RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
FCC ID	2AKZA-PICOIMX7
Product name	WiFi+Bluetooth 4.0(HS) System on Module
Brand Name	TechNexion
Model Name	PICO-IMX7
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Tainan Laboratory)

Approved by:

Jeter Wu Assistant Manager Tested by:

ED. Chiang

Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	September 20, 2017	Initial Issue	Vicki Huang
01	October 23, 2017	 Added Radiation bandedge and spurious emission remark in P.34 Remove KDB 558074 description in P.8 	Vicki Huang

Table of contents

1.1 GENERAL INFORMATION
1.2 EUT INFORMATION
1.3 EUT CHANNEL INFORMATION4
1.4 ANTENNA INFORMATION4
1.5 EUT CHANNEL INFORMATION5
1.6 MEASUREMENT UNCERTAINTY6
1.7 FACILITIES AND TEST LOCATION
1.8 INSTRUMENT CALIBRATION
1.9 SUPPORT AND EUT ACCESSORIES EQUIPMENT9
2. TEST SUMMERY10
3. DESCRIPTION OF TEST MODES11
3.1 THE WORST MODE OF OPERATING CONDITION11
3.2 THE WORST MODE OF MEASUREMENT12
3.3 EUT DUTY CYCLE
4. TEST RESULT14
4.1 AC POWER LINE CONDUCTED EMISSION14
4.2 20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)17
4.3 OUTPUT POWER MEASUREMENT
4.4 FREQUENCY SEPARATION
4.5 NUMBER OF HOPPING25
4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION
4.7 TIME OF OCCUPANCY (DWELL TIME)
4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION
APPENDIX 1 - PHOTOGRAPHS OF EUT

1.1 GENERAL INFORMATION

1.2 EUT INFORMATION

Applicant	TechNexion Ltd. 16f-5, No.736, Zhongzheng Road, Zhonghe Dist., New Taipei City, 23511 Taiwan ROC				
Equipment	WiFi+Bluetooth 4.0(HS) System on Module				
Model No.	PICO-IMX7				
Model Discrepancy	N/A				
Received Date	August 25, 2017				
Date of Test	August 31 ~ September 19, 2017				
Output Power(W)	GFSK : 0.0112 (EIRP : 0.0138) 8DPSK :0.0091 (EIRP : 0.0112)				
Power Supply	Power form AC Adapter via cable				

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	1. GFSK for BR-1Mbps 2. 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation		
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.4 ANTENNA INFORMATION

Antenna Type	🗌 PIFA 🗌 PCB 🖾 Dipole 🗌 Coils
Antenna Gain	Gain: 3dBi

1.5 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	1. GFSK for BR-1Mbps 2. 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.6 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.7 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Eric Lee	
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.8 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018
EMI Test Receiver	R&S	ESCS 30	100348	12/12/2016	12/11/2017
LISN	SCHWARZBECK	NNLK8130	8130124	11/08/2016	11/07/2017
LISN	FCC	FCC-LISN-50-32-2	08009	05/08/2017	05/07/2018
Pulse Limiter	R&S	ESH3-Z2	100116	01/13/2017	01/12/2018
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018

3M 966 Chamber Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Active Loop Antenna	ETS-LINDREN	6502	8905-2356	07/20/2017	07/19/2019		
Amplifier	HP	8447F	2443A01671	01/18/2017	01/17/2018		
Bi-Log Antenna	Sunol	JB1	A070506-2	07/22/2017	07/21/2018		
Cable	HUBER+SUHNER	SUCOFLEX 104PEA	SN25737 /4PEA	01/18/2017	01/17/2018		
Double Ridged Guide Horn Antenna	ETS-LINDGREN	3116	00078900	03/20/2017	03/19/2019		
EMI Test Receiver	R&S	ESCS 30	100294	12/02/2016	12/01/2017		
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	05/09/2017	05/08/2018		
Horn Antenna	Com-Power	AH-118	071032	02/09/2017	02/08/2018		
Pre-Amplifier	EMCI	EMC012645	980098	01/17/2017	01/16/2018		

AC Conducted Emissions Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
BNC Coaxial Cable	CCS	BNC50	11	01/13/2017	01/12/2018		
EMI Test Receiver	R&S	ESCS 30	100348	12/12/2016	12/11/2017		
Four BALACED PAIR ISN	FCC	F-071115-1057-1-09	111130	11/16/2016	11/15/2017		
LISN	SCHWARZBECK	NNLK8130	8130124	11/08/2016	11/07/2017		
LISN	FCC	FCC-LISN-50-32-2	08009	05/08/2017	05/07/2018		
Pulse Limiter	R&S	ESH3-Z2	100116	01/13/2017	01/12/2018		

Remark: Each piece of equipment is scheduled for calibration once a year.

1.9 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID		
	N/A						

	Support Equipment						
No.	Equipment	Brand	Model	Ser	ies No.	FCC ID	
	N/A						
1.1	0		•	Test	metho	odology	and

applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 4, Part 15.205, Part 15.207, Part 15.209

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.2)(a)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

1

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz

Remark:

Г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

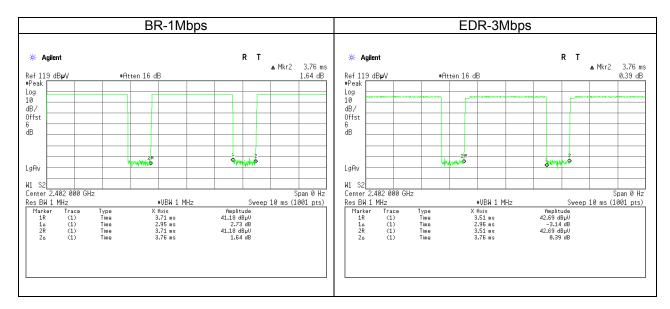
3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission				
Test Condition	AC Power line conducted emission for line and neutral				
Voltage/Hz	120V/60Hz				
Test Mode	Mode 1: EUT power by AC adapter via power cable.				
Worst Mode	Mode 1 ☐ Mode 2 ☐ Mode 3 ☐ Mode 4				

	Radiated Emission Measurement Above 1G				
Test Condition	Band edge, Emission for Unwanted and Fundamental				
Voltage/Hz	120V/60Hz				
Test Mode	Mode 1: EUT power by AC adapter via power cable.				
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 				
Worst Polarity	Horizontal Vertical				

	Radiated Emission Measurement Below 1G				
Test Condition	Radiated Emission Below 1G				
Voltage/Hz	120V/60Hz				
Test Mode Mode 1: EUT power by AC adapter via power cable.					
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Z-Plane and Vertical) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)		
BR-1Mbps	2.9500	3.7600	78.46%	1.05		
EDR-3Mbps	2.9600	3.7600	78.72%	1.04		

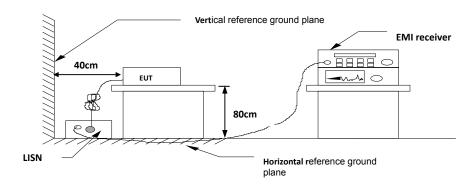
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

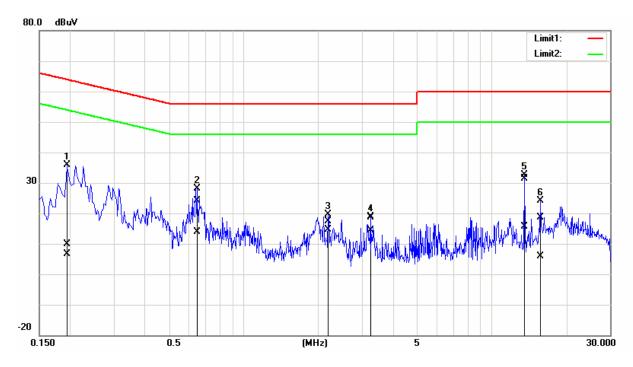

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

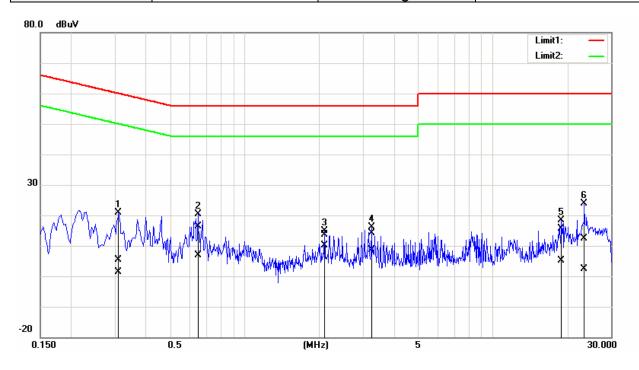
- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

PASS


<u>Test Data</u>

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2017/9/19
Phase:	Line	Test Engineer	Eric Lee

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak
INO.	riequency	reading	reading	factor	result	result	limit	limit	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)
1	0.1940	9.81	6.46	0.05	9.86	6.51	63.86	53.86	-54.00
2	0.6500	24.08	13.92	0.06	24.14	13.98	56.00	46.00	-31.86
3	2.1980	17.26	14.44	0.09	17.35	14.53	56.00	46.00	-38.65
4	3.2540	18.51	14.18	0.12	18.63	14.30	56.00	46.00	-37.37
5	13.5620	31.33	15.49	0.12	31.45	15.61	60.00	50.00	-28.55
6	15.7940	18.33	5.55	0.25	18.58	5.80	60.00	50.00	-41.42

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2017/9/19
Phase:	Neutral	Test Engineer	Eric Lee

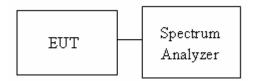
No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak
110.	riequency	reading	reading	factor	result	result	limit	limit	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)
1	0.3100	5.36	1.25	0.13	5.49	1.38	59.97	49.97	-54.48
2	0.6500	16.32	6.78	0.14	16.46	6.92	56.00	46.00	-39.54
3	2.1060	13.52	9.98	0.17	13.69	10.15	56.00	46.00	-42.31
4	3.2580	14.03	8.36	0.20	14.23	8.56	56.00	46.00	-41.77
5	18.9420	15.19	4.72	0.47	15.66	5.19	60.00	50.00	-44.34
6	23.4980	11.91	1.95	0.55	12.46	2.50	60.00	50.00	-47.54

4.220DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.6,

20 dB Bandwidth : For reporting purposes only.

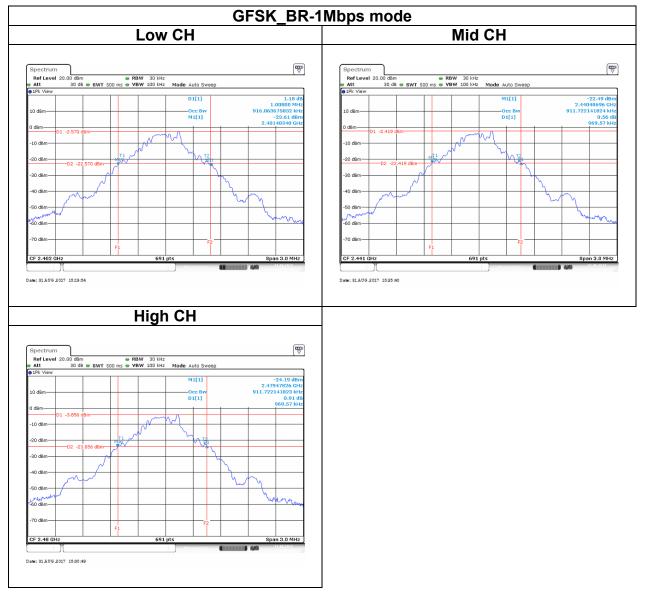

Occupied Bandwidth(99%) : For reporting purposes only.

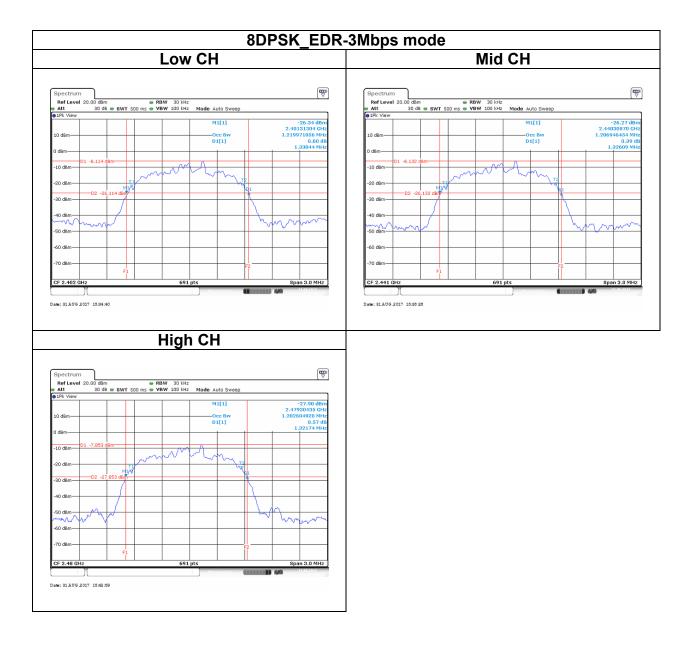
4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup




4.2.4 Test Result

	Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz							
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)					
Low	2402	0.9160	1.0080					
Mid	2441	0.9117	0.9695					
High	2480	0.917	0.9695					

	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz						
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)				
Low	2402	1.2199	1.3304				
Mid	2441	1.2069	1.3260				
High	2480	1.2026	1.3217				

Test Data

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(b)

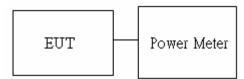
Peak output power :

FCC

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

<u>IC</u>

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


	Antenna not exceed 6 dBi : 21dBm
Limit	Antenna with DG greater than 6 dBi : 21dBm
	[Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

	BT							
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)
GFS K	0	2402	10.49	11.38	0.0112	0.0137		
BR-1Mbps	39	2441	10.51	11.40	0.0112	0.0138		
(DH5)	78	2480	9.26	10.15	0.0084	0.0104	21	27
8DPSK	0	2402	9.19	10.08	0.0083	0.0102	21	21
EDR-3Mbps	39	2441	9.61	10.50	0.0091	0.0112		
(DH5)	78	2480	8.39	9.28	0.0069	0.0085		

Average output power :

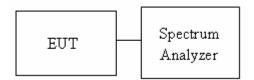
	BT					
Config.	СН	Freq. (MHz)	AV Power (dBm)			
GFSK	0	2402	9.81			
BR-1Mbps	39	2441	7.04			
(DH5)	78	2480	9.15			
8DPSK EDR-3Mbps	0	2402	7.10			
	39	2441	7.33			
(DH5)	78	2480	5.74			

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

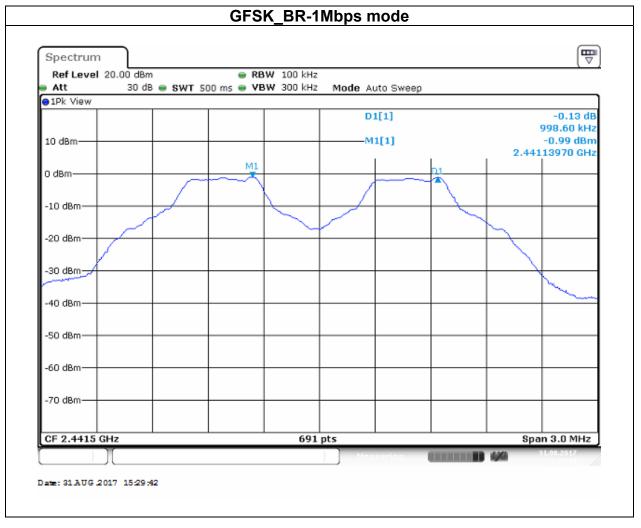
Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

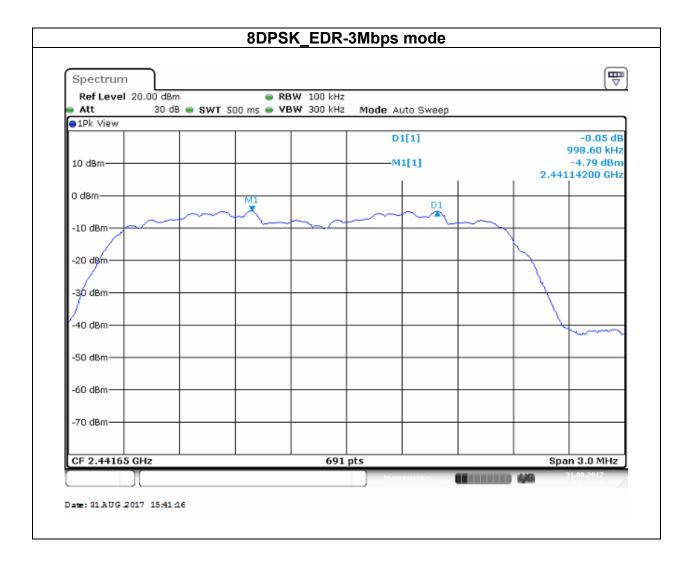
4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup

4.4.4 Test Result


	Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz								
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result					
Low	2402	0.9986	0.6720	PASS					
Mid	2441	0.9986	0.6463	PASS					
High	2480	0.9986	0.6463	PASS					


	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz							
Channel Frequency (MHz)		Channel Separation (MHz)	Channel Separation Limits (MHz)	Result				
Low	2402	0.9986	0.8869	PASS				
Mid	2441	0.9986	0.8840	PASS				
High	2480	0.9986	0.8811	PASS				

Rev.01

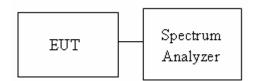
This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

<u>Test Data</u>

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)


Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW
- =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

4.5.4 Test Result

Number of Hopping							
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result			
BR-1Mbps	2402-2480	79	15	Pass			
EDR-3Mbps	2402-2480	79	15	r d55			

REMARK:

The frequency spectrum was broken up in to two sub-range to clearly show all of the hopping frequencies. In the AFH mode, this device operation was using 20 channels, so the requirement for minimum number of hopping channels is satisfied

<u>Test Data</u>

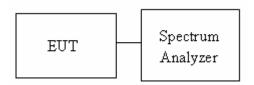
Number of Hopping						
GFSK_BR-1Mbps mode			8DPSK_EDR-3Mbps mode			
					™ ⊽	
Spectrum Ref Level 20.00 dBm	RBW 100 kHz		Ref Level 20.00 dBm	RBW 100 kHz	\ ▽	
	VBW 300 kHz Mode Auto Sweep			1 s 🖷 VBW 300 kHz Mode Auto Sweep		
O IPK VIEW	M1[1]	-2.31 dBm	Drk view	M2[1]	-6.87 dBm	
10 dBm	M2[1]	2.402110 GHz -3.57 dBm	10 dBm	M1[1]	2.480180 GHz -5.04 dBm	
		2.479940 GHz			2.401990 GHz	
°₩em Antaannooriga ann ann ann ann ann ann ann ann ann a	TA MARANA AND A DA MARANA ANA ANA ANA ANA ANA ANA ANA ANA AN	NAAAAAAAAAAA	Q.dBm	MARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
-10 dbm	<u>APISTIKATIKATIKATIKATIKATIKATIKA</u>		-10 dBm	ummummumm	COLOCIN ON YOUNDUNN	
-20 dBm	and some of the start of the st	disatiolite ii	-20 dBm			
-30 dBm			-30 dBm-			
+40 dBm			40 dBm			
-50 d8m			-50 d8m			
750 dbin			-50 UBII			
-60 dBm			-60 dBm			
-70 dBm			-70 dBm			
Start 2.4 GHz	691 pts	Stop 2.4835 GHz	Start 2.4 GHz	691 pts	Stop 2.4835 GHz	
	Measuring	31.012017		Measuring	111 B 4/4 01012017	
Date: 31 AUG 2017 15:51:12			Date: 31 AUG 2017 15:67:38			

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

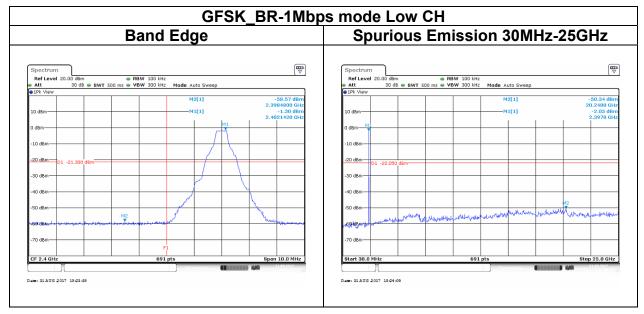
According to §15.247(d) and RSS-247 section 5.5

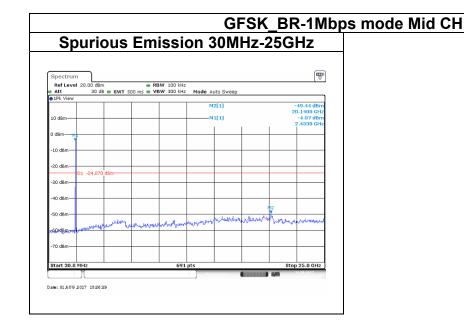
Limit -20 dBc

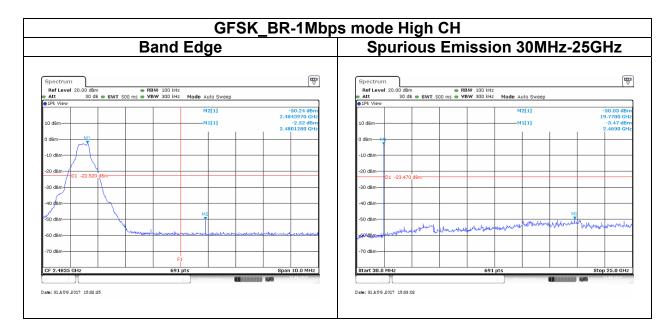

4.6.2 Test Procedure

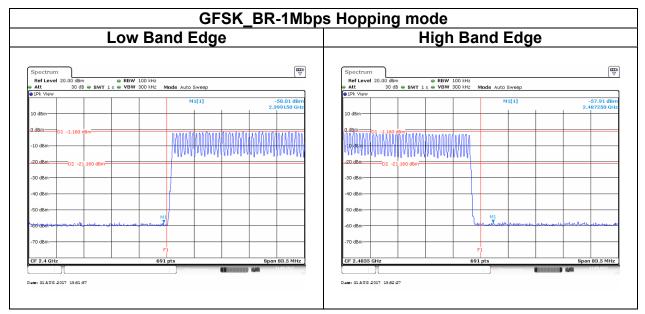
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

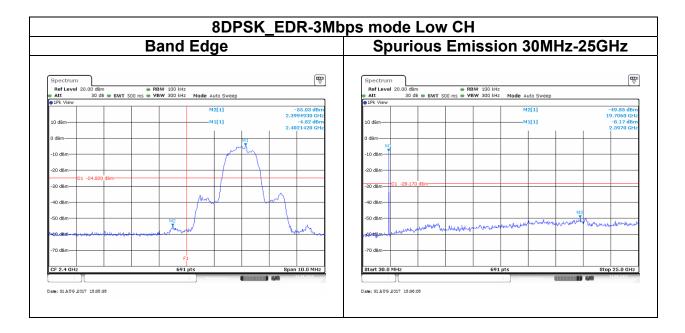
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

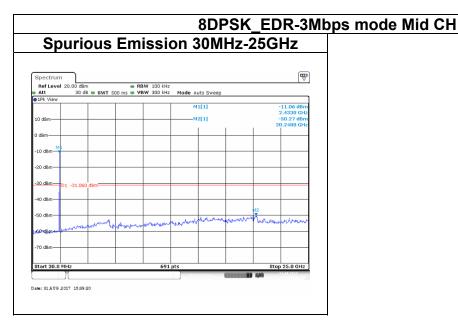

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

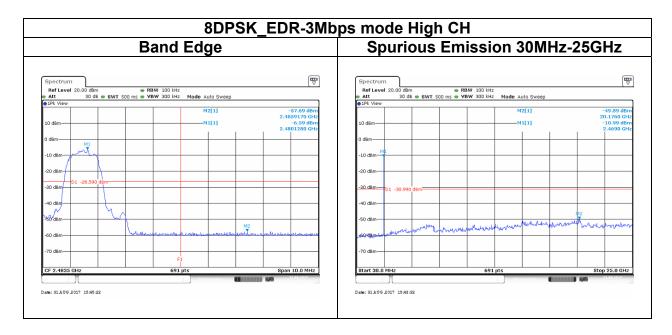

4.6.3 Test Setup

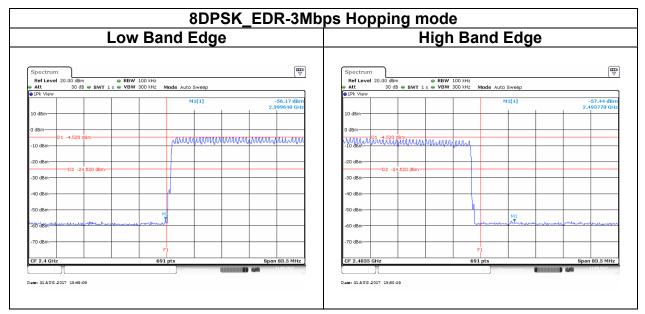



4.6.4 Test Result


<u>Test Data</u>





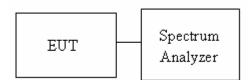


4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit

According to §15.247(a)(1)(iii)and RSS-247 section 5.1(d)

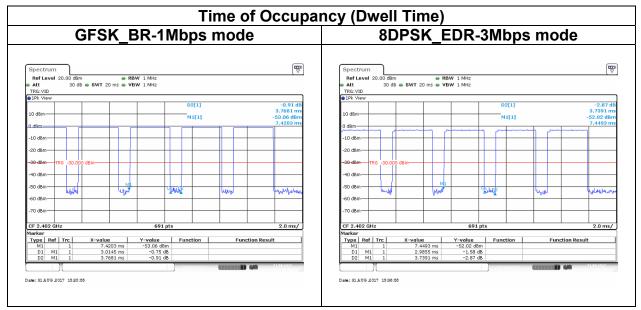
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


4.7.2 Test Procedure

1. EUT RF output port connected to the SA by RF cable.

2. Set center frequency of spectrum analyzer = operating frequency.

3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms


4.7.3 Test Setup

4.7.4 Test Result

Time of Occupancy (Dwell Time)							
Mode	Frequency	Pulse Time Per Hopping	Minimum Number of	Number of pulse in	Dwell Time IN	Dwell Time	Result
	(MHz)	(ms)	Hopping Freq.	(0.4 * N sec)	(0.4 * N sec)	Limits (s)	
BR-1Mbps	2441	3.0145	79	106.67	0.3215	0.4	Pass
EDR-3Mbps	2441	2.9855	79	106.67	0.3185	0.4	Pass
Non-AFH: DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6							
AFH: DH5 Packet permit maximum 800/ 20 / 6 = 6.666 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 6.666*0.4*20 = 53.33							

<u>Test Data</u>

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4.8.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

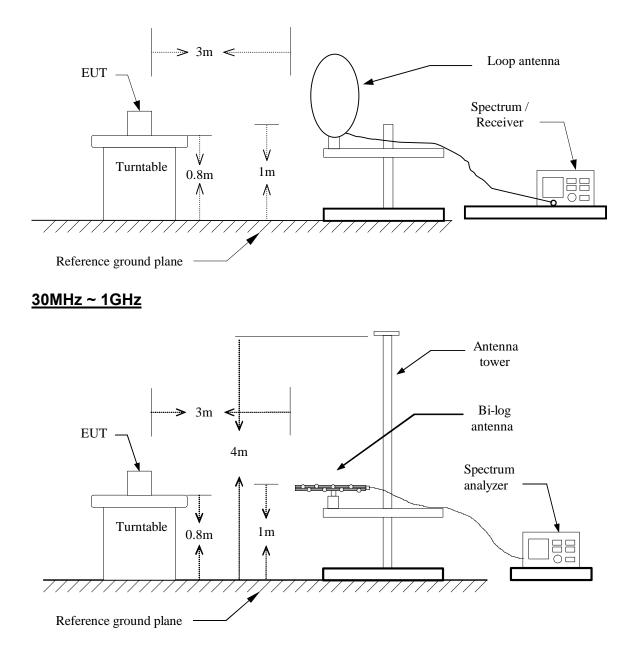
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

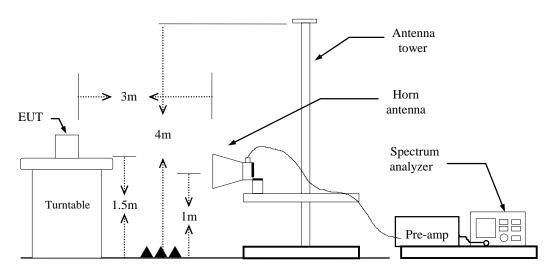
Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4. For harmonic, the worst case of output power was BR-1Mbps. Therefore only BR-1Mbps record in the report.


- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

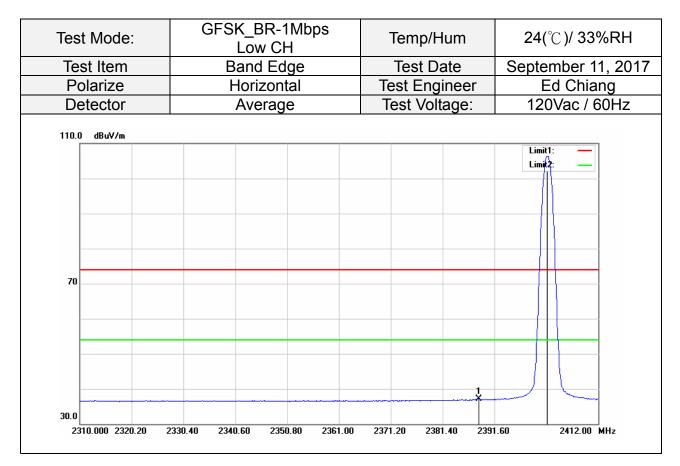
If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW setting
GFSK_BR-1Mbps	78%	2.9500	0.339	360Hz
8DPSK_EDR-3Mbps	79%	2.9600	0.338	360Hz

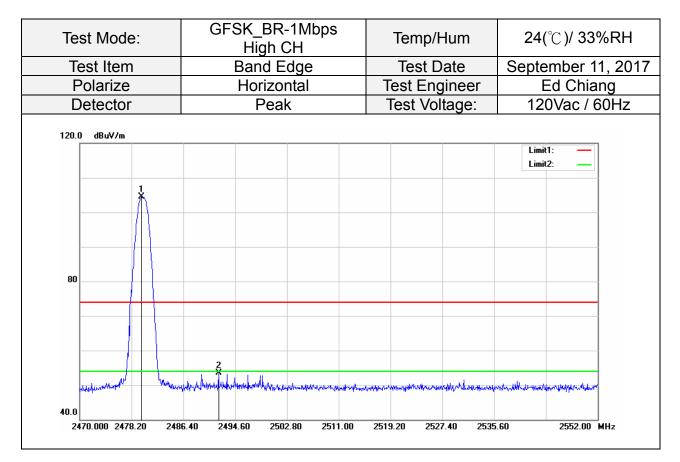
4.8.3 Test Setup <u>9kHz ~ 30MHz</u>

EESRE Compliance Certification Services Inc.

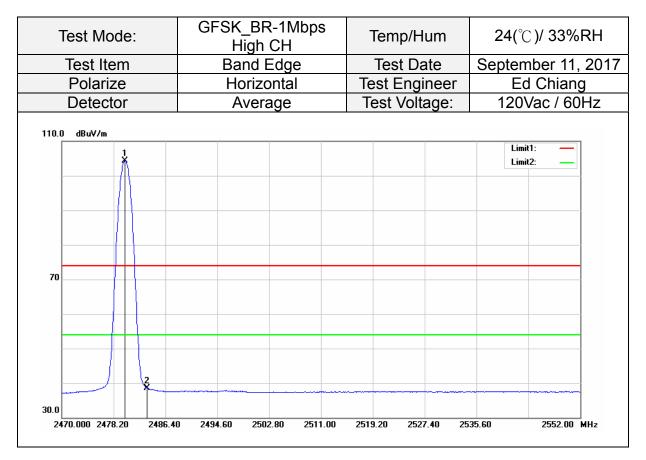
Above 1 GHz

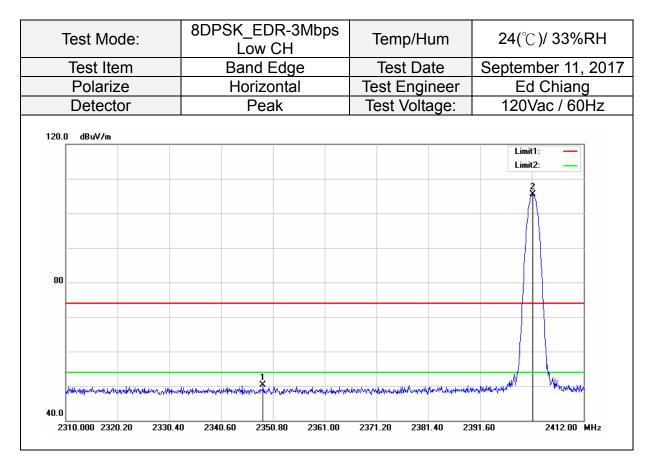


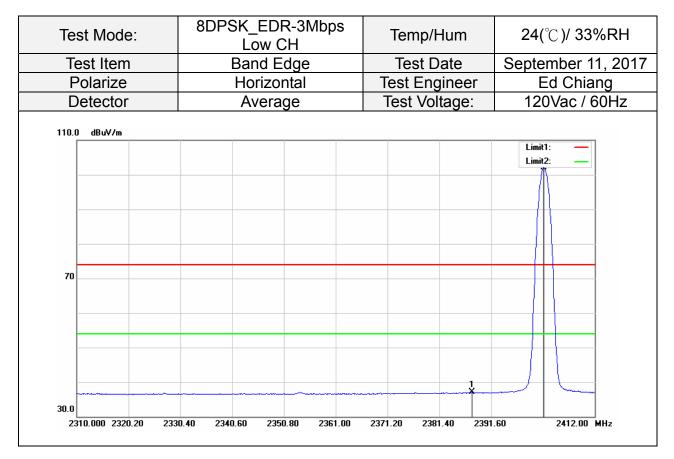
4.8.4 Test Result

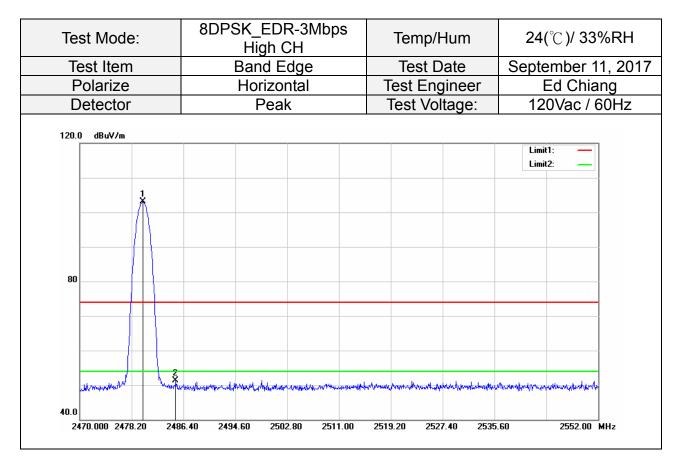

Band Edge Test Data

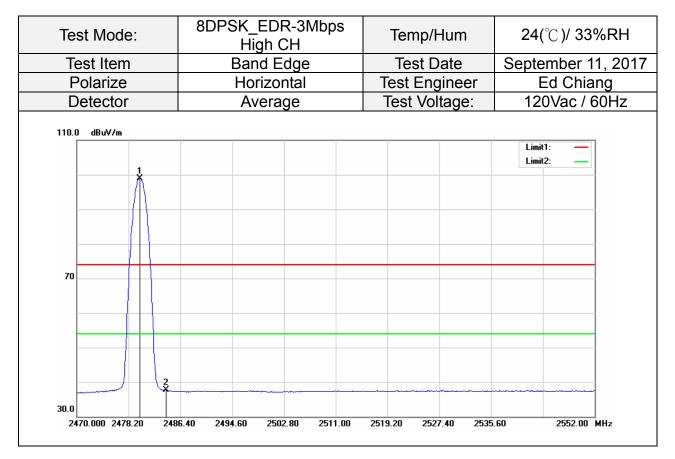
Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	24(°C)/ 33%RH
Test Item	Band Edge	Test Date	September 11, 201
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak	Test Voltage:	120Vac / 60Hz
120.0 dBuV/m		¥	
			Limit1: — Limit2: —
80			
manufacture state from the second	udderstaan teer generaan weer oo	Marthadarman Magar Nakarana Marina	mun HM Mun
40.0	2330.40 2340.60 2350.80 2361.00	2371,20 2381,40 239	


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2334.276	50.47	0.12	50.59	74.00	-23.41	peak
2	2402.004	106.63	0.29	106.92			peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.540	36.91	0.26	37.17	54.00	-16.83	AVG
2	2402.004	106.10	0.29	106.39			AVG

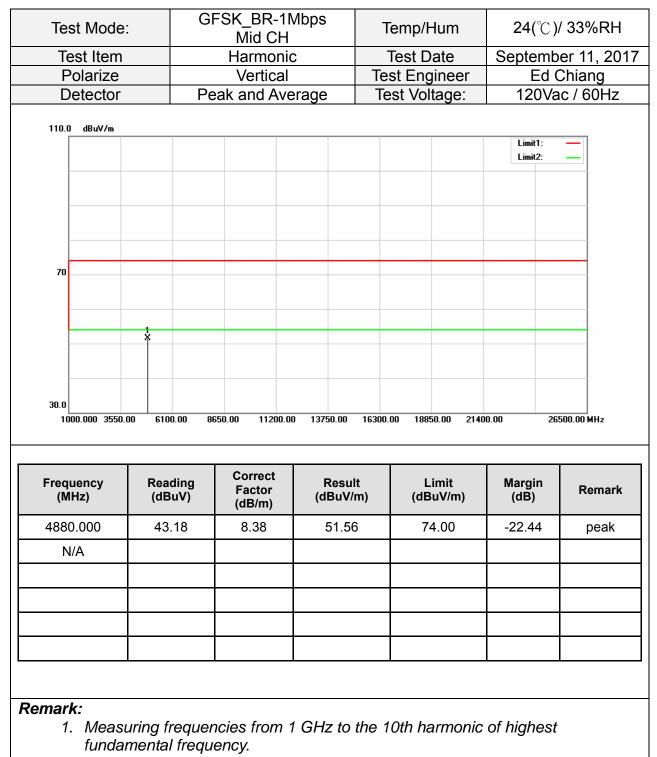

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.758	103.91	0.50	104.41			peak
2	2491.976	53.00	0.53	53.53	74.00	-20.47	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	103.77	0.50	104.27			AVG
2	2483.530	38.05	0.51	38.56	54.00	-15.44	AVG

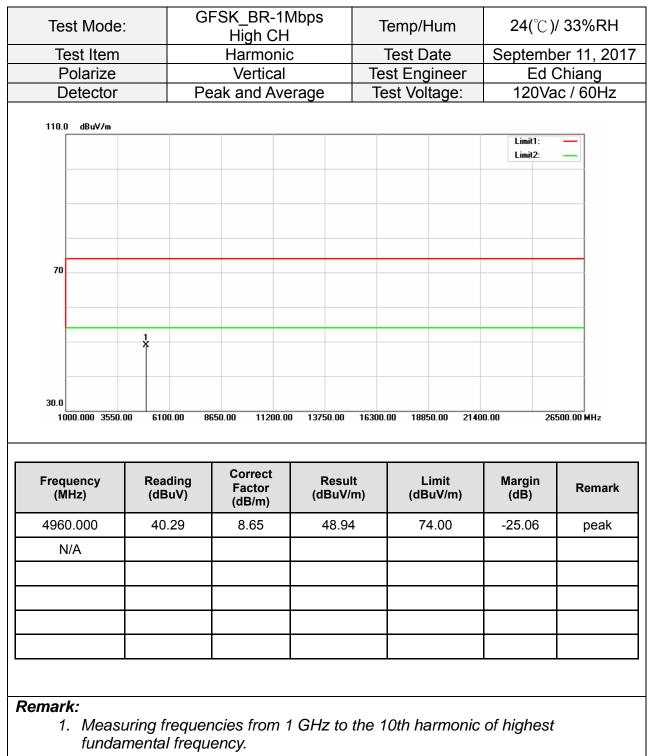

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2348.862	50.06	0.16	50.22	74.00	-23.78	peak
2	2402.004	105.13	0.29	105.42			peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.826	36.77	0.26	37.03	54.00	-16.97	AVG
2	2402.004	101.87	0.29	102.16			AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	102.52	0.50	103.02			peak
2	2485.170	50.75	0.51	51.26	74.00	-22.74	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	98.45	0.50	98.95			AVG
2	2484.104	37.29	0.51	37.80	54.00	-16.20	AVG

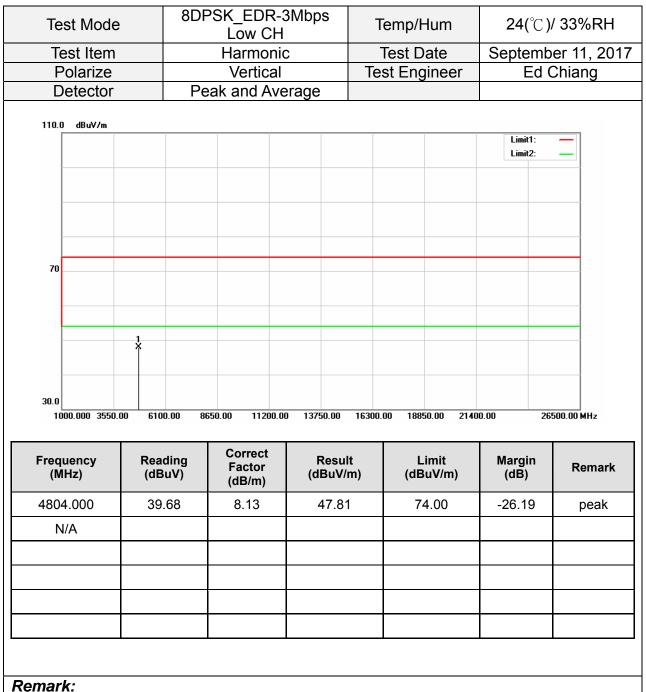
Above 1G Test Data


Test Mod	e:	GI	FSK_BR- Low Cl		Te	emp/ŀ	Hum	24(°C)/ 339	%RH
Test Iten	า		Harmor	nic	Т	est D	ate	Septe	mber 1	1, 20 ⁻
Polarize	•		Vertica	al	Tes	st Eng	gineer		Ed Chia	
Detecto	r	Pe	eak and Av	verage	Tes	st Vol	tage:	120)Vac / 6	60Hz
110.0 dBuV/m										
								Limit		
								Limit	2:	
70										
	-									
	×									
30.0										
30.0 1000.000 355	0.00 610	0.00 86	650.00 11200	.00 13750.00	16300.0	0 188	50.00 214	00.00	26500.00	MHz
	0.00 610	0.00 86	650.00 11200	0.00 13750.00	16300.0	00 188	50.00 214	00.00	26500.00	MHz
1000.000 355			Correct						n	
	Rea	0.00 86 ding BuV)	Correct Factor	.00 13750.00 Resul (dBuV/	lt	L	50.00 214 imit suV/m)	00.00 Margi (dB)	n B	MHz emark
1000.000 355	Rea (dB	ding	Correct	Resu	lt m)	L (dB	imit	Margi	n R	
Frequency (MHz)	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000 N/A	Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/	lt m)	L (dB	.imit suV/m)	Margi (dB)	n R	emark
1000.000 355 Frequency (MHz) 4804.000 N/A	Rea (dB 43	ding SuV) .86	Correct Factor (dB/m) 8.13	Resul (dBuV/	(t m)	L (dB 7/	.imit suV/m) 4.00	Margi (dB) -22.0	n R	emark

Test Mode	:	GFSK_BR-1 Low CH		Temp	/Hum	24(°C))/ 33%RH
Test Item		Harmoni			Date		oer 11, 20
Polarize		Horizonta			ngineer	Ed	Chiang
Detector		Peak and Ave	erage	Test V	oltage:	120Va	ac / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	—
						Linkz.	
70							
	1 X						
	Î						
20.0							
30.0	00 6100.00	8650.00 11200.0	0 13750.00	16300.00 1	8850.00 2140	00.00 2	6500.00 MHz
	00 6100.00	8650.00 11200.0	00 13750.00	16300.00 1	8850.00 2140	00.00 20	6500.00 MHz
	00 6100.00		00 13750.00	16300.00 1	8850.00 214	00.00 2	6500.00 MHz
1000.000 3550. Frequency	Reading	8650.00 11200.0 Correct Factor	Result	t	Limit	Margin	
1000.000 3550.		Correct		t			
1000.000 3550. Frequency	Reading	Correct Factor	Result	t m) (c	Limit	Margin	6500.00 MHz Remark
1000.000 3550. Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r	t m) (c	Limit IBuV/m)	Margin (dB)	Remark
1000.000 3550. Frequency (MHz) 4804.000 N/A	Reading (dBuV) 37.55	Correct Factor (dB/m)	Result (dBuV/r 45.68	t m) (c	Limit IBuV/m) 74.00	Margin (dB) -28.32	Remark

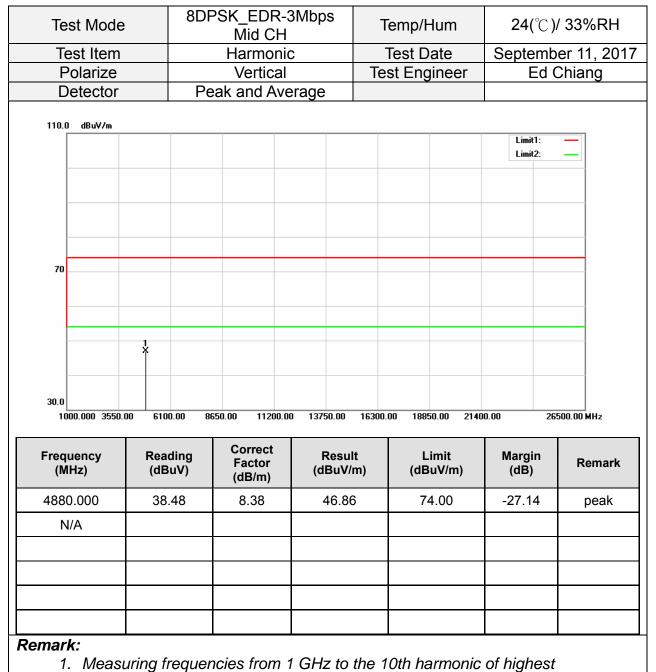
Average value compliance with the average limit

Test Mode	э:	GF	SK_BR-1 Mid CH		Те	mp/⊦	lum	24(°	C)/ 33%	RH
Test Item	1		Harmon	nic	Te	est D	ate		mber 11	
Polarize			Horizon				ineer		d Chian	
Detector		Pea	ak and Av	/erage	Tes	t Voli	age:	120	Vac / 60)Hz
110.0 dBuV/m										
								Limit1 Limit2		
70										
	1									
	X									
30.0	X									
30.0 1000.000 355		0.00 865	0.00 11200	.00 13750.00	16300.00	1885	0.00 2140	00.00	26500.00 M	łz
		0.00 865	i0.00 11200	.00 13750.00	16300.00	1885	0.00 2140	0.00	26500.00 MI	łz
		ling	0.00 11200 Correct Factor (dB/m)	.00 13750.00 Resul (dBuV/	t	Li	0.00 2140 mit uV/m)	00.00 Margin (dB)		1z mark
Frequency	0.00 6100 Read	ling uV)	Correct Factor	Resu	t m)	Li (dB	mit	Margin	Rei	
Frequency (MHz)	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark
Frequency (MHz) 4880.000	0.00 6100 Read (dBu	ling uV)	Correct Factor (dB/m)	Resul (dBuV/	t m)	Li (dB	imit uV/m)	Margin (dB)	Rei	mark



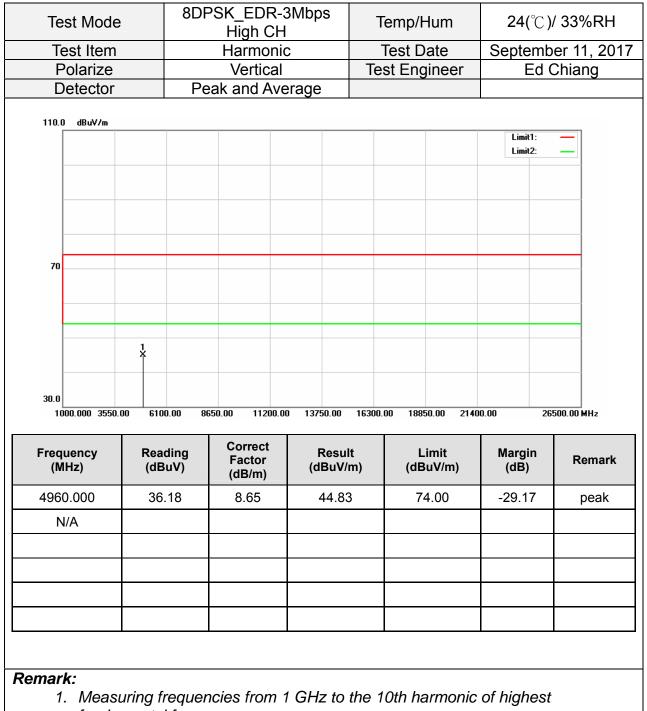
CELERE Compliance Certification Services Inc.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


CELERE Compliance Certification Services Inc.

- Remark:
 - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
 - 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		8DPSK_EDR-3Mbps Low CH				Temp/Hum			24(℃)/ 33%RH	
Test Item		Harmonic				Test Date			nber 11, 201	
Polarize		Horizontal				st Eng	gineer		l Chiang	
Detector		Peak and Average								
110.0 dBuV/m										
70								Limit1: Limit2:		
30.0	1 × 00 6100.0	00 8650).00 11200	0.00 13750.00	16300.0	00 188	50.00 2140	0.00	26500.00 MHz	
Frequency (MHz)	Readi (dBu'	ing V)	Correct Factor (dB/m)	Resu (dBuV/			imit uV/m)	Margin (dB)	Remark	
4804.000	34.7	'6	8.13	42.8	9	7.	4.00	-31.11	peak	
N/A										

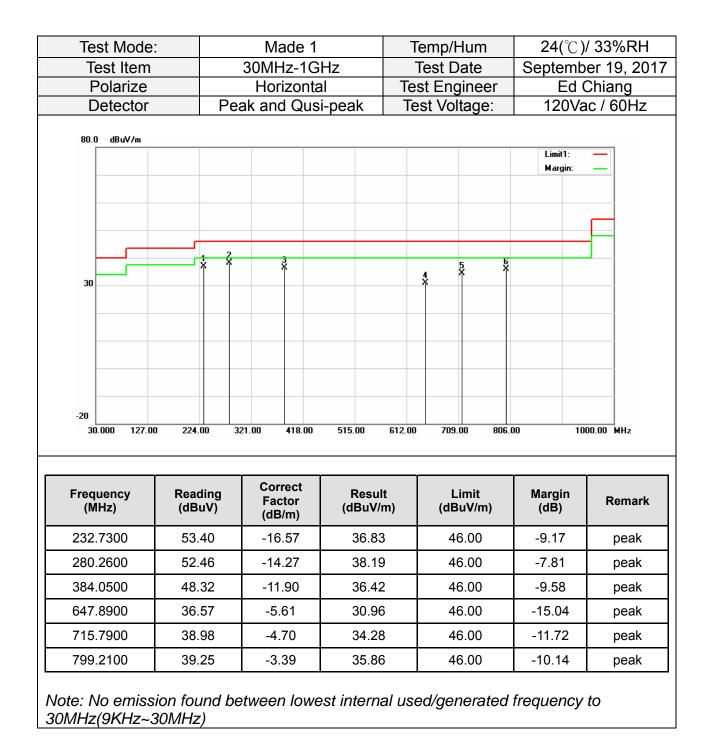

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		8DPSK_EDR-3Mbps Mid CH				emp/H	lum	24(℃)/ 33%RH		
Test Item				Fest D	ate	Septem	ber 11, 201			
Polarize			Horizor	ital	Tes	st Eng	jineer		Chiang	
Detecto	Detector		ak and A	verage						
110.0 dBuV/r	n									
								Limit1: Limit2:		
70										
	1									
30.0	×									
1000.000 3	550.00 610	0.00 86	50.00 1120	0.00 13750.00	16300.0	00 188!	50.00 2140	00.00 2	6500.00 MHz	
Frequency (MHz)		ding BuV)	Correct Factor (dB/m)	Resu (dBuV/			imit uV/m)	Margin (dB)	Remark	
4880.000	34	.45	8.38	42.8	3	74	4.00	-31.17	peak	
N/A										
e mark: 1 Me:	asurina f	reguen	icies from	n 1 GHz to	the 1	0th h≤	armonic	of hiahes	<i>t</i>	

- fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode		8DPSK_EDR-3Mbps High CH				Temp/Hum			24(°C)/ 33%RH		
Te	Test Item		Harmonic				Test Date			mber 1'	1, 2017
	Polarize		Horizontal				est Eng	gineer	E	d Chiar	ng
D	Detector		Peak and Average								
110.0	dBuV/m										
-									Limit1 Limit2		
-											
70 -											
-		1 X									
30.0 10	00.000 3550.	00 6100).00 865	0.00 1120	0.00 13750.00	16300.	.00 188	50.00 2140	0.00	26500.00 N	1 Hz
Frequ (M	uency Hz)	Read (dB		Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margir (dB)	n Re	emark
4960	0.000	35.	60	8.65	44.2	5	7	4.00	-29.75	5 p	beak
N	/A										
Remarl	k:										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Below 1G Test Data

Test Mode:		Made 1				emp/Hum	24(°C)	/ 33%RH	
Test Item		30MHz-1GHz				est Date		September 19, 20	
Polarize			ertical			st Engineer		Chiang	
Detector		Peak an	d Qus	i-peak	Te	st Voltage:	120Va	ac / 60Hz	
80.0 dBuV/m							Limit1: Margin:	_	
30		×	x x	*	Xu	6			
-20 30.000 127.0	0 224.00	321.00	418.00	515.00	612.00	709.00 806	.00 10	00.00 MHz	
Frequency (MHz)	Reading (dBuV)	Fa	rrect ctor B/m)	Resi (dBuV		Limit (dBuV/m)	Margin (dB)	Remark	
165.8000	53.96	-16	6.31	37.6	65	43.50	-5.85	peak	
100.0000				34.1	5	46.00	-11.85	peak	
366.5900	46.60	-12	2.45	01.			1		
	46.60 44.08		2.45 0.25	33.8	33	46.00	-12.17	peak	
366.5900		-1(46.00 46.00	-12.17 -14.07	peak peak	
366.5900 431.5800	44.08	-10	0.25	33.8)3				

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

