FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART E

Test Standard	FCC Part 15.407
FCC ID	2AKZA-PICOIMX7
Brand name	TechNexion
Product name	WiFi+Bluetooth 4.0(HS) System on Module
Model No.	PICO-IMX7
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Tainan Laboratory)

Approved by:

Tested by:

ED. Chiang

Jeter Wu Assistant Manager Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	September 20, 2017	Initial Issue	Vicki Huang
01	October 16, 2017	Modify UNII-3 Frequency Range in P.5, 10	Vicki Huang
02	October 23, 2017	 Added Radiation bandedge and spurious emission remark in P.41 Modify UNII-1 Limit in P.25, 27 Modify UNII-1 FCC Limit in P.29, 31 Modify duty cycle data in P.41 	Vicki Huang
03	October 25, 2017	1. Modify UNII-3 IEEE 802.11a Frequency Range in P.4, 5, 10	Vicki Huang

Table of contents

1.1	GENERAL INFORMATION4
1.2	EUT INFORMATION4
1.3	EUT CHANNEL INFORMATION5
1.4	ANTENNA INFORMATION
1.5	MEASUREMENT UNCERTAINTY6
1.6	FACILITIES AND TEST LOCATION
1.7	INSTRUMENT CALIBRATION
1.8	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.9	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMERY10
3.	DESCRIPTION OF TEST MODES11
3.1	THE WORST MODE OF OPERATING CONDITION11
3.2	THE WORST MODE OF MEASUREMENT12
3.3	EUT DUTY CYCLE
4.	TEST RESULT14
4.1	AC POWER LINE CONDUCTED EMISSION14
4.2	26DB BANDWIDTH, 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)17
4.3	OUTPUT POWER MEASUREMENT
4.4	POWER SPECTRAL DENSITY
4.5	RADIATION BANDEDGE AND SPURIOUS EMISSION41
4.6	FREQUENCY STABILITY111
API	PENDIX 1 - PHOTOGRAPHS OF EUT

1.1 GENERAL INFORMATION

1.2 EUT INFORMATION

Applicant	TechNexion Ltd. 16f-5, No.736, Zhongzheng Road, Zhonghe Dist., New Taipei City, 23511 Taiwan ROC					
Equipment	WiFi+Blue	etooth 4.0(HS) System	n on Modul	е		
Model Name	PICO-IMX	7				
Model Discrepancy	N/A					
Received Date	August 2	5, 2017				
Date of Test	August 3 ²	1 ~ September 19, 20	17			
Power Supply	Power fo	rm AC Adapter via cal	ble			
	Band	Mode	Frequency Range (MHz)	Output Power (W)	EIRP Output Power (w)	
		IEEE 802.11a	5180 ~ 5240	0.0286	0.0906	
Output Dowor(M/)	U-NII-1	IEEE 802.11n HT 20 MHz	5180 ~ 5240	0.0276	0.0873	
Output Power(W)	U-INII- I	IEEE 802.11n HT 40 MHz	5190 ~ 5230	0.0011	0.0034	
		IEEE 802.11ac VHT 80 MHz	5210	0.0011	0.0034	
		IEEE 802.11a	5745 ~ 5825	0.0385	-	
	U-NII-3	IEEE 802.11n HT 20 MHz	5745 ~ 5825	0.0264	-	
	U-INII-3	IEEE 802.11n HT 40 MHz	5755 ~ 5795	0.0279	-	
		IEEE 802.11ac VHT 80 MHz	5775	0.0233	-	

Remark: 1.

5600~5650MHz will be disabled.

For Canada the EUT Frequency Range

1.3 EUT CHANNEL INFORMATION

	UNII-1	
	IEEE 802.11a	5180 ~ 5240 MHz
	IEEE 802.11n HT 20 MHz	5180 ~ 5240 MHz
	IEEE 802.11n HT 40 MHz	5190 ~ 5230 MHz
	IEEE 802.11ac VHT 20 MHz	5180 ~ 5240 MHz
	IEEE 802.11ac VHT 40 MHz	5190 ~ 5230 MHz
Fraguanay Danga	IEEE 802.11ac VHT 80 MHz	5210 MHz
Frequency Range	UNII-3	
	IEEE 802.11a	5745 ~ 5825 MHz
	IEEE 802.11n HT 20 MHz	5745 ~ 5825 MHz
	IEEE 802.11n HT 40 MHz	5755 ~ 5795 MHz
	IEEE 802.11ac VHT 20 MHz	5745 ~ 5825 MHz
	IEEE 802.11ac VHT 40 MHz	5755 ~ 5795 MHz
	IEEE 802.11ac VHT 80 MHz	5775 MHz
Modulation Type	1. IEEE 802.11a mode: OFE 2. IEEE 802.11n HT 20 MHz 3. IEEE 802.11n HT 40 MHz 4. IEEE 802.11ac VHT 20 M 5. IEEE 802.11ac VHT 40 M 5. IEEE 802.11ac VHT 80 M	z mode: OFDM z mode: OFDM IHz mode: OFDM IHz mode: OFDM

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.4 ANTENNA INFORMATION

Antenna Type	🗌 PIFA 🗌 PCB 🔀 Dipole 🗌 Coils
Antenna Gain	Gain: 4dBi

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Eric Lee	
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.7 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018	
EMI Test Receiver	R&S	ESCS 30	100348	12/12/2016	12/11/2017	
LISN	SCHWARZBECK	NNLK8130	8130124	11/08/2016	11/07/2017	
LISN	FCC	FCC-LISN-50-32-2	08009	05/08/2017	05/07/2018	
Pulse Limiter	R&S	ESH3-Z2	100116	01/13/2017	01/12/2018	
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018	

	3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
Active Loop Antenna	ETS-LINDREN	6502	8905-2356	07/20/2017	07/19/2019	
Amplifier	HP	8447F	2443A01671	01/18/2017	01/17/2018	
Bi-Log Antenna	Sunol	JB1	A070506-2	07/22/2017	07/21/2018	
Cable	HUBER+SUHNER	SUCOFLEX 104PEA	SN25737 /4PEA	01/18/2017	01/17/2018	
Double Ridged Guide Horn Antenna	ETS-LINDGREN	3116	00078900	03/20/2017	03/19/2019	
EMI Test Receiver	R&S	ESCS 30	100294	12/02/2016	12/01/2017	
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	05/09/2017	05/08/2018	
Horn Antenna	Com-Power	AH-118	071032	02/09/2017	02/08/2018	
Pre-Amplifier	EMCI	EMC012645	980098	01/17/2017	01/16/2018	

AC Conducted Emissions Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018
EMI Test Receiver	R&S	ESCS 30	100348	12/12/2016	12/11/2017
Four BALACED PAIR ISN	FCC	F-071115-1057-1-09	111130	11/16/2016	11/15/2017
LISN	SCHWARZBECK	NNLK8130	8130124	11/08/2016	11/07/2017
LISN	FCC	FCC-LISN-50-32-2	08009	05/08/2017	05/07/2018
Pulse Limiter	R&S	ESH3-Z2	100116	01/13/2017	01/12/2018

Remark: Each piece of equipment is scheduled for calibration once a year.

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

		EUT Acc	cessories Equipm	ient	
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

		Suj	pport Equipm	ent	
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.407, KDB 662911 D01 v02r01, KDB 789033 D02 v01r03, KDB 644545 D03 v01.

2. TEST SUMMERY

FCC Standard	IC Standard Sec.	Chapter	Test Item	Result
Sec.				
15.203	-	1.2	Antenna Requirement	Pass
15.207	RSS-Gen(8.8)	4.1	AC Conducted Emission	Pass
15.403(i)	-	4.2	26dB Bandwidth	Pass
15.403(i)	RSS-247(6.2.4)	4.2	6dB Bandwidth	Pass
15.403(i)	RSS-Gen(6.6)	4.2	Occupied Bandwidth (99%)	Pass
	RSS-247(6.2.1)(1)			
15.407(a)	RSS-247(6.2.2)(1)	4.3	Output Power Measurement	Pass
15.407 (a)	RSS-247(6.2.3)(1)	4.5	Output Fower measurement	ra55
	RSS-247(6.2.4)(1)			
	RSS-247(6.2.1)(1)			
15.407(a)	RSS-247(6.2.2)(1)	4.4	Power Spectral Density	Pass
10.407 (a)	RSS-247(6.2.3)(1)	7.7	r ower opectial Density	1 033
	RSS-247(6.2.4)(1)			
	RSS-247(6.2.1)(2)			
15.407(b)	RSS-247(6.2.2)(2)	4.5	Radiation Band Edge	Pass
13.407(0)	RSS-247(6.2.3)(2)	4.5		F 035
	RSS-247(6.2.4)(2)			
	RSS-247(6.2.1)(2)			
15.407(b)	RSS-247(6.2.2)(2)	4.5	Radiation Spurious Emission	Pass
13.407(0)	RSS-247(6.2.3)(2)	4.5		r ass
	RSS-247(6.2.4)(2)			
15.407(g)	RSS-Gen(6.11)	4.6	Frequency Stability	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	2. IEEE 8 3. IEEE 8 4. IEEE 8 5. IEEE 8	02.11a mode: 6Mbps 02.11n HT 20 MHz m 02.11n HT 40 MHz m 02.11ac VHT 20 MHz 02.11ac VHT 40 MHz 02.11ac VHT 80 MHz	ode: MCS0 mode: MCS0 mode: MCS0	
		Mode	Frequency Range (MHz)	Number of Channels
		IEEE 802.11a	5180 ~ 5240	4 Channels
		IEEE 802.11n HT 20 MHz	5180 ~ 5240	4 Channels
	U-NII-1	IEEE 802.11n HT 40 MHz	5190 ~ 5230	2 Channels
Operating Frequency	0-111-1	IEEE 802.11ac VHT 20 MHz	5180 ~ 5240	4 Channels
Range &		IEEE 802.11ac VHT 40 MHz	5190 ~ 5230	2 Channels
Number of Channels		IEEE 802.11ac VHT 80 MHz	5210	1 Channels
		IEEE 802.11a	5745 ~ 5825	5 Channels
		IEEE 802.11n HT 20 MHz	5745 ~ 5825	5 Channels
	U-NII-3	IEEE 802.11n HT 40 MHz	5755 ~ 5795	2 Channels
	0-111-3	IEEE 802.11ac VHT 20 MHz	5745 ~ 5825	5 Channels
		IEEE 802.11ac VHT 40 MHz	5755 ~ 5795	2 Channels
		IEEE 802.11ac VHT 80 MHz	5775	1 Channels

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. Covered modes are test reduction modes. The output powers on the covered modes are equal to or less than the mode referenced and use the same module

3. The mode IEEE 802.11ac VHT20 and VHT40 are only different in control messages with IEEE 802.11n HT20 and HT40, and have same power setting. Therefore, the highest power(IEEE 802.11n HT20 and HT40) were test conducted and radiated measurement and recorded in this report.

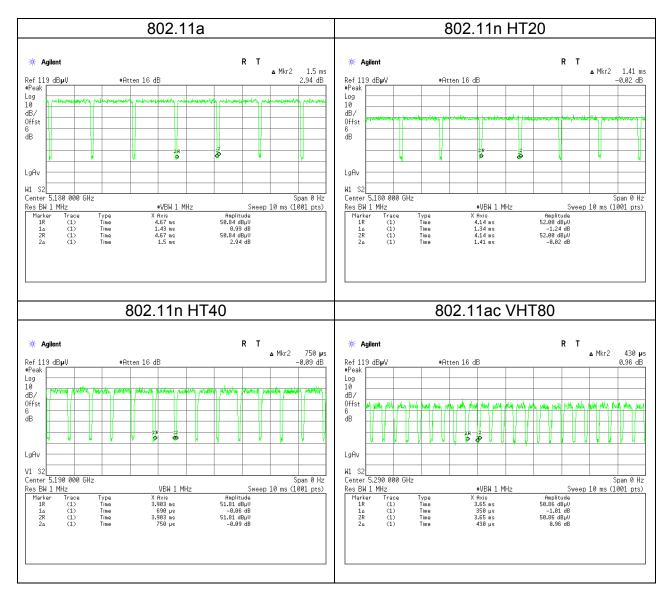
3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission
Test Condition	AC Power line conducted emission for line and neutral
Voltage/Hz	120V/60Hz
Test Mode	Mode 1:EUT power by AC adapter via power cable.
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4

F	Radiated Emission Measurement Above 1G
Test Condition	Band edge, Emission for Unwanted and Fundamental
Voltage/Hz	120V/60Hz
Test Mode	Mode 1:EUT power by AC adapter via power cable.
Worst Mode	🛛 🖾 Mode 1 🔲 Mode 2 🗌 Mode 3 🗌 Mode 4
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)
Worst Polarity	Horizontal 🗌 Vertical

F	Radiated Emission Measurement Below 1G
Test Condition	Radiated Emission Below 1G
Voltage/Hz	120V/60Hz
Test Mode	Mode 1:EUT power by AC adapter via power cable.
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

		Duty Cycle		
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)
802.11a	1.4300	1.5000	95.33%	0.21
802.11n HT20	1.3400	1.4100	95.04%	0.22
802.11n HT40	0.6900	0.7500	92.00%	0.36
802.11ac VHT80	0.3500	0.4300	81.40%	0.89

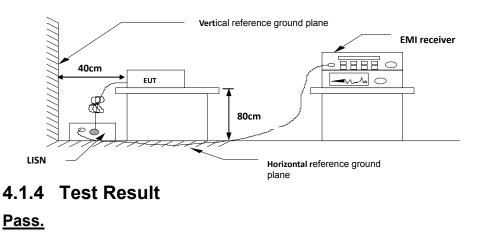
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

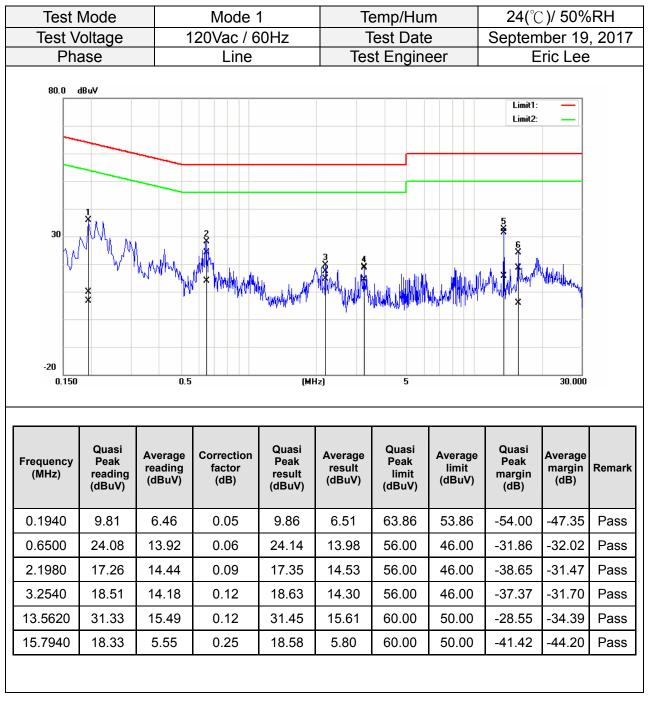
4.1.1 Test Limit

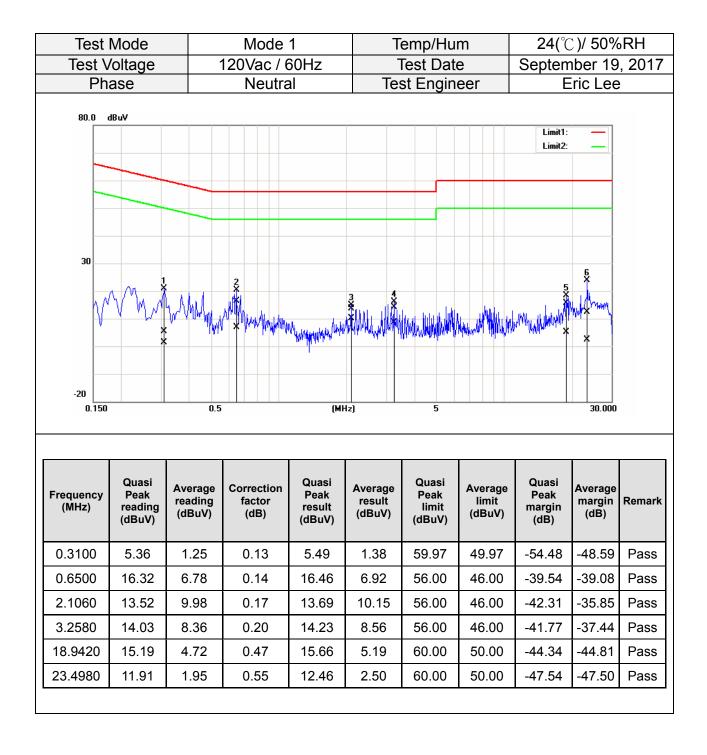
According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dB	μV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure


Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

<u>Test Data</u>

4.2 26DB BANDWIDTH, 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

<u>26 dB Bandwidth</u> : For reporting purposes only.

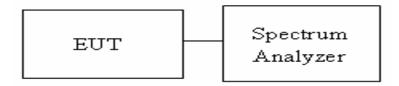
6 dB Bandwidth : Least 500kHz.

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r03 Section C, D, and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. UNII-1, UNII-2a and UNII-2c,

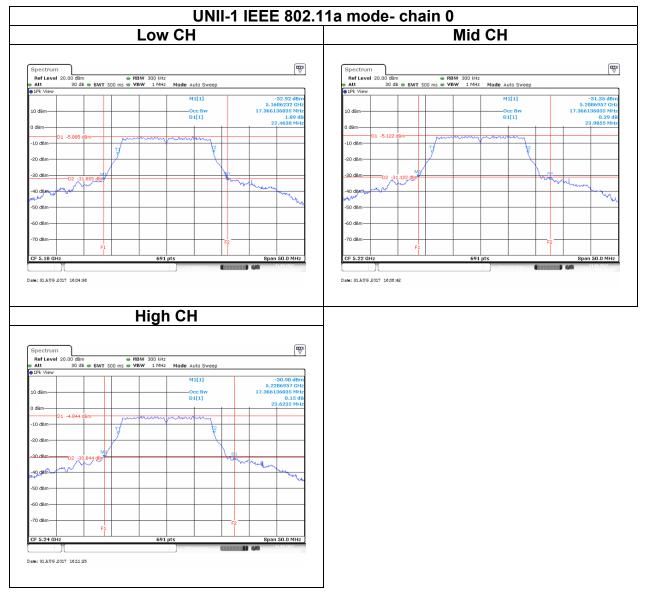

(1) BW=20MHz : SA set RBW = 300kHz, VBW = 1MHz and Detector = Peak, to measurement 26 dB Bandwidth and 99% Bandwidth

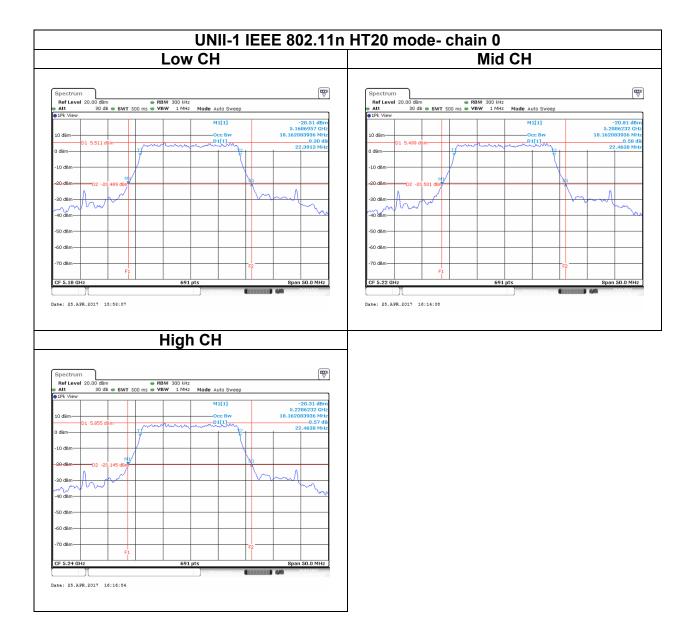
(2) BW=40MHz : SA set RBW = 1MHz, VBW = 3MHz and Detector = Peak, to measurement 26 dB Bandwidth and 99% Bandwidth

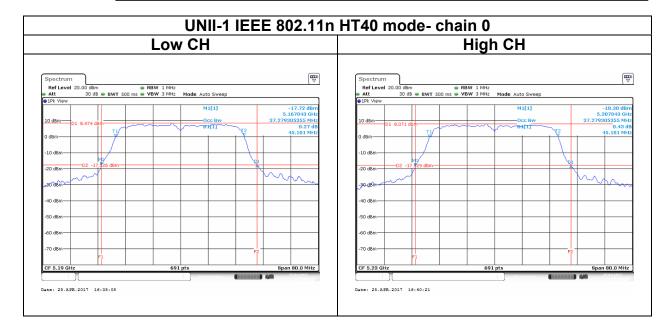
(3) BW=80MHz : SA set RBW = 1MHz, VBW = 3MHz and Detector = Peak, to measurement 26 dB Bandwidth and 99% Bandwidth

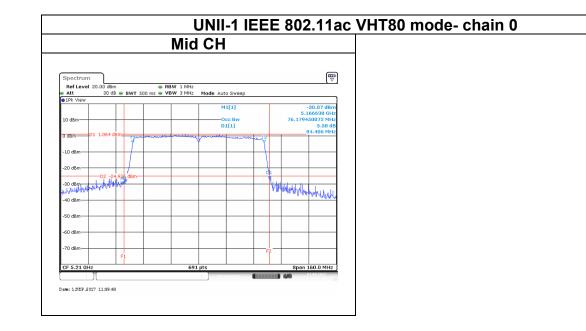
- 4. UNII-3, SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

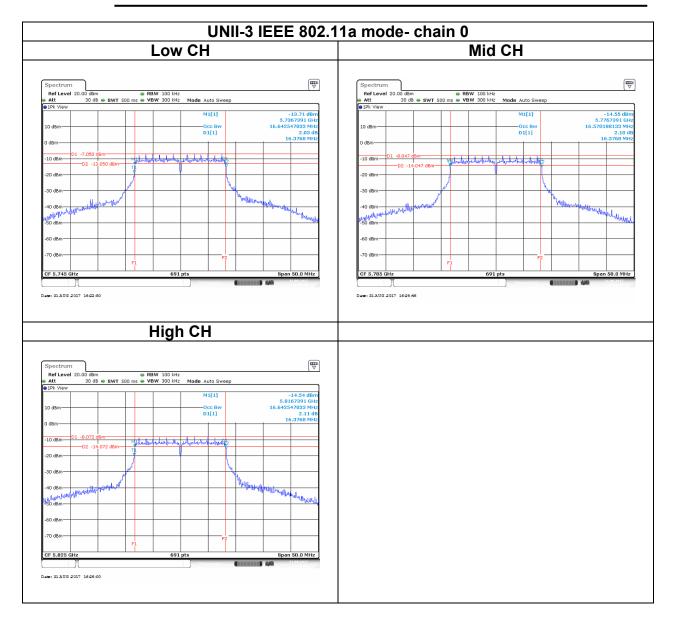
4.2.3 Test Setup

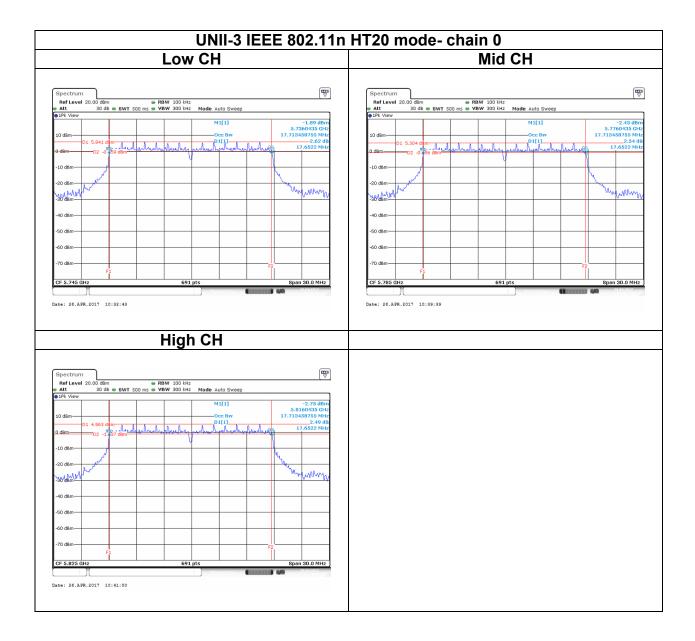


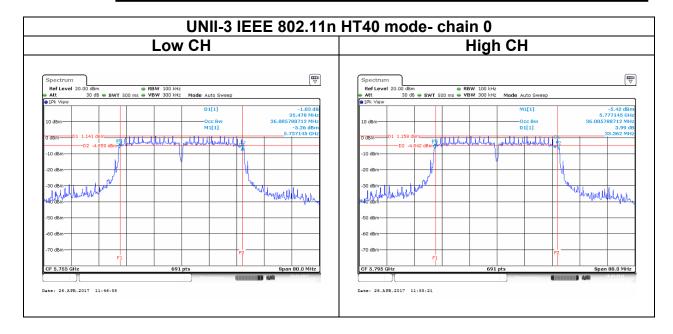

4.2.4 Test Result


		UNII	-1		
	Tes	st mode: IEEE	802.11a mode		
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 26dB BW (MHz)	Chain 1 26dB BW (MHz)
Low	5180	17.3661	-	22.4638	-
Mid	5220	17.3661	-	23.9855	-
High	5240	17.3661	-	23.6232	-
	Test n	node: IEEE 802	2.11n HT20 mo	de	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 26dB BW (MHz)	Chain 1 26dB BW (MHz)
Low	5180	18.1620	-	22.3913	-
Mid	5220	18.1620	-	22.4638	-
High	5240	18.1620	-	22.4638	-
	Test n	node: IEEE 802	2.11n HT40 mo	de	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 26dB BW (MHz)	Chain 1 26dB BW (MHz)
Low	5190	37.2793	-	45.101	-
High	5230	37.2793	-	45.101	-
	Test m	ode: IEEE 802.	11ac VHT80 m	ode	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 26dB BW (MHz)	Chain 1 26dB BW (MHz)
Mid	5210	76.1794		84.406	


		UN	II-3		
	Т	est mode: IEEI	E 802.11a mode	l.	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)
Low	5745	16.6425		16.3768	
Mid	5785	16.5701		16.3768	
High	5825	16.6425		16.3768	
	Test	t mode: IEEE 8	02.11n HT20 mc	ode	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)
Low	5745	17.7134		17.6522	
Mid	5785	17.7134		17.6522	
High	5825	17.7134		17.6522	
	Test	t mode: IEEE 8	02.11n HT40 mc	ode	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)
Low	5755	36.0057		35.478	
High	5795	36.0057		35.362	
	Test	mode: IEEE 802	2.11ac VHT80 m	node	
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (MHz)	Chain 1 6dB BW (MHz)
Mid	5775	75.7163		76.058	


<u>Test Data</u>





	UNII-3 IEE	E 802.11ac
	Mid CH	
		_
Spectrum Ref Level 20.00 dBm	• RBW 100 kHz	
	S WBW 300 kHz Mode Auto Sweep]
10 dBm	M1[1] Occ Bw	-9.19 dBm 5.736739 GHz 75.716353111 MHz
0 d8m-	D1[1]	0.32 dB 76.058 MHz
-20 dBm		
		,
-30 dBm 		had a plane when the and the life
-50 d8m		
-60 dBm		
-70 dBm	F2	
CF 5.775 GHz	691 pts	Span 160.0 MHz
		01.05-2017
: 1.8EP 2017 11:17:21		

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

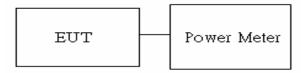
According to §15.407 (a)(1), 15.407(a)(2) and 15.407(a)(3) and RSS-247 section 6.2.1(1), section 6.2.2(1), section 6.2.3(1) and section 6.2.4(1)

<u>UNII-1 :</u>

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>UNII-3:</u>

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


UNII-1 Limit	 Antenna not exceed 6 dBi : 30dBm (EIRP : 23dBm) Antenna with DG greater than 6 dBi : [Limit = 24 - (DG - 6)]
UNII-3 Limit	 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi : [Limit = 24 - (DG - 6)]

4.3.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r03, Section E.3.b.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Conducted output power :

	UNII-1												
Config CH	Freq.	Power Set		AV Power(dBm)		AV Total Power	EIRP AV Total	AV Total Power	EIRP AV Total	DG	Limit	EIRP Limit	
	on	(MHz)	chain0	chain1	chain0	chain1	(dBm)	Power (dBm)	(W)	Power (W)	(dBi)	(dBm)	(dBm)
	36	5180	32.00	1	14.57	-	14.57	18.57	0.0286	0.0719	4 30		23
IEEE 802.11a	44	5220	32.00	-	14.41	-	14.41	18.41	0.0276	0.0693		30	
	48	5240	32.00	-	14.01	1	14.01	18.01	0.0252	0.0632			
	36	5180	32.00	-	14.21	-	14.21	18.21	0.0264	0.0662			
IEEE 802.11n HT20	44	5220	32.00	1	14.41	I	14.41	18.41	0.0276	0.0693			
	48	5240	32.00	-	14.01	-	14.01	18.01	0.0252	0.0632			
IEEE 802.11n	38	5190	11.00	-	10.51	-	10.51	14.51	0.0112	0.0282			
HT40	46	5230	32.00	-	13.86	-	13.86	17.86	0.0243	0.0611			
IEEE 802.11ac VHT80	42	5210	10.00	-	8.47	-	8.47	12.47	0.0070	0.0177			

UNII-3										
Config	СН	Freq. (MHz)	Power Set		AV Power(dBm)		AV Total Power	AV Total Power	DG	Limit
			chain0	chain1	chain0	chain1	(dBm)	(W)	(dBi)	(dBm)
IEEE 802.11a	149	5745	32	-	15.85	-	15.85	0.0385		
	157	5785	32	-	15.11	-	15.11	0.0324		
	165	5825	32	-	15.13	-	15.13	0.0326		
IEEE	149	5745	32	-	14.21	-	14.21	0.0264		
802.11n HT20	157	5785	32	-	13.64	-	13.64	0.0231		
	165	5825	32	-	13.61	-	13.61	0.0230	4	30
IEEE 802.11n	151	5755	32	-	14.46	-	14.46	0.0279		
HT40	159	5795	32	-	13.97	-	13.97	0.0249		
IEEE 802.11ac VHT80	155	5775	32	-	13.68	-	13.68	0.0233		

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.407 (a)(1), 15.407(a)(2) and 15.407(a)(3) and RSS-247 section 6.2.1(1), section 6.2.2(1), section 6.2.3(1) and section 6.2.4(1)

<u>UNII-1 :</u>

FCC: The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

IC: The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

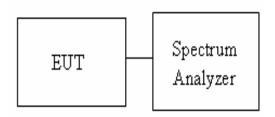
UNII-2a and 2c:

The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>UNII-3:</u>

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.i.

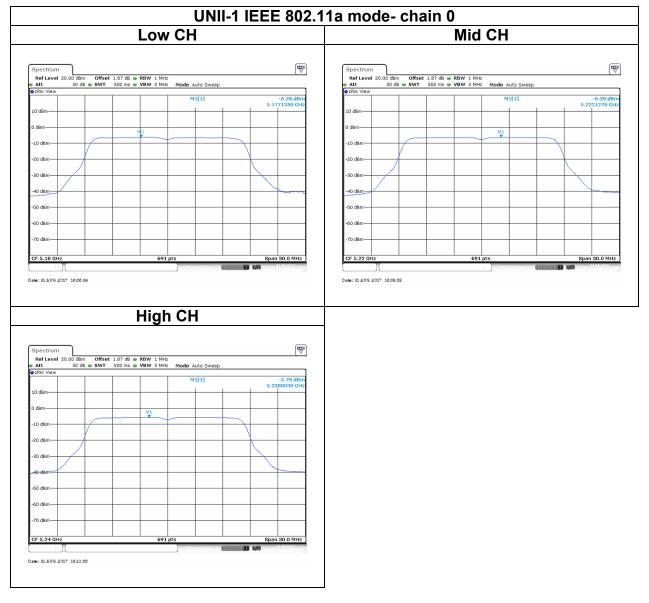

UNII-1 Limit	 Antenna not exceed 6 dBi : 17 dBm (EIRP : 10 dBm) Antenna with DG greater than 6 dBi : [Limit = 11 – (DG – 6)]
UNII-3 Limit	 Antenna not exceed 6 dBi : 30 dBm Antenna with DG greater than 6 dBi : [Limit = 30 – (DG – 6)]

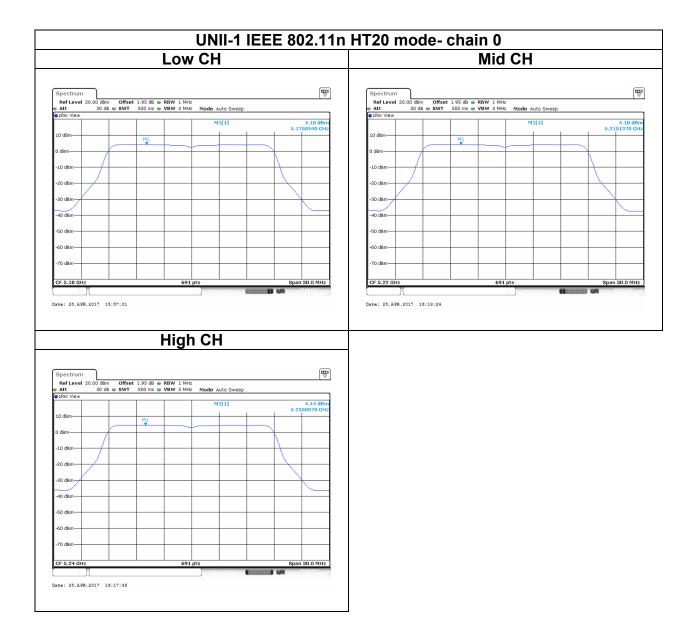
4.4.2 Test Procedure

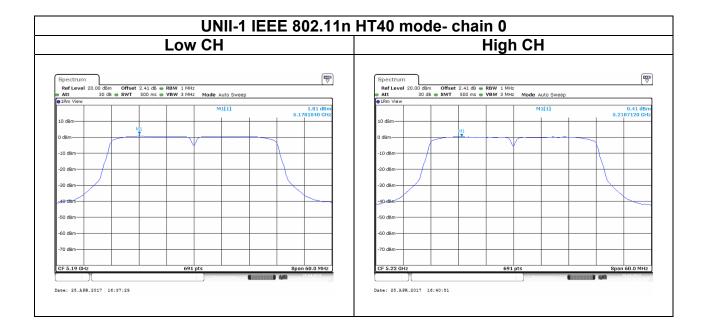
Test method Refer as KDB 789033 D02 v01r03, Section F

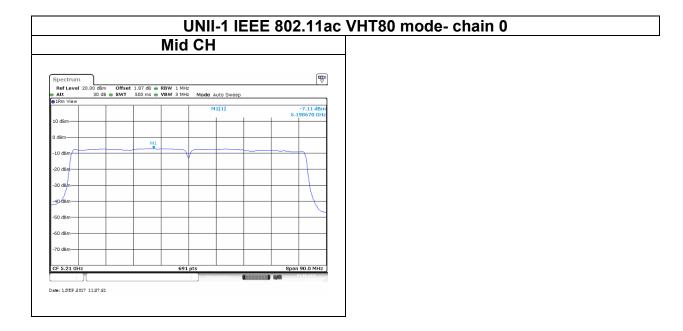
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. UNII-1, UNII-2a and UNII-2c, SA set RBW = 1MHz, VBW = 3MHz and Detector = RMS, to measurement Power Density.
- 4. UNII-3, SA set RBW = 500kHz, VBW = 2MHz and Detector = RMS, to measurement Power Density
- 5. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 6. Mark the maximum level.
- 7. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

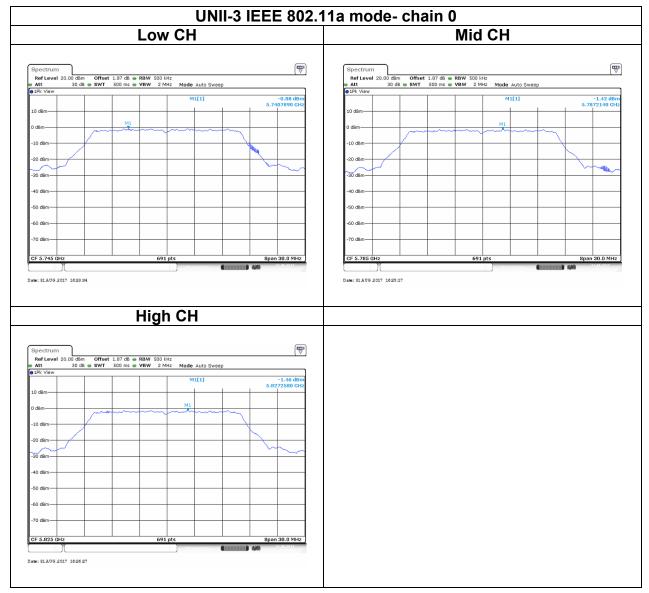


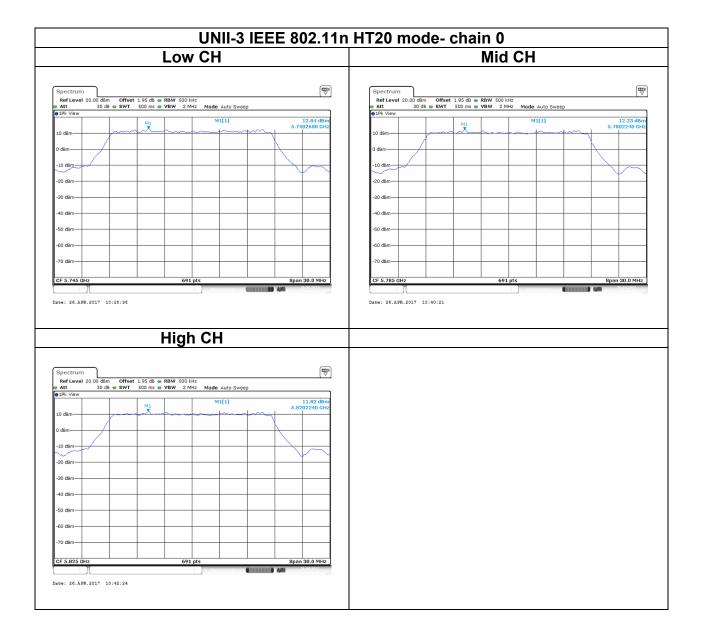

4.4.4 Test Result

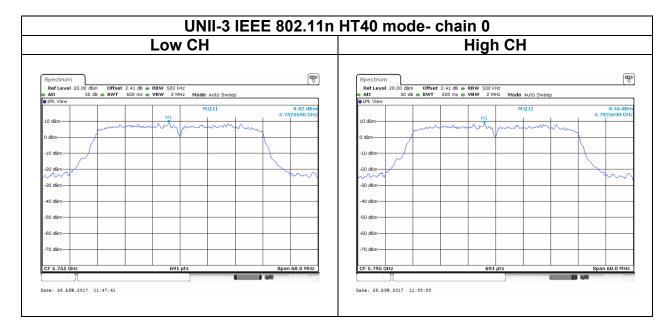

UNII-1						
Test mode: IEEE 802.11a mode						
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	EIRP Limit (dBm)		
Low	5180	-6.28				
Mid	5220	-6.39	17	10		
High	5240	-5.79				
Tes	st mode: IEE	E 802.11r	n HT20 m	node		
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	EIRP Limit (dBm)		
Low	5180	4.10				
Mid	5220	4.18	17	10		
High	5240	4.44				
Tes	t mode: IEE	E 802.11r	n HT40 m	node		
Channel Frequency (MHz)		PPSD (dBm)	Limit (dBm)	EIRP Limit (dBm)		
Low	5190	1.81	17	10		
High	5230	0.41	17	10		
Test mode: IEEE 802.11ac VHT80 mode						
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	EIRP Limit (dBm)		
Mid	5210	-7.11	17	10		

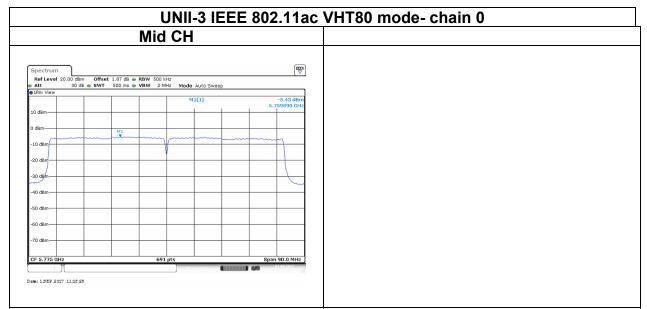

UNII-3							
Tes	Test mode: IEEE 802.11a mode						
Channel	Frequency PPSD (MHz) (dBm)		Limit (dBm)				
Low	5745	-0.88					
Mid	5785	-1.42	30				
High	5825	-1.46					
Test m	ode: IEEE 802.1	1n HT20 m	ode				
Channel	Frequency (MHz)	Limit (dBm)					
Low	5745	12.84					
Mid	5785	12.23	30				
High	5825	11.82					
Test m	ode: IEEE 802.1	1n HT40 m	ode				
Channel	Frequency PPSD (MHz) (dBm)		Limit (dBm)				
Low	5755	8.82	20				
High	5795	8.46	- 30				
Test mode: IEEE 802.11ac VHT80 mode							
Channel	Frequency PPSD (MHz) (dBm)		Limit (dBm)				
Mid	5775	-5.43	30				

<u>Test Data</u>









<u>Test Data</u>

4.5 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

FCC according to §15.407, §15.209 and §15.205,

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

<u>Above 30 MHz</u>

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

IC according to RSS-247 section 6.2.1(2), section 6.2.2(2), section 6.2.3(2) and section 6.2.4(2)

<u>UNII-1 :</u>

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz

UNII-2a and 2c :

For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only." Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p.

<u>UNII-3:</u>

For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p. For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz

4.5.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r03, Section G.3, G.4, G.5, and G.6,.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

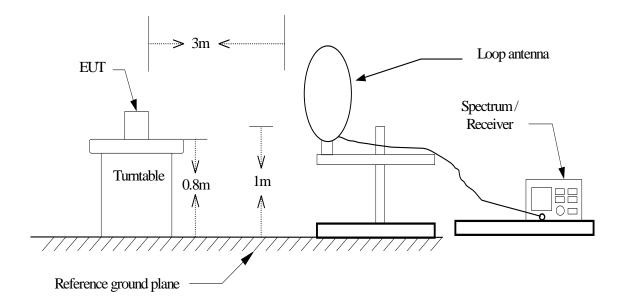
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

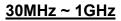
3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

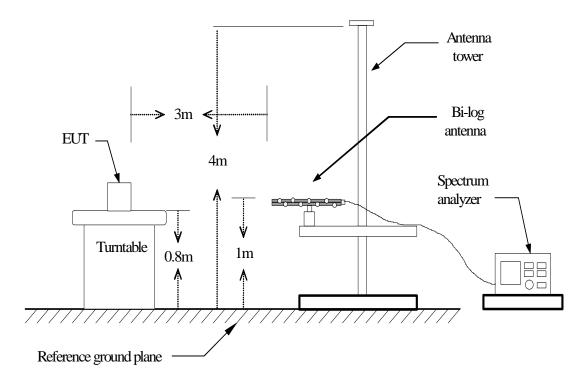
Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4. The SA setting following :

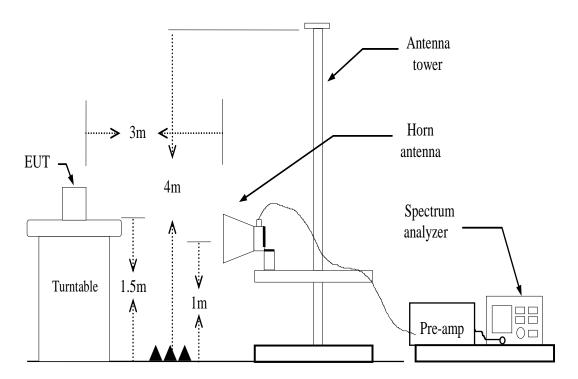

- (1) Below 1G : RBW = 100kHz, VBW ≥ 3*RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW


If Duty Cycle \geq 98%, VBW=10Hz.


If Duty Cycle < 98%, VBW=1/T.

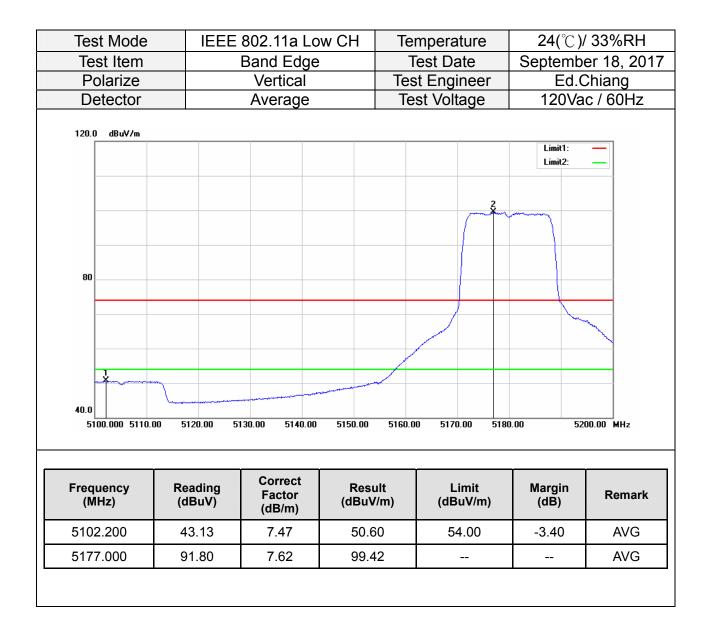
Configuration	Duty Cycle (%)	VBW
802.11a	95%	750Hz
802.11n HT20	95%	750Hz
802.11n HT40	92%	1.5KHz
802.11ac VHT80	81%	3KHz

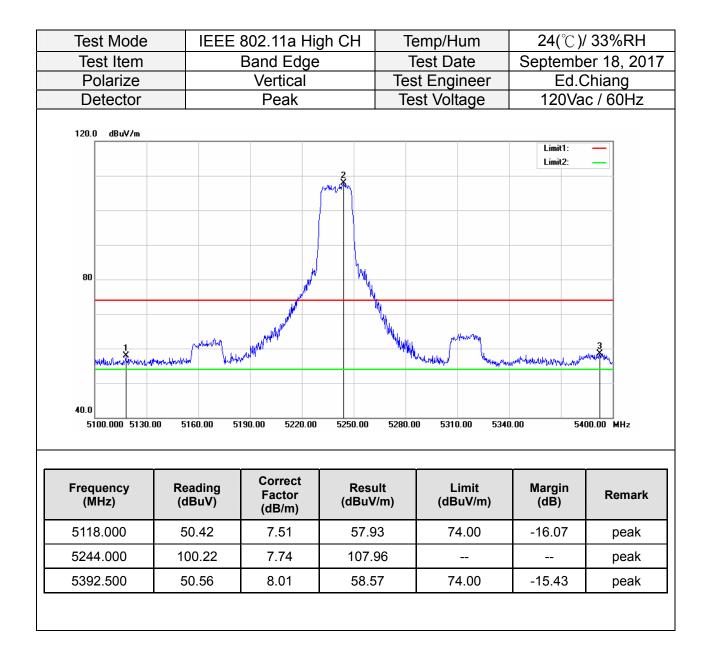
4.5.3 Test Setup <u>9kHz ~ 30MHz</u>

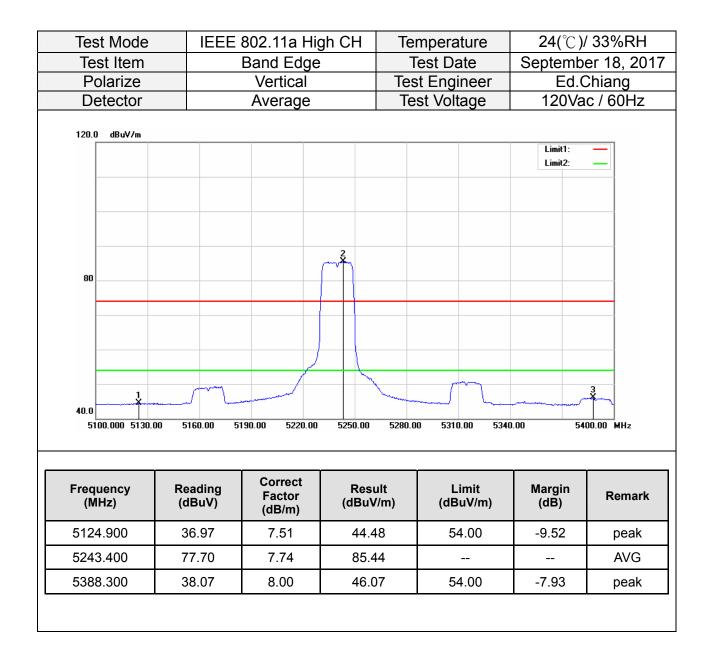


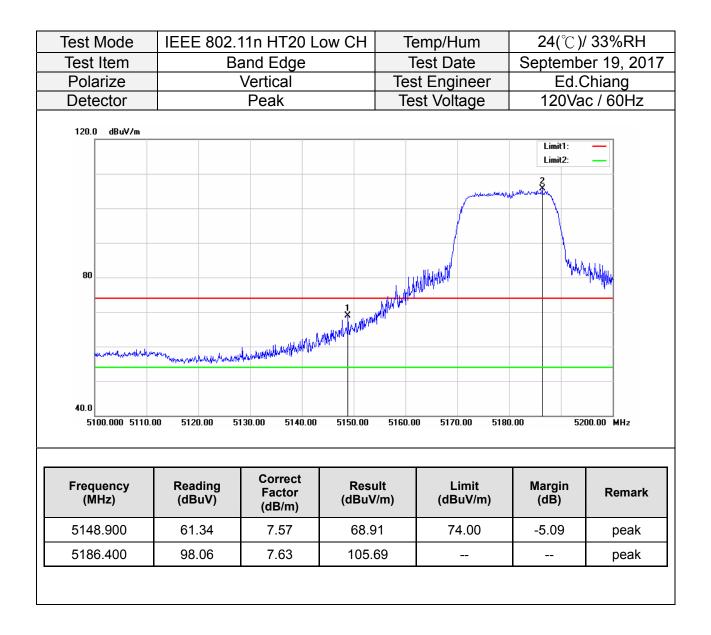
EESRE Compliance Certification Services Inc.

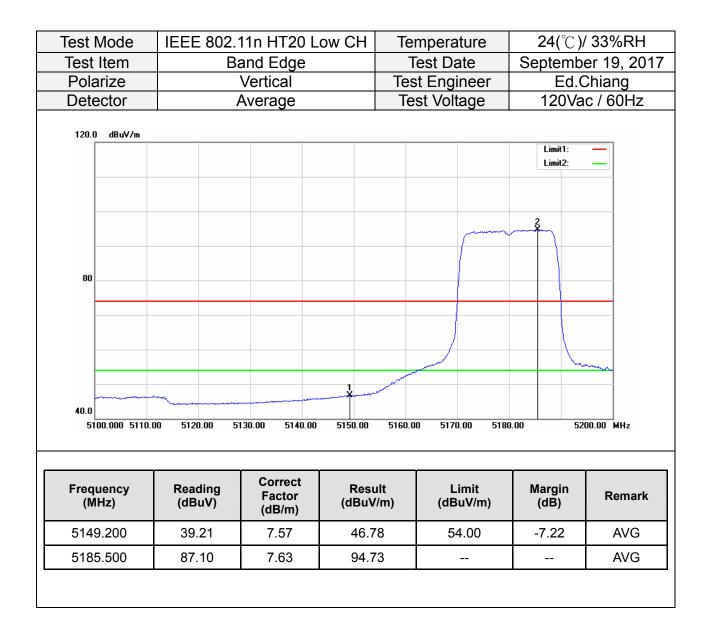
Above 1 GHz

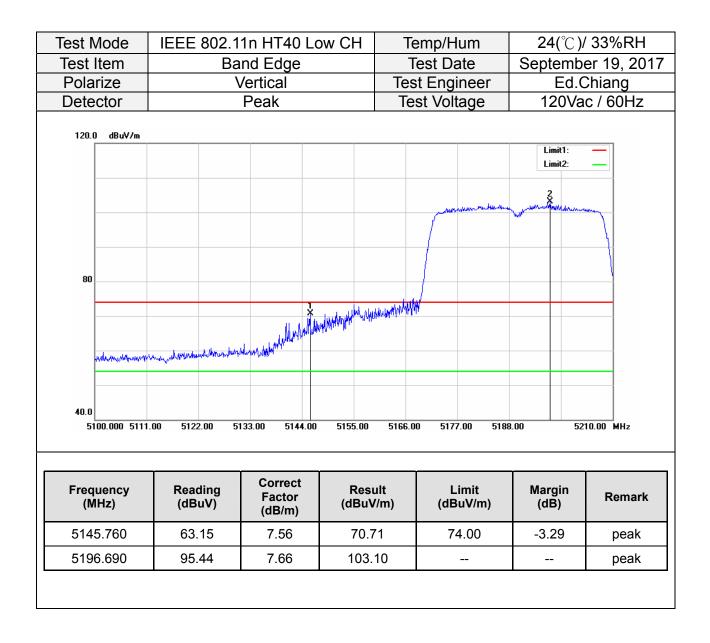


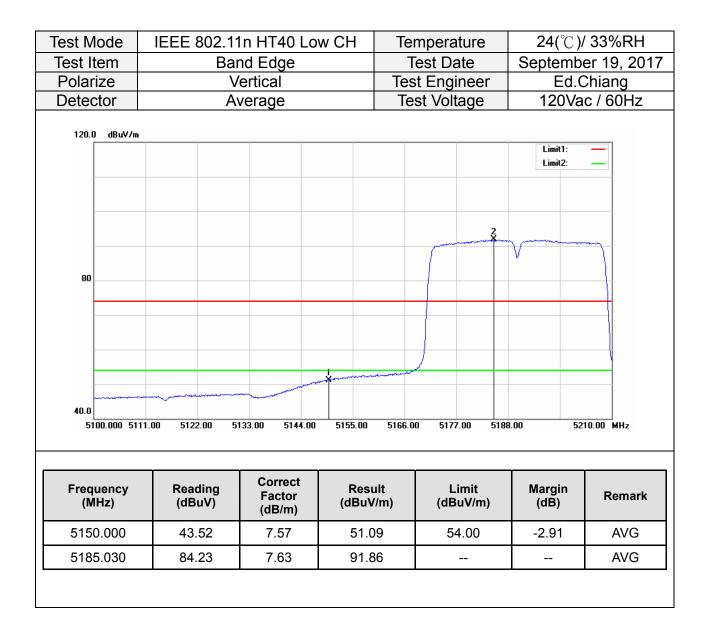

4.5.4 Test Result


<u>Test Data</u>

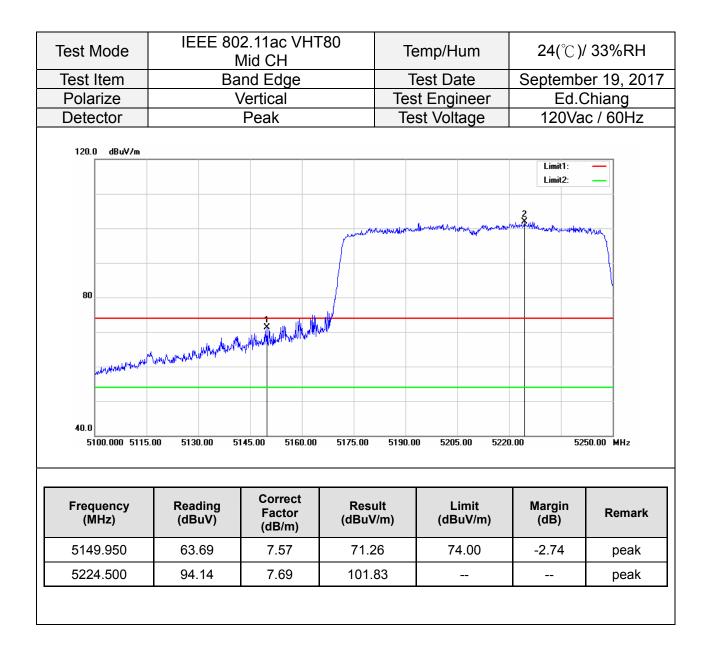

Band Edge Test Data for UNII-1

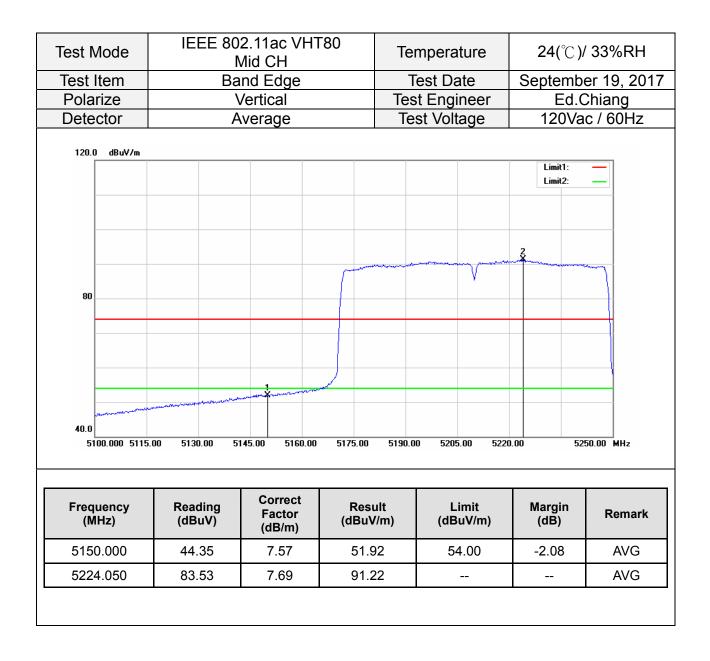

Test Mode	I	IEEE 80	2.11a Lo	ow CH	Te	mp/Hum		24(°(C)/ 33%RH
Test Item		Ba	nd Edge	e	T	est Date		Septer	nber 18, 201
Polarize		\	/ertical		Tes	t Enginee	r		d.Chiang
Detector			Peak		Tes	st Voltage		120	Vac / 60Hz
120.0 dBuV/m							2	Limit1: Limit2:	
80					and mar	Mar			2
and Mary and a second and	γ	1. WHILMAN MARKAN	Warder Wilder and	WHU HAR CONTRACTOR	er 1997				
40.0 5100.000 5110.		uuliiliiliinnuuttiinn 00 5130.00			5160.00) 5170.00	5180.0	00	5200.00 MHz
40.0		00 5130.00			ılt) 5170.00 Limit (dBuV/m		00 Margin (dB)	
40.0 5100.000 5110. Frequency	00 5120.0 Readi	00 5130.00 ing (V)	0 5140.00 Correct Factor) 5150.00 Resu	ılt /m)	Limit		Margin	





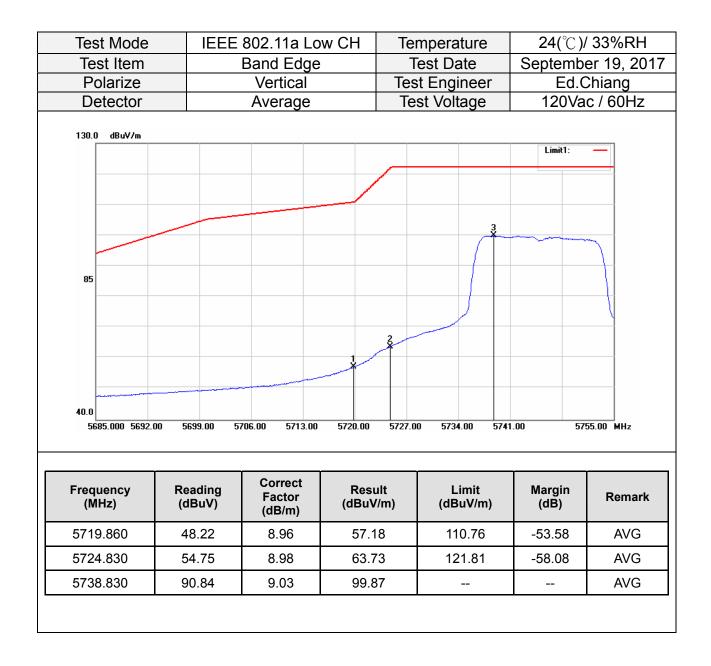
Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Temp/Hum	24(°C)/	/ 33%RH
Test Item		ind Edge		Test Date	Septemb	er 19, 2017
Polarize	١	/ertical	-	Test Engineer	Ed.C	Chiang
Detector		Peak		Test Voltage	120Va	c / 60Hz
120.0 dBuV/m	and any stand of the stand of t	Jun Mark			Limit1: Limit2:	
40.0 5100.000 5130	.00 5160.00 5 Reading	190.00 5220.00 Correct Factor	5250.00 52 Result	280.00 5310.00 534	0.00 54	00.00 MHz
(MHz) 5113.800	(dBuV) 50.58	(dB/m)	(dBuV/m) 58.08	(dBuV/m) 74.00	(dB) -15.92	
	00.00	1.50		74.00	-15.92	peak
						-
5235.600	101.88	7.73	109.61			peak

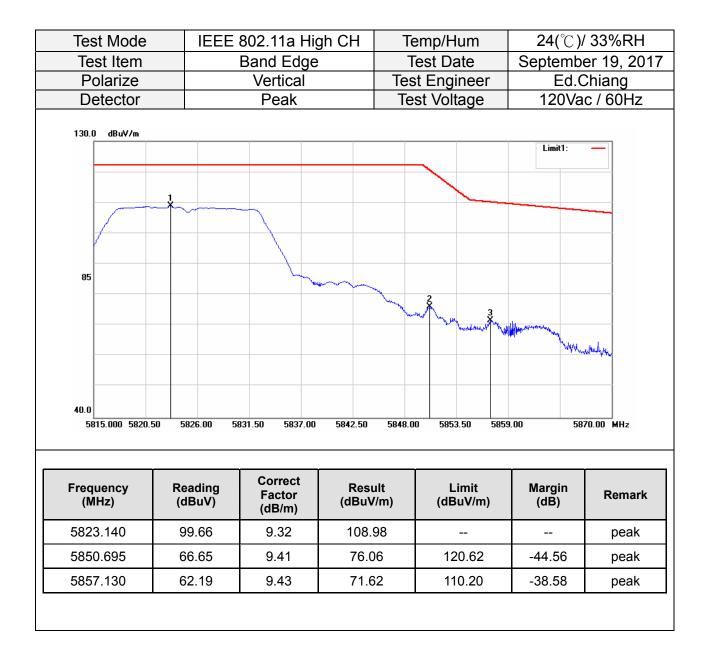

Test Mode	IEEE 802.11	In HT20 Hig	gh CH	Temp	perature	24(°∁)/ 33%RH	
Test Item		nd Edge		Tes	st Date	September 19, 207	
Polarize		ertical		Test Engineer		Ed.Chiang	
Detector	A	verage		Test	Voltage	120Va	c / 60Hz
120.0 dBuV/m						Limit1: Limit2:	
40.0	1 30.00 5160.00 5	190.00 5220.00	5250.00	5280.00	5310.00 5340	.00 54	3 00.00 MHz
Frequency	Reading	Correct	Resu		Limit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/		(dBuV/m)	(dB)	Remark
			44.7	1	54.00	-9.29	AVG
5134.800	37.18	7.53	44.7				
5134.800 5242.500	37.18 91.52	7.53 7.74	99.20				AVG



Test Mode	IEEE 802.1	1n H I 40 Hi	gh CH	le	emp/Hum	24(°C)/	/ 33%RH
Test Item		nd Edge			est Date		er 19, 201
Polarize	\	/ertical			t Engineer	Ed.Chiang	
Detector		Peak		Tes	st Voltage	120Va	c / 60Hz
120.0 dBuV/m	M	J. M. Marriel	reduction of the second s			Limit1: Limit2:	
	- Anna Markell			Ψ.	hall have been been been been been been been be	3	
40.0 5100.000 5130	1 hww. 0.00 5160.00 5	190.00 5220.00	5250.00	5280.00			00.00 MHz
40.0		190.00 5220.00 Correct Factor (dB/m)	5250.00 Resu (dBuV	5280.00			
40.0 5100.000 5130 Frequency	0.00 5160.00 5	Correct Factor	Resu	5280.00 Ilt /m)	0 5310.00 5344 Limit	0.00 54 Margin	00.00 MHz
40.0 5100.000 5130 Frequency (MHz)	0.00 5160.00 5 Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	5280.00 Ilt /m) 6	0 5310.00 5340 Limit (dBuV/m)	0.00 54 Margin (dB)	00.00 MHz Remark

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Tem	perature	24(°C)	/ 33%RH
Test Item		ind Edge			st Date	September 19, 201	
Polarize	1	/ertical			Engineer	Ed.Chiang	
Detector	A	verage		Test	t Voltage	120Va	ic / 60Hz
120.0 dBuV/m						Limit1: Limit2:	
80							
				~~~~			
40.0 5100.000 5130	1 .00 5160.00 5	190.00 5220.00	5250.00	5280.00	5310.00 5340		00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
						4.00	A) (O
5150.000	42.43	7.57	50.00	)	54.00	-4.00	AVG
5150.000 5224.500	42.43 89.31	7.57 7.69	50.00 97.00			-4.00	AVG




# <u>Test Data</u>

### Band Edge Test Data for UNII-3

Test Mode	IEEE	802.11a Lo	w CH		mp/Hum		/ 33%RH
Test Item		Band Edge		Te	est Date		er 19, 201
Polarize		Vertical			Engineer		Chiang
Detector		Peak		Tes	t Voltage	120Va	ac / 60Hz
130.0 dBuV/m						Limit1:	_
			/				
						3	~
	-						
				2 (	$\sim$		
85			C	2			
			- have				
		with the case of the					
participation	Mathematic constraints and						
40.0		706.00 5713.00	5720.00	5727.00	5734 00 574	1 00 57	755.00 MHz
		706.00 5713.00	5720.00	5727.00	5734.00 574	1.00 57	755.00 MHz
40.0		706.00 5713.00 Correct Factor (dB/m)	5720.00 Resu (dBuV	ılt	5734.00 574 Limit (dBuV/m)	1.00 57 Margin (dB)	755.00 MHz Remark
40.0 5685.000 5692. Frequency	00 5699.00 5 Reading	Correct Factor	Resu	ılt /m)	Limit	Margin	
40.0 5685.000 5692. Frequency (MHz)	00 5699.00 5 Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	llt /m) 0	Limit (dBuV/m)	Margin (dB)	Remark
40.0 5685.000 5692. Frequency (MHz) 5718.320	00 5699.00 5 Reading (dBuV) 67.04	Correct Factor (dB/m) 8.96	Resu (dBuV 76.0	llt /m) 0 1	Limit (dBuV/m) 110.33	Margin (dB) -34.33	Remark peak





Test Mode	IEEE	802.11a Hi	gh CH 🛛 T	emperature	<b>24(°</b> ℃)/	/ 33%RH
Test Item		Band Edge		Test Date	September 19, 20	
Polarize		Vertical	Te	est Engineer		Chiang
Detector		Average	Т	est Voltage	120Va	c / 60Hz
130.0 dBu∀/m						
					Limit1:	—
				<b></b>		
	1					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\neg$				
85						
/						
				22 3		
				3		
40.0						
5815.000 5820.	50 5826.00 5	831.50 5837.00	5842.50 5848	8.00 5853.50 585	9.00 58	70.00 MHz
		r			1	
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Reillark
5826.825	89.85	9.32	99.17			peak
5850.090	46.16	9.41	55.57	121.99	-66.42	peak
5854.930	42.19	9.43	51.62	110.96	-59.34	peak
		1			1	

Test Mode	IEEE 802.	11n HT20 L	ow CH	Te	emp/Hum	24(° C)/	/ 33%RH
Test Item	B	and Edge		T	est Date	Septemb	er 19, 201
Polarize		Vertical		Tes	t Engineer		Chiang
Detector		Peak		Te	st Voltage	120Va	c / 60Hz
130.0 dBuV/m						Limit1:	~~~~
40.0 5685.000 5692.0	h ^{Mungtonenndurannondur 10 5699.00 5}	706.00 5713.00	5720.00	5727.00		1.00 57	55.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
		Factor		/m)		Margin (dB) -30.07	Remark peak
(MHz)	(dBuV)	Factor (dB/m)	(dBuV	/ m) 3	(dBuV/m)	(dB)	

Test Item			ow CH	Temper	rature	24(°C)	/ 33%RH
	Ba	and Edge		Test Date		September 19, 20	
Polarize		Vertical		Test Eng			Chiang
Detector	ŀ	Average		Test Vo	ltage	120Va	ic / 60Hz
130.0 dBuV/m						Limit1:	
				2]		
40.0) 5699.00 57	706.00 5713.00	5720.00	5727.00 57	/34.00 5741	.00 57	55.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		Limit BuV/m)	Margin (dB)	Remark
5719.860	50.74	8.96	59.70	1	110.76	-51.06	AVG
5724.760	56.71	8.98	65.69	1	21.65	-55.96	AVG
0.200		9.05	99.13				AVG

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Temp/Hum	24(° ℃)/	′ 33%RH
Test Item	Band Edge			Test Date	Septemb	er 19, 201
Polarize		Vertical		Test Engineer		Chiang
Detector		Peak		Test Voltage	120Va	c / 60Hz
130.0 dBuV/m	1				Limit1:	
	warmen for meriliance	ommed				
85				Welling & welling and the second seco	Alanal year han dan ada a ha	hatturyyddy.
40.0 5815.000 5820	.50 5826.00 5	831.50 5837.00				70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit) (dBuV/m)	Margin (dB)	Remark
		Factor				Remark peak
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)) (dBuV/m)	(dB)	

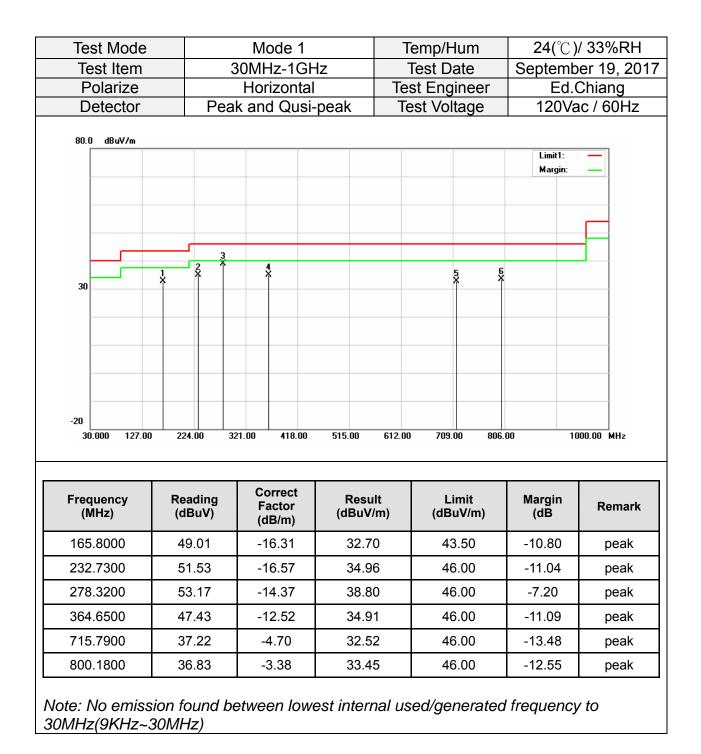
Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Tem	perature	24(°C)	/ 33%RH
Test Item	Band Edge			Test Date		September 19, 20	
Polarize	Vertical			Test Engineer		Ed.Chiang	
Detector	Average			Test	t Voltage	120Va	ac / 60Hz
130.0 dBu∀/m						Limit1:	—
	~ \						
85							
				2	3	~	
40.0 5815.000 5820).50 5826.00 5	831,50 5837,00	5842.50	5848.00	5853.50 58	59.00 59	 870.00 MHz
5815.000 5820	J. SU S826. UU Si	831.50 5837.00	5842.50	5848.00	5853.50 58	59.00 58	870.00 MHZ
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
5822.205	89.29	9.31	98.60	C			AVG
5849.925	48.31	9.41	57.72	2	122.20	-64.48	AVG
5854.875	44.02	9.43	53.4	5	111.08	-57.63	AVG

Test Mode	IEEE 802.1	1n HT40 Low CH	H Te	emp/Hum	• • •	/ 33%RH
Test Item		ind Edge				er 19, 201
Polarize	\ \	/ertical		st Engineer	Ed.Chiang	
Detector		Peak	Те	est Voltage	120Va	ic / 60Hz
130.0 dBuV/m					Limit1:	—
85 Ab-Up-Min-Millio	Herror William Marker Marker	Weldpurger of the American Maria		3		humparnya
40.0		710.00 5720.00 5730		0 5750.00 576	0.00 57	80.00 MHz
40.0		710.00 5720.00 5730 Correct		00 5750.00 576 Limit (dBuV/m)	0.00 57 Margin (dB)	80.00 MHz Remark
40.0 5680.000 5690 Frequency	0.00 5700.00 5 Reading	710.00 5720.00 5730 Correct Factor (dB/m)	00 5740.0 esult	Limit	Margin	
40.0 5680.000 5690 Frequency (MHz)	0.00 5700.00 5 Reading (dBuV)	710.00 5720.00 5730 Correct Factor (dB/m) R (dE 8.96 8	00 5740.0 esult BuV/m)	Limit (dBuV/m)	Margin (dB)	Remark

Test Item Band Edge Test Date September 11 Polarize Vertical Test Engineer Ed.Chia Detector Average Test Voltage 120Vac / 6 130.0 dBuV/m Imit: Imit: Imit: 95 Imit: Imit: Imit: Imit: 96 Imit: Imit: Imit: Imit: Imit: 96 Imit: Imit: Imit: Imit: Imit: Imit: 96 Imit:	%RH
Detector Average Test Voltage 120Vac / 6 130.0 dBuV/m Imit 1: Imit 1: <t< td=""><td></td></t<>	
130.0 dBw/m 130.0 dBw/m 140.0 dB w/m 150.0 5700.00 5710.00 5720.00 5730.00 5750.00 5760.00 5780.00 130.0 5780.00 5780.00 5780.00 5780.00 5780.00 5780.00 5780.00	ing
Imit: Imit:	30Hz
40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin	7
40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin	4
40.0 40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin Result Correct R	
40.0 40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin Result Correct R	
40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin Result Correct Result	1
40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin Result Correct Result	1
40.0 40.0 5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin Result Correct R	-
5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin	
5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin	
5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin]
5680.000 5690.00 5700.00 5710.00 5720.00 5730.00 5740.00 5750.00 5760.00 5780.00 Frequency Reading Correct Result Limit Margin	1
Frequency Reading Easter Result Limit Margin D	MHz
Frequency Reading Faster Result Limit Margin D	
Frequency Reading Factor Result Limit Margin B	
(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)	Remark
5718.100 61.23 8.96 70.19 110.27 -40.08	AVG
5725.000 62.08 8.98 71.06 122.20 -51.14	AVG
5741.100 87.89 9.03 96.92	AVG

Test Mode	IEEE 802.1	1n H140 Hi	gh CH	Ten	np/Hum	• • •	/ 33%RH
Test Item		Band Edge		Test Date		September 19, 20	
Polarize	\\	/ertical				Ed.Chiang	
Detector		Peak		Test Voltage		120Va	c / 60Hz
130.0 dBuV/m						Limit1:	—
85			h Manana and Andrews	-tor some of the	When the work of the state of t		Jun my
40.0 5770.000 5780 Frequency (MHz)	0.00 5790.00 53 Reading (dBuV)	600.00 5810.00 Correct Factor (dB/m)	5820.00 Resu (dBuV		5840.00 585 Limit (dBuV/m)	0.00 58 Margin (dB)	70.00 MHz Remark
5770.000 5780 Frequency	Reading	Correct	Resu	lt /m)	Limit	Margin	
5770.000 5780 Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	lt /m)	Limit (dBuV/m)	Margin (dB)	Remark

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Temper	ature)/ 33%RH	
Test Item		nd Edge		Test Date		September 19, 20		
Polarize	\	/ertical		Test Eng		Ed.Chiang		
Detector	A	verage		Test Vo	ltage	120Vac / 60Hz		
130.0 dBuV/m	<u> </u>					Limit1:		
85						2 3		
40.0 5770.000 5780).00 5790.00 54	800.00 5810.00	5820.00	5830.00 58	40.00 585	0.00	5870.00 MHz	
_	Reading	Correct Factor	Result (dBuV/r		Limit BuV/m)	Margin (dB)	Remark	
Frequency (MHz)	(dBuV)	(dB/m)	(azath	, (,	. ,		
	(dBuV) 85.82	(dB/m) 9.17	94.99				AVG	
(MHz)							AVG AVG	


Test Mode		2.11ac VHT Mid CH	80	Te	emp/Hum	24(°C),	/ 33%RH
Test Item	Band Edge		Test Date		September 19, 20		
Polarize	Vertical		Test Engineer		Ed.Chiang		
Detector		Peak		Te	st Voltage	120Va	c / 60Hz
130.0 dBu∀/m							
						Limit1:	—
	merandide	man weeks have men	mannandala	- II I I I			
			v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	North		
90	2						
nd try hole and the man	In anna an				Watersteinhours		2460
						· · · · · · · · · · · · · · · · · · ·	Math. M. 2
50.0							
5700.000 5717	7.00 5734.00 5	751.00 5768.00	5785.00	5802.0	0 5819.00 583	6.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5716.830	73.77	8.95	82.7	2	109.91	-27.19	peak
5720.740	74.32	8.96	83.2	8	112.49	-29.21	peak
5762.050	94.64	9.10	103.7	74			peak
5853.850	66.73	9.42	76.1	5	113.42	-37.27	peak
5859.290	67.66	9.44	77.1	0	109.60	-32.50	peak

Test Mode		2.11ac VHT 1id CH	80 .	Temperature	24(°C).	/ 33%RH
Test Item	Band Edge			Test Date	September 19, 20	
Polarize	Vertical			lest Engineer		Chiang
Detector	A	verage		Test Voltage	120Va	ic / 60Hz
130.0 dBuV/m						
					Limit1:	_
90	3					
50			V			
	12					
and the start of the				and a service of the	4 5	
						mar m
50.0 5700.000 57	17.00 5734 .00 5	751.00 5768.00	5785.00 58	02.00 5819.00 583	6.00 58	70.00 MHz
Frequency (MHz	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5719.720	59.31	8.96	68.27	110.72	-42.45	AVG
5721.250	60.00	8.97	68.97	113.65	-44.68	AVG
5743.010	84.34	9.04	93.38			AVG
5849.940	51.58	9.41	60.99	122.20	-61.21	AVG
		9.42	60.51	113.03	-52.52	AVG

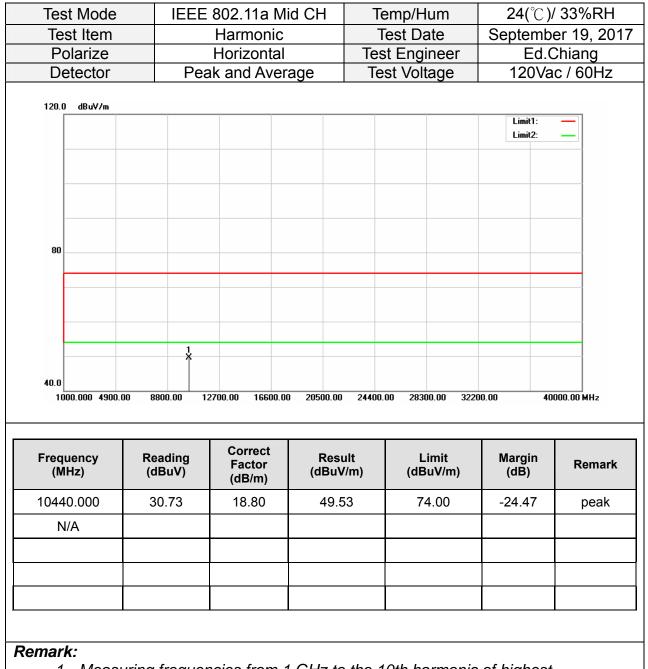
Below 1G Test Data

Test Mode		Mode 1		Tei	mp/Hum	24(°C)/	/ 33%RH
Test Item		30MHz-1GH	z	Test Date		Septemb	er 19, 20
Polarize		Vertical			Engineer		Chiang
Detector	Pea	k and Qusi-	peak	Tes	t Voltage	120Va	c / 60Hz
80.0 dBuV/m						Limit1:	_
						Margin:	_
	2	3	4 ×	5			-
30			Î	5 X		6 X	
20							
-20 20.000 127.00	224.00	321.00 418.00	515.00	612.00	709.00 806.	00 10	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/i		Limit (dBuV/m)	Margin (dB)	Remarl
99.8400	52.16	-18.61	33.55	5	43.50	-9.95	peak
150.2800	52.09	-15.75	36.34	ļ.	43.50	-7.16	peak
366.5900	47.25	-12.45	34.80)	46.00	-11.20	peak
000.0000		-7.86	32.70)	46.00	-13.30	peak
533.4300	40.56	1.00					
	40.56 38.12	-6.92	31.20)	46.00	-14.80	peak

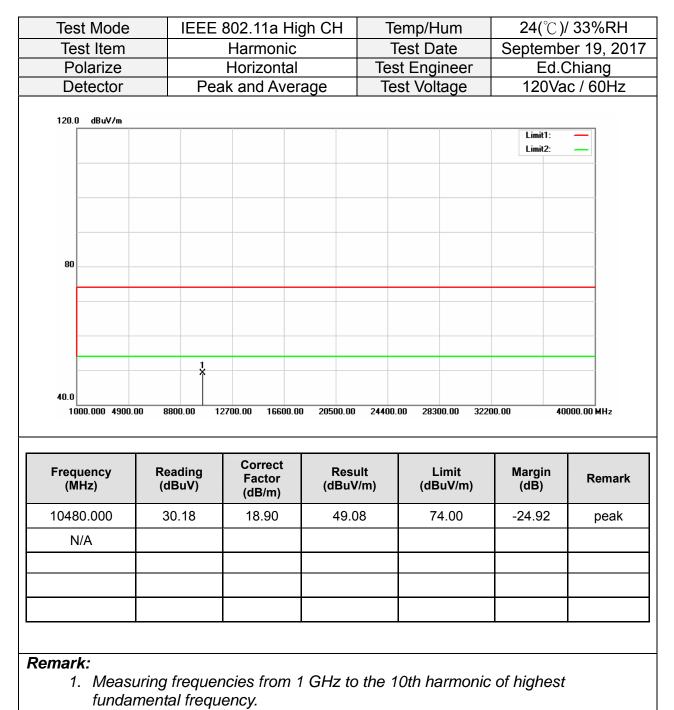
Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

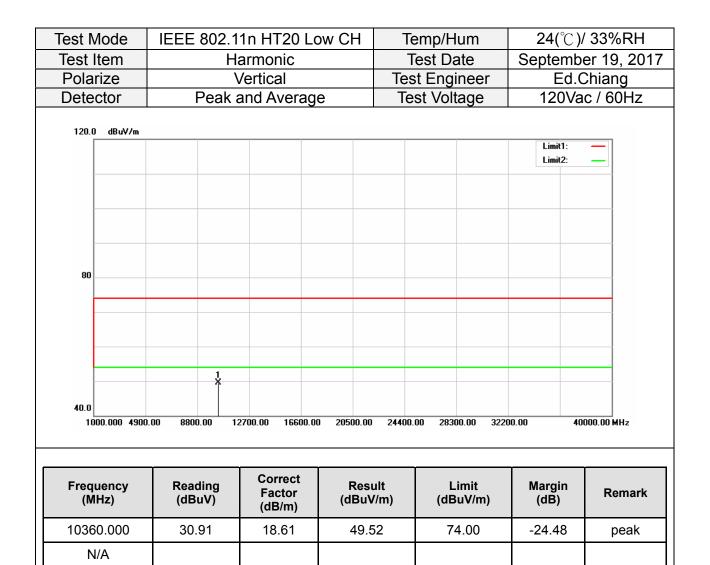
Test Mode IEEE 802.11a Low CH Temp/Hum 24(°C)/ 33%RH Test Item Harmonic Test Date September 15, 2017 Polarize Vertical Test Engineer Ed.Chiang 120Vac / 60Hz Test Voltage Detector Peak and Average 110.0 dBuV/m Limit1: Limit2: 70 1 30.0 40000.00 MHz 1000.000 4900.00 8800.00 12700.00 16600.00 20500.00 24400.00 28300.00 32200.00 Correct Frequency Reading Result Limit Margin Remark Factor (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB/m) 10360.000 30.73 18.61 49.34 74.00 -24.66 peak N/A Remark:

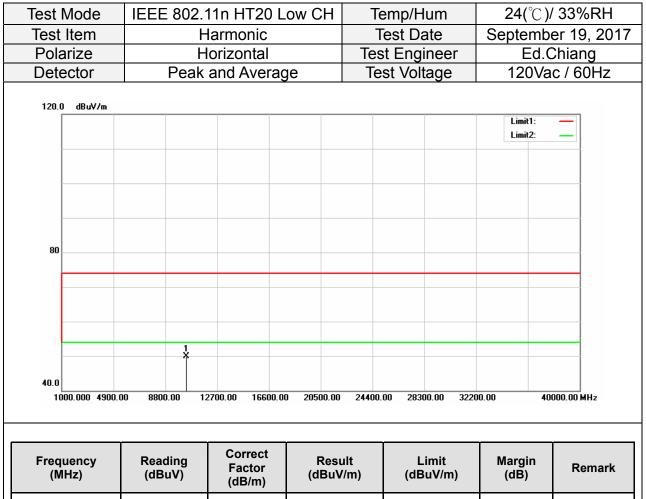
Above 1G Test Data for UNII-1


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

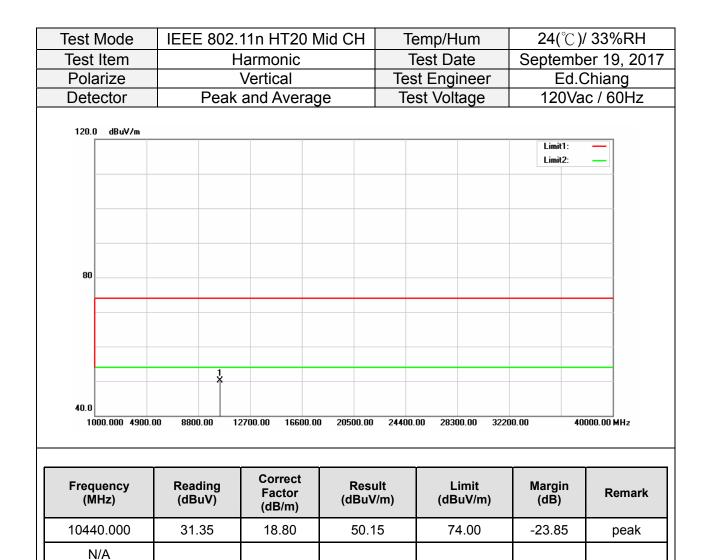
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

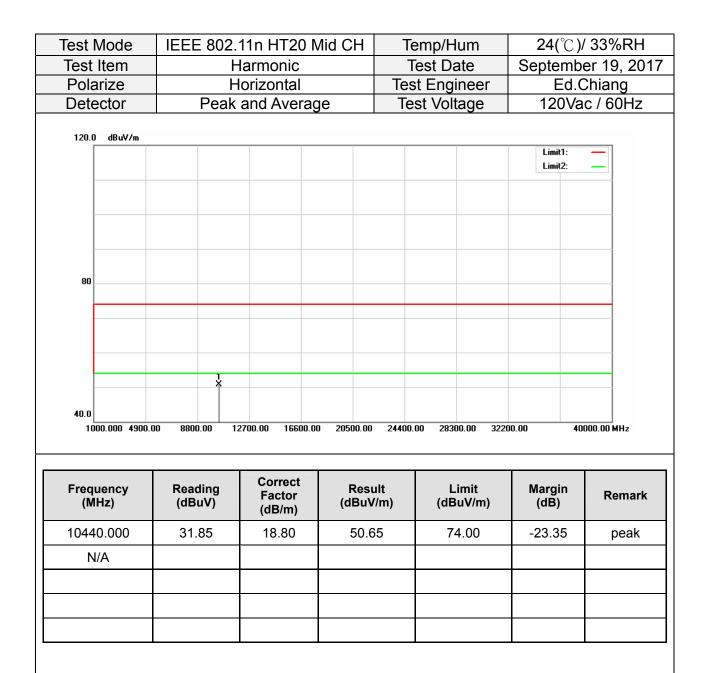

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

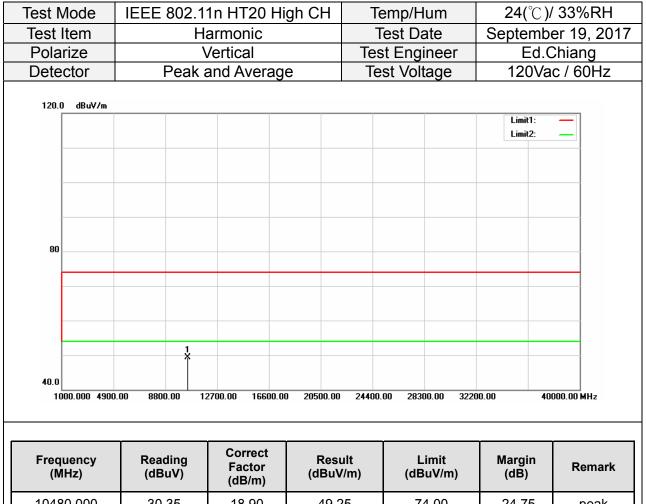
2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



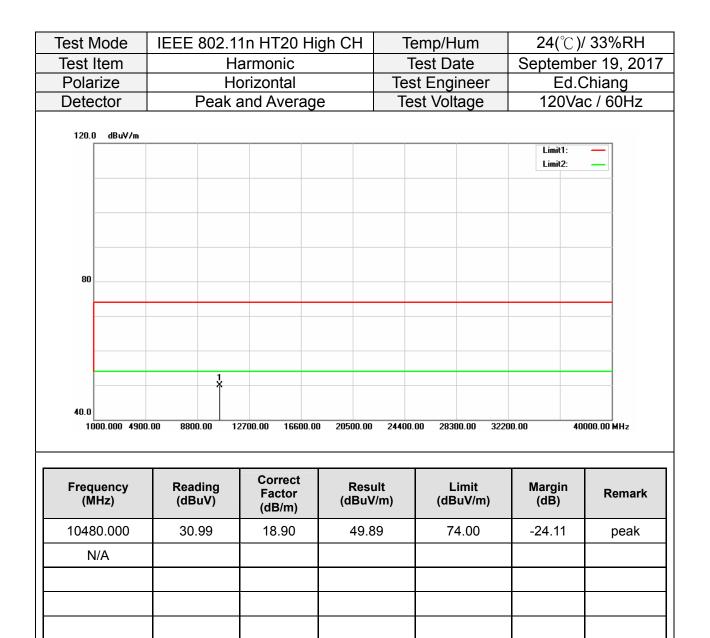
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
10360.000	31.24	18.61	49.85	74.00	-24.15	peak
N/A						


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

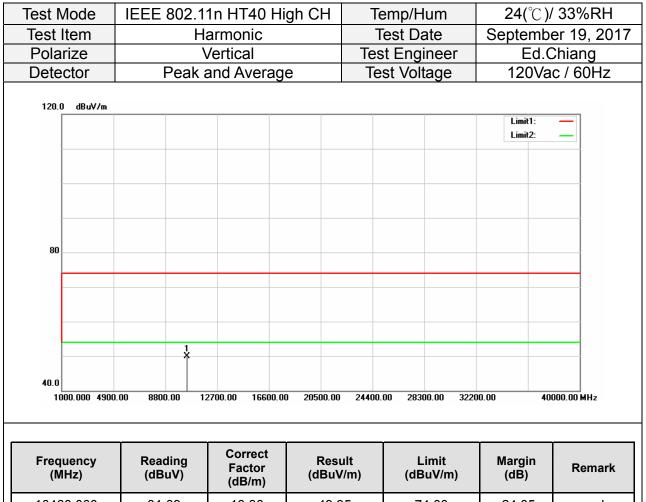
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dĔ)	Remark
10480.000	30.35	18.90	49.25	74.00	-24.75	peak
N/A						
	• •	-	• •	• •		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

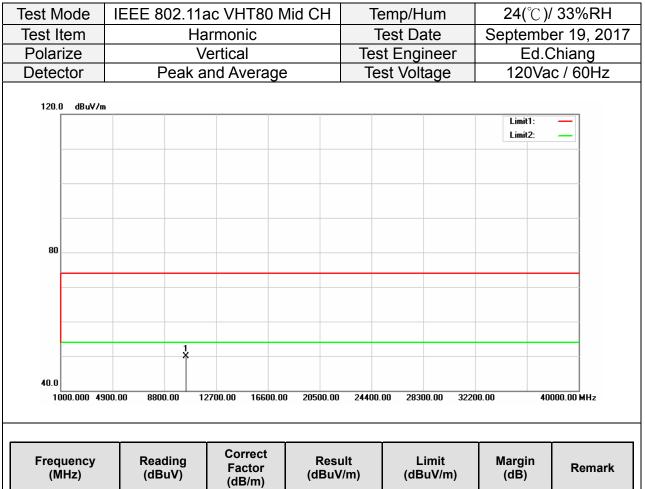

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 80			ow CH		emp/H			C) / 33%RH
Test Item		Harmo				Test Da		Septer	nber 19, 20
Polarize		Verti			Test Engineer			E	d.Chiang
Detector	Pe	ak and <i>i</i>	Averag	е	Te	est Voli	tage	120	Vac / 60Hz
120.0 dBuV/m									
								Limit1 Limit2	
								Linitz	
80									
	1 X								
40.0									
1000.000 490	0.00 8800.00	12700.00	16600.00	20500.00	24400	.00 2830	00.00 322	00.00	40000.00 MHz
		6	rrect						
Frequency (MHz)	Reading (dBuV)	Fa	ctor B/m)	Res (dBu\			.imit suV/m)	Margin (dB)	Remar
10380.000	30.41	18	3.65	49.0	06	74	4.00	-24.94	peak
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	e IE								2) / 33%RH
Test Item						est Da			ber 19, 20
Polarize				I.Chiang					
Detector		Peak	and Avera	age	Те	st Volt	age	120\	/ac / 60Hz
120.0 dBuV.	/m								
								Limit1: Limit2:	
								Linitz.	
80									
		1							
40.0									
1000.000	4900.00	8800.00 1	2700.00 16600	.00 20500.00	24400.	00 2830	0.00 322	00.00	40000.00 MHz
Frequency (MHz)	1	Reading (dBuV)	Correct Factor (dB/m)	Rest (dBuV			imit uV/m)	Margin (dB)	Remark
10380.000		30.37	18.65	49.0	2	74	4.00	-24.98	peak
N/A									
			1						
			1						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Roman
10460.000	31.09	18.86	49.95	74.00	-24.05	peak
N/A						
	•	•	•			

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dĔ)	Remark
	10420.000	31.16	18.76	49.92	74.00	-24.08	peak
	N/A						
1							

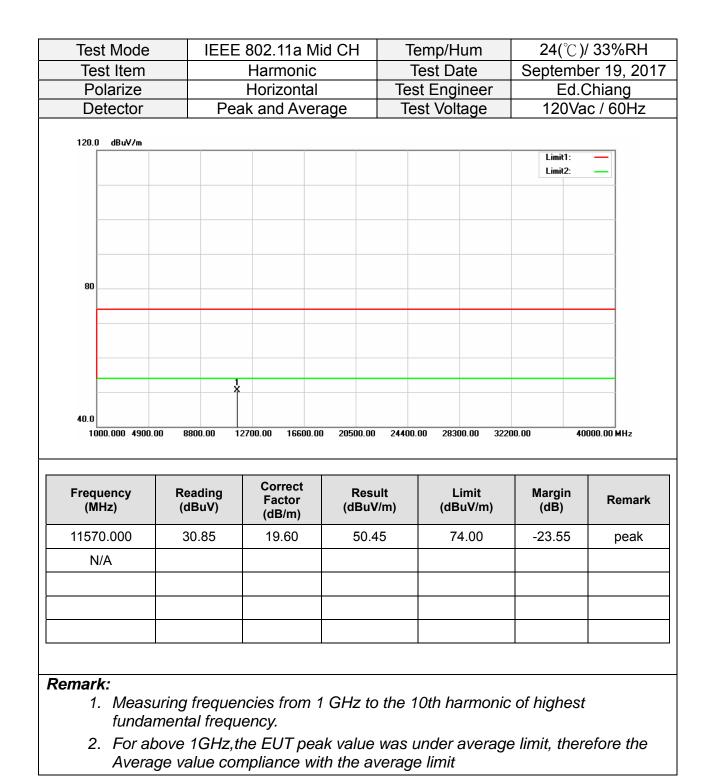
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11a			emp/Hum		′ 33%RH	
Test Item		armonic		Test Date	September 19, 201		
Polarize		orizontal		st Engineer		Chiang	
Detector	Peak a	nd Average	e Te	est Voltage	120Va	c / 60Hz	
120.0 dBuV/m							
					Limit1: Limit2:	_	
80							
	Ĵ,						
	Î						
40.0 1000.000 490	D0.00 8800.00 1;	2700.00 16600.00) 20500.00 24400	1.00 28300.00 3220	DO.OO 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10420.000	31.17	(dB/m) 18.76	49.93	74.00	-24.07	peak	
N/A		10.70	10.00	,	21.07	pour	
	1						

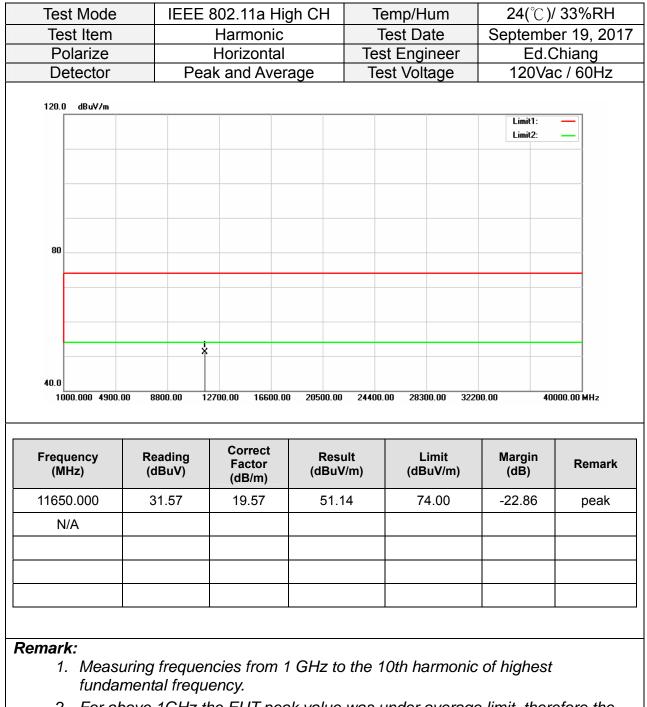
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

24(°C)/ 33%RH Test Mode IEEE 802.11a Low CH Temp/Hum Test Item Harmonic Test Date September 19, 2017 Polarize Vertical Test Engineer Ed.Chiang Peak and Average Test Voltage 120Vac / 60Hz Detector 120.0 dBuV/m Limit1: Limit2: 80 40.0 40000.00 MHz 1000.000 4900.00 8800.00 12700.00 16600.00 20500.00 24400.00 28300.00 32200.00 Correct Limit Frequency Reading Result Margin Remark Factor (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB/m) 11490.000 30.42 50.05 74.00 -23.95 19.63 peak N/A

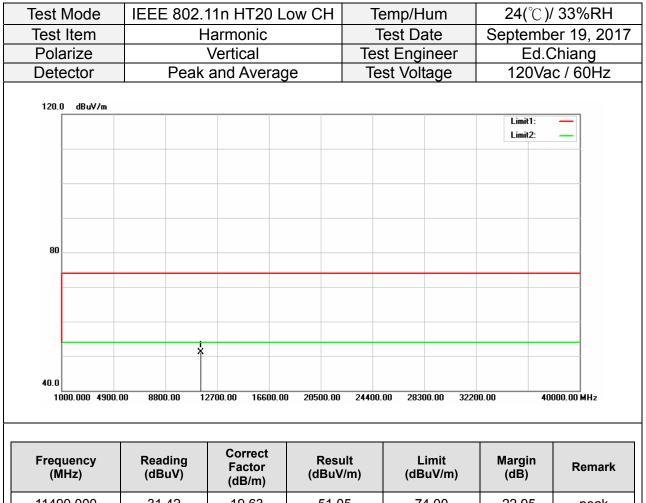
Above 1G Test Data for UNII-3


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

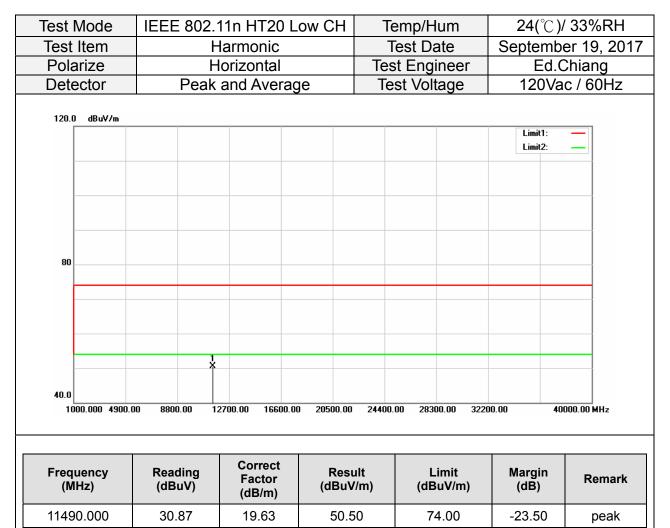
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



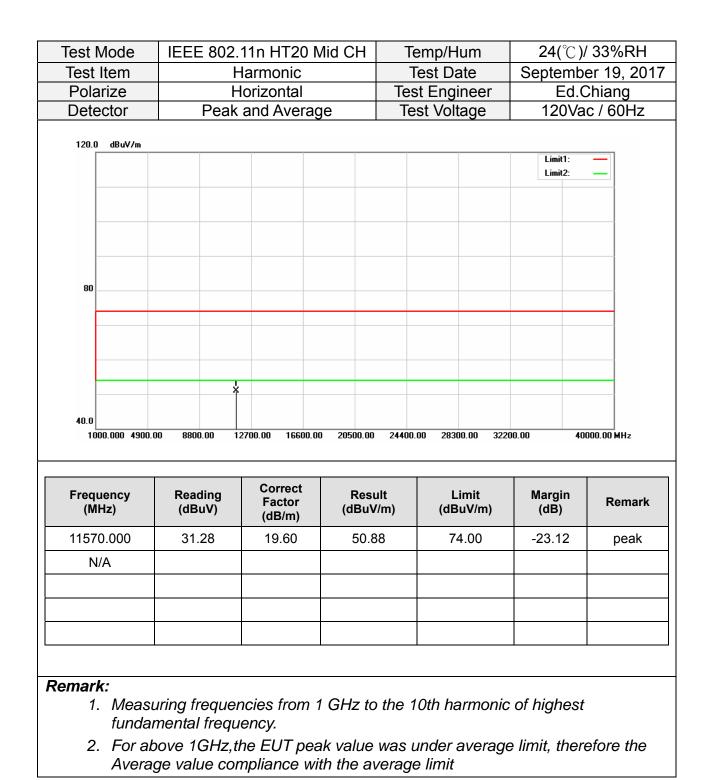
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

		(ab/m)				
11490.000	31.42	19.63	51.05	74.00	-22.95	peak
N/A						

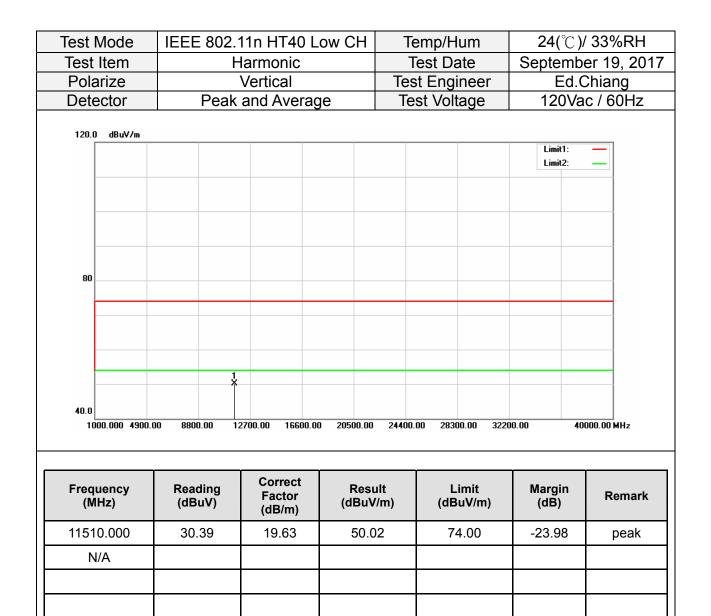
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



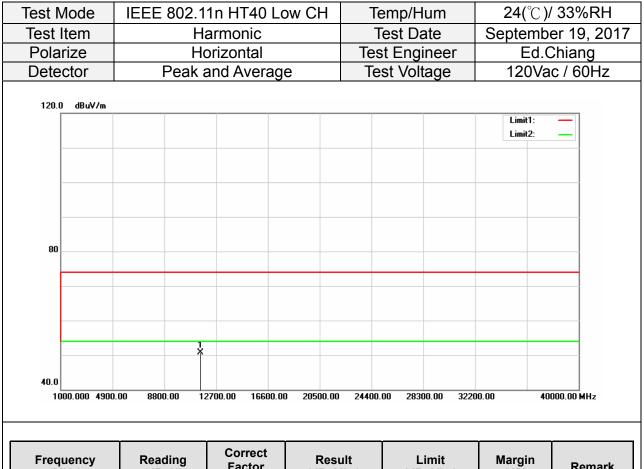
N/A			

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

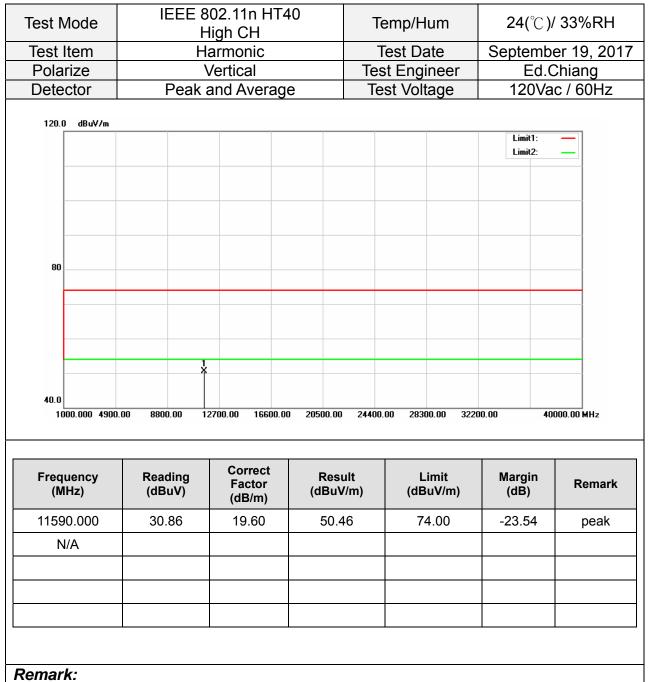


Test Mode	IEEE 802.1		gh CH		Temp/Hum)/ 33%RH	
Test Item		armonic		Test I		September 19, 20 ⁻		
Polarize		Vertical		Test En		Ed.	Chiang	
Detector	Peak	and Averag	e	Test Vo	oltage	120V	ac / 60Hz	
120.0 dBu∀/m								
						Limit1: Limit2:	_	
80								
ou								
	X							
40.0 1000.000 4900).00 8800.00 1	2700.00 16600.0	0 20500.00	24400.00 2	8300.00 322	00.00 4	10000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m) (0	Limit IBuV/m)	Margin (dB)	Remark	
11650.000	31.26	19.57	50.83		74.00	-23.17	peak	
N/A								

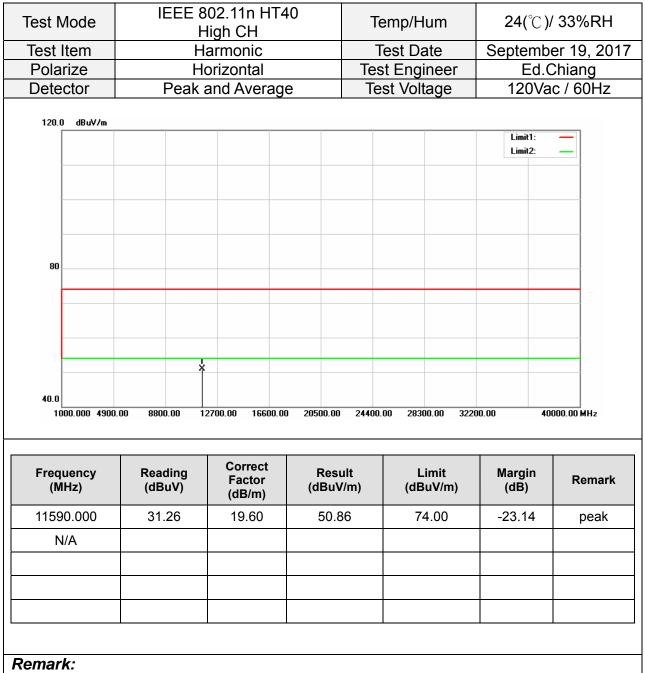

- Remark:
 - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
 - 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Te	emp/Hum	24(°C)	/ 33%RH
Test Item	Н	armonic		Test Date			er 19, 201
Polarize	H	orizontal		Test Engineer		Ed.0	Chiang
Detector	Peak	and Averag	е	Te	st Voltage	120Va	ic / 60Hz
120.0 dBuV/m							
						Limit1: Limit2:	
80							
		<u>.</u>					
40.0							
1000.000 49	10.00 8800.00 1	2700.00 16600.0	0 20500.00	24400.	00 28300.00 3	32200.00 40	1000.00 MHz
		0					
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
11650.000	31.08	19.57	50.6	5	74.00	-23.35	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
31.05	19.63	50.68	74.00	-23.32	peak
		(dB/m)	(dB/m)		(dB/m)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

est Mode						Temp/Hum			24(°∁)/ 33%RH		
Test Item		Harm			Test Date			September 19, 20 ²			
Polarize		Verti			Test Engineer			Ec	d.Chiang		
Detector	Pe	eak and	Average	e	Test Voltage			120	Vac / 60Hz		
120.0 dBuV/	m										
								Limit1: Limit2:			
80											
		1 X									
40.0											
1000.000 4	900.00 8800.0	12700.	00 16600.0)0 20500.00	24400.0)0 283	00.00 322	DO.OO	40000.00 MHz		
F	Dead		Correct	Dee			1 14				
Frequency (MHz)	Readi (dBu'		Factor (dB/m)	Res (dBu\			imit suV/m)	Margin (dB)	Remark		
11550.000	30.3	8	19.61	49.9	99	7	4.00	-24.01	peak		
N/A											
	I	1		1	I			1	I		

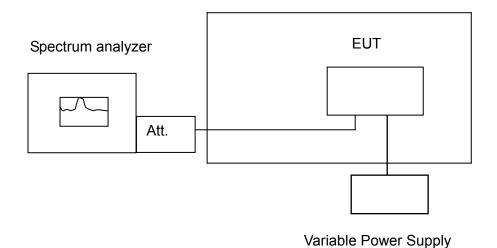
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11		/lid CH	Temp/Hum	24(°C)/ 33%RH		
Test Item		armonic		Test Date	September 19, 201		
Polarize		orizontal		Test Engineer	Ed.C	Chiang	
Detector	Peak a	and Average	;	Test Voltage	120Va	c / 60Hz	
120.0 dBuV/r	n						
					Limit1: Limit2:	_	
80							
	1						
40.0							
1000.000 4	900.00 8800.00 1	2700.00 16600.00) 20500.00 24	1400.00 28300.00 322	200.00 400	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
11550.000	30.49	19.61	50.10	74.00	-23.90	peak	
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

4.6 FREQUENCY STABILITY

4.6.1 Test Limit


According to §15.407(g) manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the operational description.

4.6.2 Test Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

4.6.3 Test Setup

Temperature Chamber

4.6.4 Test Result

Tomp (°C)	Voltage (V)	Measured Frequency	51	80	(MHz)		Liı	nit			
	voltage (v)	Time (min)					20ppm				
Operating	Frequency:	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min		
50	230	5180.06230	5180.06213	5180.06289	5180.06328	12.0270	11.9942	12.1411	12.2162	Pass	
40	230	5180.06895	5180.06285	5180.06459	5180.06358	13.3108	12.1332	12.4691	12.2741	Pass	
30	230	5180.05243	5180.05213	5180.05263	5180.05132	10.1216	10.0637	10.1602	9.9073	Pass	
20	230	5180.03258	5180.03295	5180.03321	5180.02861	6.2896	6.3610	6.4112	5.5232	Pass	
10	230	5180.02151	5180.02136	5180.02154	5180.02146	4.1525	4.1236	4.1583	4.1429	Pass	
0	230	5180.01523	5180.01514	5180.01510	5180.00325	2.9402	2.9228	2.9151	0.6274	Pass	
-10	230	5179.99850	5179.95631	5179.96528	5179.95562	-0.2896	-8.4344	-6.7027	-8.5676	Pass	
-20	230	5179.93561	5179.93655	5179.93452	5179.92485	-12.4305	-12.2490	-12.6409	-14.5077	Pass	
Tomp (°C)	Voltage (V)	Measured Frequency	51	80	(MHz)	Limit					
Temp. (C)	voltage (v)		Time (min)		20ppm				Result	
Operating	Frequency:	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min		
20	207	5180.033596	5180.03359	5180.03348	5180.03343	6.4857	6.4851	6.4633	6.4537	Pass	
20	230	5180.032580	5180.03295	5180.03321	5180.02861	6.2896	6.3610	6.4112	5.5232	Pass	
20	253	5180.032460	5180.03246	5180.03240	5180.03235	6.2664	6.2660	6.2548	6.2452	Pass	

Tomp (°C)	Voltago (V)	Measured Frequency	57	45	(MHz)		Li	mit		
Temp. (C)	Voltage (V)			Result						
Operating	Frequency:	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	
50	230	5745.06540	5745.06524	5745.06142	5745.06142	11.3838	11.3560	10.6910	10.6910	Pass
40	230	5745.05954	5745.06321	5745.06321	5745.05954	10.3638	11.0026	11.0026	10.3638	Pass
30	230	5745.05854	5745.05854	5745.05421	5745.05421	10.1897	10.1897	9.4360	9.4360	Pass
20	230	5745.05310	5745.05310	5745.05324	5745.05324	9.2428	9.2428	9.2672	9.2672	Pass
10	230	5745.04402	5745.04402	5745.04310	5745.04402	7.6623	7.6623	7.5022	7.6623	Pass
0	230	5745.04310	5745.03841	5745.03841	5745.03541	7.5022	6.6858	6.6858	6.1636	Pass
-10	230	5745.02149	5745.03214	5745.03452	5745.03452	3.7406	5.5944	6.0087	6.0087	Pass
-20	230	5745.02149	5745.01971	5745.01971	5745.01971	3.7406	3.4308	3.4308	3.4308	Pass
Tomp (°C)	Voltage (V)	Measured Frequency	57	45	(MHz)	Limit				
remp. (C)	voltage (v)		Time (min	ïme (min)		20ppm				Result
Operating	Frequency:	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	
20	207	5745.05270	5745.05310	5745.05324	5745.05310	9.1732	9.2428	9.2672	9.2428	Pass
20	230	5745.05310	5745.05310	5745.05324	5745.05324	9.2428	9.2428	9.2672	9.2672	Pass
20	253	5745.05147	5745.05147	5745.05310	5745.05270	8.9591	8.9591	9.2428	9.1732	Pass