------------------|----------------------------------------|----------------------------------------------------|----------|-------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert<br>Radiated<br>E Level<br>At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |
| 4500.000           | -50.209                     | 2.000                 | 0.000                                  | 46.991                                             | Peak     | 54.00             | PASS    |  |  |
| 5150.000           | -49.787                     | 2.000                 | 0.000                                  | 47.413                                             | Peak     | 54.00             | PASS    |  |  |
| 5300.000           | -49.518                     | 2.000                 | 0.000                                  | 47.682                                             | Peak     | 54.00             | PASS    |  |  |
| 5460.000           | -49.693                     | 2.000                 | 0.000                                  | 47.507                                             | Peak     | 54.00             | PASS    |  |  |

|                    | IEEE 802.11ac VHT20         |                       |                                        |                                                    |          |                   |         |  |  |
|--------------------|-----------------------------|-----------------------|----------------------------------------|----------------------------------------------------|----------|-------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert<br>Radiated<br>E Level<br>At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |
| 4500.000           | -51.985                     | 2.000                 | 0.000                                  | 45.215                                             | Peak     | 54.00             | PASS    |  |  |
| 5150.000           | -49.356                     | 2.000                 | 0.000                                  | 47.844                                             | Peak     | 54.00             | PASS    |  |  |
| 5320.000           | -51.005                     | 2.000                 | 0.000                                  | 46.195                                             | Peak     | 54.00             | PASS    |  |  |
| 5460.000           | -51.685                     | 2.000                 | 0.000                                  | 45.515                                             | Peak     | 54.00             | PASS    |  |  |

|                    | IEEE 802.11ac VHT40         |                       |                                        |                                                    |          |                   |         |  |  |
|--------------------|-----------------------------|-----------------------|----------------------------------------|----------------------------------------------------|----------|-------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert<br>Radiated E<br>Level At<br>3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |
| 4500.000           | -53.628                     | 2.000                 | 0.000                                  | 43.572                                             | Peak     | 54.00             | PASS    |  |  |
| 5150.000           | -49.787                     | 2.000                 | 0.000                                  | 47.413                                             | Peak     | 54.00             | PASS    |  |  |
| 5300.000           | -50.780                     | 2.000                 | 0.000                                  | 46.420                                             | Peak     | 54.00             | PASS    |  |  |
| 5460.000           | -50.815                     | 2.000                 | 0.000                                  | 46.385                                             | Peak     | 54.00             | PASS    |  |  |

|                    | IEEE 802.11ac VHT80         |                       |                                        |                                        |          |                   |         |  |  |
|--------------------|-----------------------------|-----------------------|----------------------------------------|----------------------------------------|----------|-------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Covert Radiated E Level At 3m (dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |
| 4500.000           | -52.308                     | 2.000                 | 44.892                                 | 53.595                                 | Peak     | 54.00             | PASS    |  |  |
| 5150.000           | -48.987                     | 2.000                 | 48.213                                 | 60.086                                 | Peak     | 54.00             | PASS    |  |  |
| 5350.000           | -49.453                     | 2.000                 | 47.747                                 | 54.777                                 | Peak     | 54.00             | PASS    |  |  |
| 5460.000           | -50.656                     | 2.000                 | 46.544                                 | 54.465                                 | Peak     | 54.00             | PASS    |  |  |

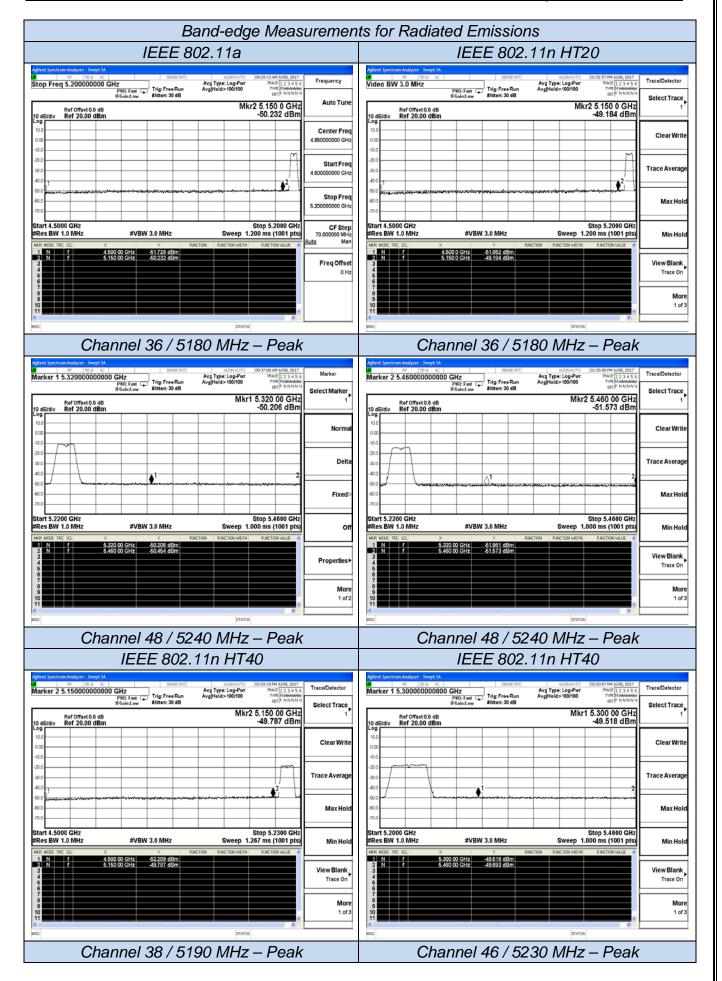
# For UNII Band 3

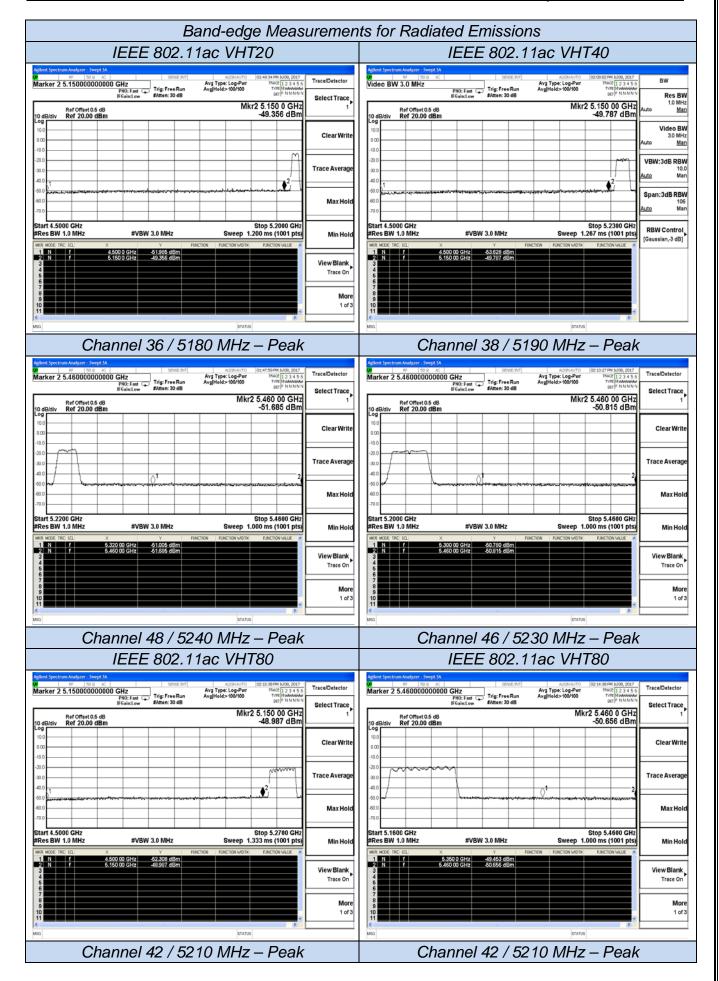
|                    |                             |                          | IEEE 802.11a       |          |                     |         |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |
| 5650.000           | -49.662                     | 2.000                    | -47.662            | Peak     | -27.000             | PASS    |
| 5700.000           | -50.153                     | 2.000                    | -48.153            | Peak     | 10.000              | PASS    |
| 5720.000           | -49.661                     | 2.000                    | -47.661            | Peak     | 15.600              | PASS    |
| 5725.000           | -49.403                     | 2.000                    | -47.403            | Peak     | 27.000              | PASS    |
| 5850.000           | -51.428                     | 2.000                    | -49.428            | Peak     | 27.000              | PASS    |
| 5855.000           | -50.079                     | 2.000                    | -48.079            | Peak     | 15.600              | PASS    |
| 5875.000           | -50.829                     | 2.000                    | -48.829            | Peak     | -37.000             | PASS    |
| 5925.000           | -50.648                     | 2.000                    | -48.648            | Peak     | -27.000             | PASS    |

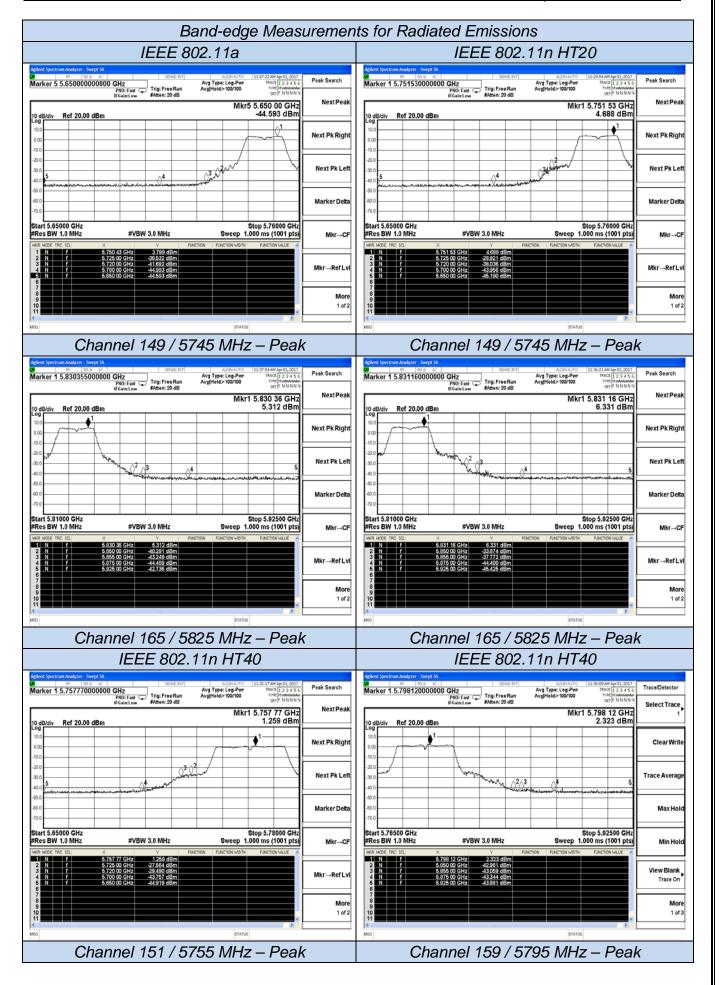
|                    | IEEE 802.11n HT20           |                          |                    |          |                     |         |  |  |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |  |  |
| 5650.000           | -51.571                     | 2.000                    | -49.571            | Peak     | -27.000             | PASS    |  |  |
| 5700.000           | -50.750                     | 2.000                    | -48.750            | Peak     | 10.000              | PASS    |  |  |
| 5720.000           | -51.238                     | 2.000                    | -49.238            | Peak     | 15.600              | PASS    |  |  |
| 5725.000           | -45.171                     | 2.000                    | -43.171            | Peak     | 27.000              | PASS    |  |  |
| 5850.000           | -50.325                     | 2.000                    | -48.325            | Peak     | 27.000              | PASS    |  |  |
| 5855.000           | -50.927                     | 2.000                    | -48.927            | Peak     | 15.600              | PASS    |  |  |
| 5875.000           | -50.944                     | 2.000                    | -48.944            | Peak     | -37.000             | PASS    |  |  |
| 5925.000           | -51.939                     | 2.000                    | -49.939            | Peak     | -27.000             | PASS    |  |  |

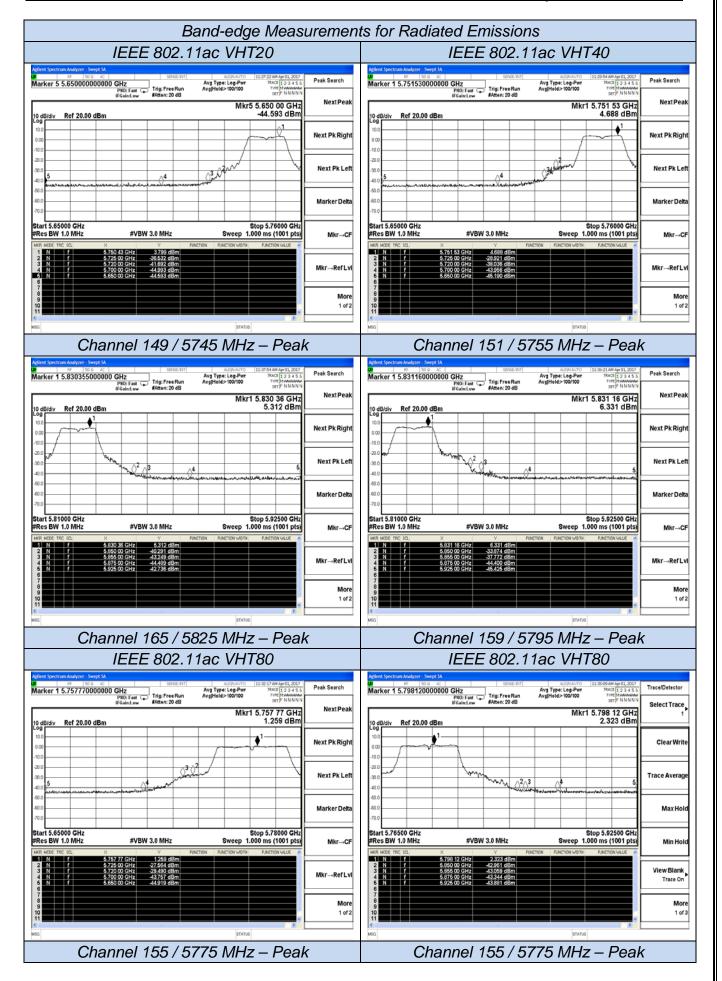
|                    | IEEE 802.11n HT40           |                          |                    |          |                     |         |  |  |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |  |  |
| 5650.000           | -52.238                     | 2.000                    | -50.238            | Peak     | -27.000             | PASS    |  |  |
| 5700.000           | -50.015                     | 2.000                    | -48.015            | Peak     | 10.000              | PASS    |  |  |
| 5720.000           | -49.984                     | 2.000                    | -47.984            | Peak     | 15.600              | PASS    |  |  |
| 5725.000           | -50.080                     | 2.000                    | -48.080            | Peak     | 27.000              | PASS    |  |  |
| 5850.000           | -51.033                     | 2.000                    | -49.033            | Peak     | 27.000              | PASS    |  |  |
| 5855.000           | -51.814                     | 2.000                    | -49.814            | Peak     | 15.600              | PASS    |  |  |
| 5875.000           | -50.839                     | 2.000                    | -48.839            | Peak     | -37.000             | PASS    |  |  |
| 5925.000           | -51.475                     | 2.000                    | -49.475            | Peak     | -27.000             | PASS    |  |  |

|                    | IEEE 802.11ac VHT20         |                          |                    |          |                     |         |  |  |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |  |  |
| 5650.000           | -51.195                     | 2.000                    | -49.195            | Peak     | -27.000             | PASS    |  |  |
| 5700.000           | -51.513                     | 2.000                    | -49.513            | Peak     | 10.000              | PASS    |  |  |
| 5720.000           | -49.535                     | 2.000                    | -47.535            | Peak     | 15.600              | PASS    |  |  |
| 5725.000           | -48.632                     | 2.000                    | -46.632            | Peak     | 27.000              | PASS    |  |  |
| 5850.000           | -50.333                     | 2.000                    | -48.333            | Peak     | 27.000              | PASS    |  |  |
| 5855.000           | -52.221                     | 2.000                    | -50.221            | Peak     | 15.600              | PASS    |  |  |
| 5875.000           | -51.047                     | 2.000                    | -49.047            | Peak     | -37.000             | PASS    |  |  |
| 5925.000           | -50.617                     | 2.000                    | -48.617            | Peak     | -27.000             | PASS    |  |  |


|                    | IEEE 802.11ac VHT40         |                          |                    |          |                     |         |  |  |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |  |  |
| 5650.000           | -52.671                     | 2.000                    | -50.671            | Peak     | -27.000             | PASS    |  |  |
| 5700.000           | -51.096                     | 2.000                    | -49.096            | Peak     | 10.000              | PASS    |  |  |
| 5720.000           | -50.513                     | 2.000                    | -48.513            | Peak     | 15.600              | PASS    |  |  |
| 5725.000           | -51.553                     | 2.000                    | -49.553            | Peak     | 27.000              | PASS    |  |  |
| 5850.000           | -49.183                     | 2.000                    | -47.183            | Peak     | 27.000              | PASS    |  |  |
| 5855.000           | -50.491                     | 2.000                    | -48.491            | Peak     | 15.600              | PASS    |  |  |
| 5875.000           | -51.247                     | 2.000                    | -49.247            | Peak     | -37.000             | PASS    |  |  |
| 5925.000           | -51.128                     | 2.000                    | -49.128            | Peak     | -27.000             | PASS    |  |  |


|                    | IEEE 802.11ac VHT80         |                          |                    |          |                     |         |  |  |
|--------------------|-----------------------------|--------------------------|--------------------|----------|---------------------|---------|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm/1MHz) | Detector | Limit<br>(dBm/1MHz) | Verdict |  |  |
| 5650.000           | -50.905                     | 2.000                    | -48.905            | Peak     | -27.000             | PASS    |  |  |
| 5700.000           | -50.717                     | 2.000                    | -48.717            | Peak     | 10.000              | PASS    |  |  |
| 5720.000           | -49.894                     | 2.000                    | -47.894            | Peak     | 15.600              | PASS    |  |  |
| 5725.000           | -48.509                     | 2.000                    | -46.509            | Peak     | 27.000              | PASS    |  |  |
| 5850.000           | -61.710                     | 2.000                    | -59.710            | Peak     | 27.000              | PASS    |  |  |
| 5855.000           | -61.291                     | 2.000                    | -59.291            | Peak     | 15.600              | PASS    |  |  |
| 5875.000           | -62.033                     | 2.000                    | -60.033            | Peak     | -37.000             | PASS    |  |  |
| 5925.000           | -62.157                     | 2.000                    | -60.157            | Peak     | -27.000             | PASS    |  |  |


SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AKZSM-600 Report No.: LCS170613065AE


#### Remark:

- 1. Measured undesirable emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT410 and IEEE 802.11ac VHT80;
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. Please refer following test plots;

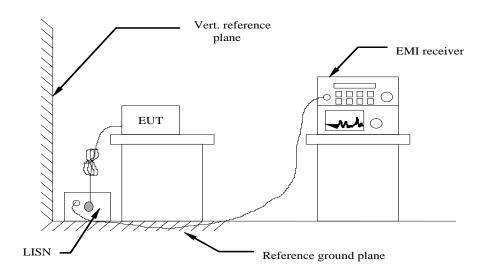








#### 5.8. Power line conducted emissions


## 5.8.1 Standard Applicable

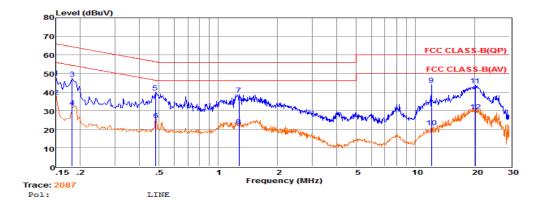
According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

| Frequency Range | Limits (dBµV) |          |  |  |
|-----------------|---------------|----------|--|--|
| (MHz)           | Quasi-peak    | Average  |  |  |
| 0.15 to 0.50    | 66 to 56      | 56 to 46 |  |  |
| 0.50 to 5       | 56            | 46       |  |  |
| 5 to 30         | 60            | 50       |  |  |

<sup>\*</sup> Decreasing linearly with the logarithm of the frequency

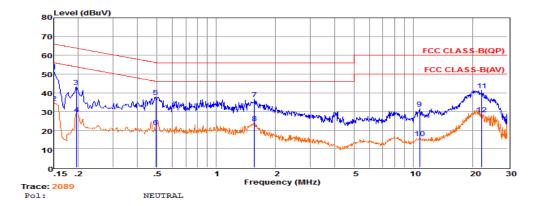
### 5.7.2 Block Diagram of Test Setup




### 5.7.3 Test Results

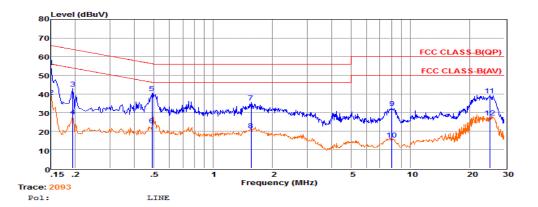
#### PASS.

The test data please refer to following page.


| Temperature   | 23.7℃        | Humidity     | 50.8%                       |
|---------------|--------------|--------------|-----------------------------|
| Test Engineer | Jayden Zhuo  | Test Date    | July 07, 2017               |
| Test Mode     | IEEE 802.11a | Test Voltage | AC 120V/60Hz & AC 240V/60Hz |

# AC Conducted Emission @ AC 120V/60Hz @ IEEE 802.11a (worst case)

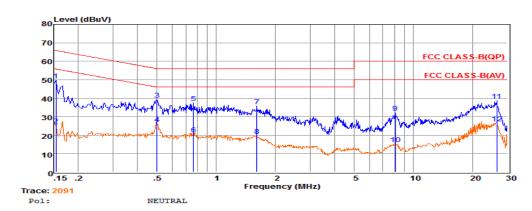



|    | Freq  | Reading | LISNFac | CabLos | Aux2Fac | Measu: | red Limit | Over   | Remark  |
|----|-------|---------|---------|--------|---------|--------|-----------|--------|---------|
|    | MHz   | dBuV    | dB      | dB     | dB      | dB     | dBuV      | dBuV   | dB      |
| 1  | 0.15  | 28.44   | 9.57    | 0.02   | 10.00   | 48.03  | 66.00     | -17.97 | QP      |
| 2  | 0.15  | 17.94   | 9.57    | 0.02   | 10.00   | 37.53  | 55.99     | -18.46 | Average |
| 3  | 0.18  | 27.78   | 9.61    | 0.02   | 10.00   | 47.41  | 64.42     | -17.01 | QP      |
| 4  | 0.18  | 12.07   | 9.61    | 0.02   | 10.00   | 31.70  | 54.41     | -22.71 | Average |
| 5  | 0.48  | 20.24   | 9.62    | 0.04   | 10.00   | 39.90  | 56.32     | -16.42 | QP      |
| 6  | 0.48  | 5.47    | 9.62    | 0.04   | 10.00   | 25.13  | 46.32     | -21.19 | Average |
| 7  | 1.28  | 18.98   | 9.63    | 0.05   | 10.00   | 38.66  | 56.00     | -17.34 | QP      |
| 8  | 1.28  | 2.14    | 9.63    | 0.05   | 10.00   | 21.82  | 46.00     | -24.18 | Average |
| 9  | 12.06 | 24.09   | 9.70    | 0.09   | 10.00   | 43.88  | 60.00     | -16.12 | QP      |
| 10 | 12.06 | 1.25    | 9.70    | 0.09   | 10.00   | 21.04  | 50.00     | -28.96 | Average |
| 11 | 20.06 | 23.87   | 9.76    | 0.12   | 10.00   | 43.75  | 60.00     | -16.25 | QP      |
| 12 | 20.06 | 9.72    | 9.76    | 0.12   | 10.00   | 29.60  | 50.00     | -20.40 | Average |

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.



|         | Freq  | Reading       | LISNFac      | CabLos | Aux2Fac | Measu: | red Limit      | Over             | Remark        |
|---------|-------|---------------|--------------|--------|---------|--------|----------------|------------------|---------------|
|         | MHz   | dBuV          | dB           | dB     | dB      | dB     | dBuV           | dBuV             | dB            |
| 1 2     | 0.15  | 31.68         | 9.70         | 0.02   | 10.00   |        | 66.00          | -14.60<br>-21.50 | QP<br>Average |
| 3       | 0.20  | 23.36         | 9.60         | 0.02   | 10.00   | 42.98  | 63.80          | -20.82           | QP            |
| 4<br>5  | 0.20  | 9.01<br>17.97 | 9.60<br>9.62 | 0.02   | 10.00   |        | 53.80<br>56.10 | -25.17<br>-18.47 | Average<br>OP |
| 6       | 0.49  | 2.17          | 9.62         | 0.04   | 10.00   |        | 46.10          | -24.27           | Average       |
| 8       | 1.56  | 16.75<br>4.22 | 9.63<br>9.63 | 0.05   | 10.00   |        | 56.00<br>46.00 | -19.57<br>-22.10 | QP<br>Average |
| 9<br>10 | 10.73 | 11.77         | 9.72         | 0.08   | 10.00   |        | 60.00<br>50.00 | -28.43<br>-34.26 | QP<br>Average |
| 11      | 22.18 | 21.38         | 9.81<br>9.81 | 0.12   | 10.00   | 41.31  | 60.00<br>50.00 | -18.69<br>-21.45 | QP<br>Average |


## AC Conducted Emission @ AC 240V/50Hz @ IEEE 802.11b (worst case)



|    | Freq  | Reading | LISNFac | CabLos | Aux2Fac | Measu: | red Limit | 0ver   | Remark  |
|----|-------|---------|---------|--------|---------|--------|-----------|--------|---------|
|    | MHz   | dBuV    | dB      | dB     | dB      | dB     | dBuV      | dBuV   | dB      |
| 1  | 0.15  | 34.94   | 9.57    | 0.02   | 10.00   | 54.53  | 66.00     | -11.47 | QP      |
| 2  | 0.15  | 18.84   | 9.57    | 0.02   | 10.00   | 38.43  | 55.99     | -17.56 | Average |
| 3  | 0.19  | 23.07   | 9.62    | 0.02   | 10.00   | 42.71  | 63.84     | -21.13 | QP      |
| 4  | 0.19  | 8.41    | 9.62    | 0.02   | 10.00   | 28.05  | 53.84     | -25.79 | Average |
| 5  | 0.49  | 20.67   | 9.62    | 0.04   | 10.00   | 40.33  | 56.19     | -15.86 | QP      |
| 6  | 0.49  | 3.49    | 9.62    | 0.04   | 10.00   | 23.15  | 46.18     | -23.03 | Average |
| 7  | 1.55  | 15.65   | 9.64    | 0.05   | 10.00   | 35.34  | 56.00     | -20.66 | QP      |
| 8  | 1.55  | 0.90    | 9.64    | 0.05   | 10.00   | 20.59  | 46.00     | -25.41 | Average |
| 9  | 8.06  | 12.54   | 9.68    | 0.07   | 10.00   | 32.29  | 60.00     | -27.71 | QP      |
| 10 | 8.06  | -4.42   | 9.68    | 0.07   | 10.00   | 15.33  | 50.00     | -34.67 | Average |
| 11 | 25.19 | 19.49   | 9.71    | 0.13   | 10.00   | 39.33  | 60.00     | -20.67 | QP      |
| 12 | 25.19 | 7.58    | 9.71    | 0.13   | 10.00   | 27.42  | 50.00     | -22.58 | Average |

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.
2. The emission levels that are 20dB below the official

limit are not reported.



|    | Freq  | Reading | LISNFac | CabLos | Aux2Fac | Measu | red Limi | t Over | Remark  |
|----|-------|---------|---------|--------|---------|-------|----------|--------|---------|
|    | MHz   | dBuV    | dB      | dB     | dB      | dB    | dBuV     | dBuV   | dB      |
| 1  | 0.15  | 29.93   | 9.69    | 0.02   | 10.00   | 49.64 | 65.78    | -16.14 | QP      |
| 2  | 0.15  | 5.65    | 9.69    | 0.02   | 10.00   | 25.36 | 55.77    | -30.41 | Average |
| 3  | 0.50  | 19.57   | 9.62    | 0.04   | 10.00   | 39.23 | 56.00    | -16.77 | QP      |
| 4  | 0.50  | 6.38    | 9.62    | 0.04   | 10.00   | 26.04 | 46.00    | -19.96 | Average |
| 5  | 0.77  | 17.78   | 9.63    | 0.04   | 10.00   | 37.45 | 56.00    | -18.55 | QP      |
| 6  | 0.77  | 0.70    | 9.63    | 0.04   | 10.00   | 20.37 | 46.00    | -25.63 | Average |
| 7  | 1.61  | 15.87   | 9.63    | 0.05   | 10.00   | 35.55 | 56.00    | -20.45 | QP      |
| 8  | 1.61  | -0.01   | 9.63    | 0.05   | 10.00   | 19.67 | 46.00    | -26.33 | Average |
| 9  | 8.11  | 12.44   | 9.70    | 0.07   | 10.00   | 32.21 | 60.00    | -27.79 | QP      |
| 10 | 8.11  | -4.73   | 9.70    | 0.07   | 10.00   | 15.04 | 50.00    | -34.96 | Average |
| 11 | 26.42 | 18.73   | 9.83    | 0.13   | 10.00   | 38.69 | 60.00    | -21.31 | QP      |
| 12 | 26.42 | 6.44    | 9.83    | 0.13   | 10.00   | 26.40 | 50.00    | -23.60 | Average |

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

<sup>\*\*\*</sup>Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a).

#### 5.9. Antenna Requirements

#### 5.9.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### 5.8.2 Antenna Connected Construction

#### 5.8.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 5.8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 2.0 dBi. The use external and reverse SMA connector meets §15.203 antenna requirement. Please see EUT photo for details

#### 5.8.2.3. Results: Compliance.

#### Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for U-NII devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

#### **Measurement parameters**

| Measurement parameter |          |  |  |  |
|-----------------------|----------|--|--|--|
| Detector:             | Peak     |  |  |  |
| Sweep Time:           | Auto     |  |  |  |
| Resolution bandwidth: | 1MHz     |  |  |  |
| Video bandwidth:      | 3MHz     |  |  |  |
| Trace-Mode:           | Max hold |  |  |  |

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For WLAN devices, the OFDM (IEEE 802.11a) mode is used;

# Limits

| FCC          | IC |  |  |  |  |
|--------------|----|--|--|--|--|
| Antenna Gain |    |  |  |  |  |
| 6 dBi        |    |  |  |  |  |

| T <sub>nom</sub>                                      | $V_{nom}$ | Lowest Channel<br>5180 MHz | Middle Channel<br>5220 MHz | Highest Channel<br>5240 MHz |  |
|-------------------------------------------------------|-----------|----------------------------|----------------------------|-----------------------------|--|
| Conducted power [dBm]  Measured with  OFDM modulation |           | -1.328                     | -0.568                     | -1.568                      |  |
| Radiated power [dBm]  Measured with  OFDM modulation  |           | 1.578                      | 1.626                      | 1.677                       |  |
| Gain [dBi] Calculated                                 |           | 0.250                      | 1.058                      | 0.109                       |  |
| Measurement uncertainty                               |           |                            | ± 1.6 dB (cond.)           | / ± 3.8 dB (rad.)           |  |

| T <sub>nom</sub>                                      | V <sub>nom</sub> | Lowest Channel<br>5745 MHz | Middle Channel<br>5785 MHz | Highest Channel<br>5825 MHz |  |
|-------------------------------------------------------|------------------|----------------------------|----------------------------|-----------------------------|--|
| Conducted power [dBm]  Measured with  OFDM modulation |                  | 3.799                      | 4.874                      | 5.312                       |  |
| Radiated power [dBm] Measured with OFDM modulation    |                  | 5.505                      | 6.607                      | 7.093                       |  |
| Gain [dBi] Calculated                                 |                  | 1.706                      | 1.733                      | 1.781                       |  |
| M                                                     | easurement unce  | ertainty                   | ± 1.6 dB (cond.)           | / ± 3.8 dB (rad.)           |  |

# **6. LIST OF MEASURING EQUIPMENTS**

| Instrument                    | Manufacturer      | Model No.                        | Serial No.  | Characteristics | Cal Date         | Due Date         |
|-------------------------------|-------------------|----------------------------------|-------------|-----------------|------------------|------------------|
| EMC Receiver                  | R&S               | ESCS 30                          | 100174      | 9kHz – 2.75GHz  | June 18, 2017    | June 17, 2018    |
| Signal analyzer               | Agilent           | E4448A(External mixers to 40GHz) | US44300469  | 9kHz~40GHz      | July 16, 2016    | July 15, 2017    |
| Signal analyzer               | Agilent           | N9020A                           | MY50510140  | 9kHz~26.5GHz    | October 27, 2016 | October 27, 2017 |
| LISN                          | MESS Tec          | NNB-2/16Z                        | 99079       | 9KHz-30MHz      | June 18, 2017    | June 17, 2018    |
| LISN<br>(Support Unit)        | EMCO              | 3819/2NM                         | 9703-1839   | 9KHz-30MHz      | June 18, 2017    | June 17, 2018    |
| RF Cable-CON                  | UTIFLEX           | 3102-26886-4                     | CB049       | 9KHz-30MHz      | June 18, 2017    | June 17, 2018    |
| ISN                           | SCHAFFNER         | ISN ST08                         | 21653       | 9KHz-30MHz      | June 18, 2017    | June 17, 2018    |
| 3m Semi Anechoic<br>Chamber   | SIDT<br>FRANKONIA | SAC-3M                           | 03CH03-HY   | 30M-18GHz<br>3m | June 18, 2017    | June 17, 2018    |
| Amplifier                     | SCHAFFNER         | COA9231A                         | 18667       | 9kHz-2GHzz      | June 18, 2017    | June 17, 2018    |
| Amplifier                     | Agilent           | 8449B                            | 3008A02120  | 1GHz-26.5GHz    | July 16, 2016    | July 15, 2017    |
| Amplifier                     | MITEQ             | AMF-6F-260400                    | 9121372     | 26.5GHz-40GHz   | July 16, 2016    | July 15, 2017    |
| Loop Antenna                  | R&S               | HFH2-Z2                          | 860004/001  | 9KHz-30MHz      | June 18, 2017    | June 17, 2018    |
| By-log Antenna                | SCHWARZB<br>ECK   | VULB9163                         | 9163-470    | 30MHz-1GHz      | June 10, 2017    | June 09, 2018    |
| Horn Antenna                  | EMCO              | 3115                             | 6741        | 1GHz-18GHz      | June 10, 2017    | June 09, 2018    |
| Horn Antenna                  | SCHWARZB<br>ECK   | BBHA9170                         | BBHA9170154 | 15GHz-40GHz     | June 10, 2017    | June 09, 2018    |
| RF Cable-R03m                 | Jye Bao           | RG142                            | CB021       | 30MHz-1GHz      | June 18, 2017    | June 17, 2018    |
| RF Cable-HIGH                 | SUHNER            | SUCOFLEX 106                     | 03CH03-HY   | 1GHz-40GHz      | June 18, 2017    | June 17, 2018    |
| Power Meter                   | R&S               | NRVS                             | 100444      | DC-40GHz        | June 18, 2017    | June 17, 2018    |
| Power Sensor                  | R&S               | NRV-Z81                          | 100458      | DC-30GHz        | June 18, 2017    | June 17, 2018    |
| Power Sensor                  | R&S               | NRV-Z32                          | 10057       | 30MHz-6GHz      | June 18, 2017    | June 17, 2018    |
| AC Power Source               | HPC               | HPA-500E                         | HPA-9100024 | AC 0~300V       | June 18, 2017    | June 17, 2018    |
| DC power Source               | GW                | GPC-6030D                        | C671845     | DC 1V-60V       | June 18, 2017    | June 17, 2018    |
| Temp. and Humidigy<br>Chamber | Giant Force       | GTH-225-20-S                     | MAB0103-00  | N/A             | June 18, 2017    | June 17, 2018    |
| RF CABLE-1m                   | JYE Bao           | RG142                            | CB034-1m    | 20MHz-7GHz      | June 18, 2017    | June 17, 2018    |
| RF CABLE-2m                   | JYE Bao           | RG142                            | CB)35-2m    | 20MHz-1GHz      | June 18, 2017    | June 17, 2018    |
| EMI Test Software             | AUDIX             | E3                               | N/A         | N/A             | N/A              | N/A              |

Note: All equipment through GRGT EST calibration

# 7. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

# 8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

# 9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----