

TEST REPORT

Report No.:	BCTC2212037380E					
Applicant:	DONGGUAN LINPA ACOUSTIC TECHNOLOGY CO.,LTD					
Product Name:	BLUETOOTH LED SPEAKER					
Model/Type reference:	LBS053	CHENZHA				
Tested Date:	2022-12-02 to 2022-12-08					
Issued Date:	2022-12-08					
She	enzhen BCTC Testing Co., Ltd.					
No.: BCTC/RF-EMC-007	Page: 1 of/80/ / / / / /	Edition: A.5				

FCC ID:2AKZ8-LBS053

Product Name:	BLUETOOTH LED SPEAKER
Trademark:	LINPA
Model/Type Reference:	LBS053 BSSK8085
Prepared For:	DONGGUAN LINPA ACOUSTIC TECHNOLOGY CO., LTD
Address:	2A No.60 Lizhong Road Dali Qingxi Town DONGGUAN China
Manufacturer:	DONGGUAN LINPA ACOUSTIC TECHNOLOGY CO.,LTD
Address:	2A No.60 Lizhong Road Dali Qingxi Town DONGGUAN China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2022-12-02
Sample tested Date:	2022-12-02 to 2022-12-08
Issue Date:	2022-12-08
Report No.:	BCTC2212037380E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 80

Table Of Content

Test	Report Declaration P	age
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	-
4.6	Table Of Parameters Of Text Software Setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2 6	Test Instrument Used	
6. 6.1	Conducted Emissions	
6.2	Block Diagram Of Test Setup	
6.3	Test procedure	
6.4	EUT operating Conditions	
0. 4 6.5	Test Result	
0.5 7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result.	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	25
8.4	EUT operating Conditions	25
8.5	Test Result	
9.	Spurious RF Conducted Emissions	27
9.1	Block Diagram Of Test Setup	27
9.2	Limit States and the second	27
9.3	Test procedure Test Result 20 dB Bandwidth Block Diagram Of Test Setup	27
9.4	Test Result	28
10.	20 dB Bandwidth	49
10.1	Block Diagram Of Test Setup	
10.2		
10.3	I est procedure	
10.4	Test Result	
11.	Maximum Peak Output Power	
11.1	Block Diagram Of Test Setup	
11.2 11.3		
11.3		
11.4	Test Result	

Edition: A,5

,TC 3C

PR

》测

12. I	Hopping Channel Separation	.61
12.1	Block Diagram Of Test Setup	.61
12.2	Limit	.61
12.3	Test procedure	.61
12.4	Test Result	.61
13. I	Number Of Hopping Frequency	.67
13.1	Block Diagram Of Test Setup	.67
13.2	Limit	.67
13.3	Test procedure	.67
13.4	Test Result	
14. I	Dwell Time	.70
14.1	Block Diagram Of Test Setup	.70
14.2	Limit	.70
14.3	Test procedure	
14.4	Test Result	.70
15. /	Antenna Requirement	.76
15.1	Limit	
15.2	Test Result	.76
16. I	EUT Photographs	.77
	EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-007

Page: 4 of 80

Edition: A,5

检

1. Version

Report No.	Issue Date	Description	Approved
BCTC2212037380E	2022-12-08	Original	Valid

Page: 5 of 80

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

No.: BCTC/RF-EMC-007

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	LBS053 BSSK8085
Model differences:	All the model are the same circuit and RF module, except model names.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	PCB antenna
Antenna Gain:	-0.58 dBi
Ratings:	USB:DC 5V Battery:DC 3.7V

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

Page: 8 of 80

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	BLUETOOTH LED SPEAKER	N/A	LBS053	BSSK8085	EUT
E-2	Adapter	UGREEN	CD122	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	: 19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	. 26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	1

,TC 3C

PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Charging (Conducted emission)					
4	Transmitting (Radiated emission)					

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	bt_tool_v1.1.2					
Frequency	2402 MHz	2441 MHz	2480 MHz			
Parameters	DEF	DEF	DEF			

TE,

5. **Test Facility And Test Instrument Used**

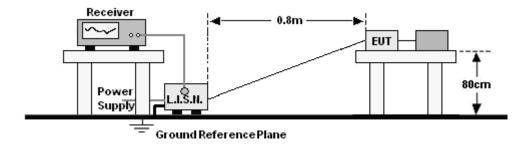
5.1 **Test Facility**

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 Designation Number: CN1212 ISED Registered No.: 23583 CAB identifier: CN0017

5.2 Test Instrument Used

	Conducted Emissions Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.					
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023					
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023					
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/					
Attenuator	/	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023					

	RF Conducted Test								
Equipment	Manufacturer	Model# Serial#		Last Cal.	Next Cal.				
Power Metter	Keysight	E4419		May 24, 2022	May 23, 2023				
Power Sensor (AV)	Keysight	E9300A		May 24, 2022	May 23, 2023				
Signal Analyzer 20kHz-26.5G Hz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023				
Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40		May 24, 2022	May 23, 2023				


	Radiated Emissions Test (966 Chamber)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023				
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023				
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023				
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023				
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023				
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023				
Horn Antenn (18GHz-40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023				
Amplifier (18GHz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023				
Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023				
RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	May 26, 2022	May 25, 2023				
RF cables2 (30MHz-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	May 26, 2022	May 25, 2023				
RF cables3 (1GHz-40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 26, 2022	May 25, 2023				
Power Metter	Keysight	E4419	1	May 26, 2022	May 25, 2023				
Power Sensor (AV)	Keysight	E9300A		May 26, 2022	May 25, 2023				
Signal Analyzer 20kHz-26.5GHz	Keysight	N9020A	MY49100060	May 26, 2022	May 25, 2023				
Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40		May 26, 2022	May 25, 2023				
Software	Frad	EZ-EMC	FA-03A2 RE						

C. CO.,LTA

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit ((dBuV)	
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Receiver Parameters		Setting	1
Attenuation		10 dB	
Start Frequency		0.15 MHz	
Stop Frequency		30 MHz	
IF Bandwidth		9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

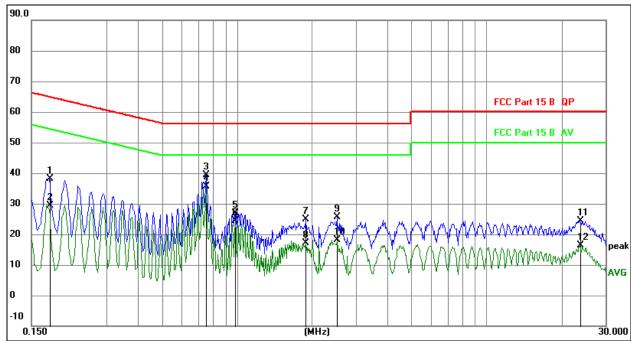
Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

3. Measurement = Reading Level + Correct Factor
4. Over = Measurement - Limit

4.000			iiiiitte					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1770	17.11	19.74	36.85	64.63	-27.78	QP
2		0.1770	3.90	19.74	23.64	54.63	-30.99	AVG
3		0.3209	11.71	19.77	31.48	59.68	-28.20	QP
4		0.3209	0.45	19.77	20.22	49.68	-29.46	AVG
5		0.7530	17.94	19.74	37.68	56.00	-18.32	QP
6	*	0.7530	15.08	19.74	34.82	46.00	-11.18	AVG
7		1.0410	5.01	19.76	24.77	56.00	-31.23	QP
8		1.0410	-0.32	19.76	19.44	46.00	-26.56	AVG
9		2.4135	3.68	19.93	23.61	56.00	-32.39	QP
10		2.4135	-3.55	19.93	16.38	46.00	-29.62	AVG
11		23.6760	2.19	20.52	22.71	60.00	-37.29	QP
12		23.6760	-6.44	20.52	14.08	50.00	-35.92	AVG

No.: BCTC/RF-EMC-007


Page: 14 of 80

Edition:

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

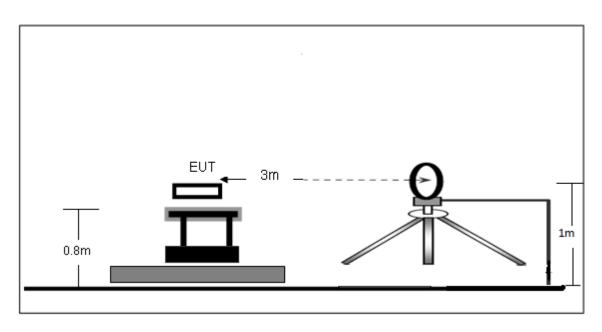
4. 046	$e_1 = iviea$	surement - L	11111					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1768	18.51	19.74	38.25	64.63	-26.38	QP
2		0.1768	9.60	19.74	29.34	54.63	-25.29	AVG
3		0.7508	19.56	19.74	39.30	56.00	-16.70	QP
4	*	0.7508	15.82	19.74	35.56	46.00	-10.44	AVG
5		0.9839	7.18	19.76	26.94	56.00	-29.06	QP
6		0.9839	4.55	19.76	24.31	46.00	-21.69	AVG
7		1.8879	5.00	19.87	24.87	56.00	-31.13	QP
8		1.8879	-2.82	19.87	17.05	46.00	-28.95	AVG
9		2.5133	5.65	19.94	25.59	56.00	-30.41	QP
10		2.5133	-1.81	19.94	18.13	46.00	-27.87	AVG
11		23.6361	3.98	20.52	24.50	60.00	-35.50	QP
12		23.6361	-4.23	20.52	16.29	50.00	-33.71	AVG
				- 1 Jah - Jah				

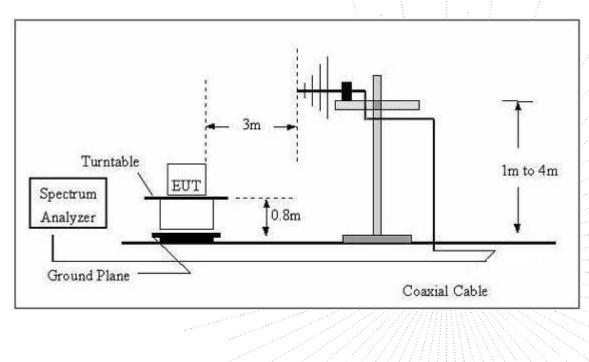
No.: BCTC/RF-EMC-007

Page: 15 of 80

Edition:

,TC 3C

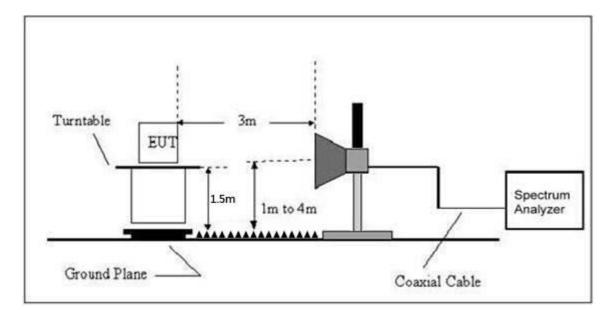

PR


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



TE. TC OVE

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Distance Field Strength Limit at 3m Distance		
uV/m	(m)	uV/m	dBuV/m
2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
30	30	100 * 30	20log ⁽³⁰⁾ + 40
100	3	100	20log ⁽¹⁰⁰⁾
150	3	150	20log ⁽¹⁵⁰⁾
200	3	200	20log ⁽²⁰⁰⁾
500	3	500	20log ⁽⁵⁰⁰⁾
	uV/m 2400/F(kHz) 24000/F(kHz) 30 100 150 200	uV/m (m) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 3 150 3 200 3	uV/m(m)uV/m2400/F(kHz)30010000 * 2400/F(kHz)24000/F(kHz)30100 * 24000/F(kHz)3030100 * 30100310015031502003200

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)					
Frequency (MHz)	Peak	Average				
Above 1000	74	54				

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FD

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-007

Page: 19 of 80

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 3.7V
Test Mode:	Mode 5	Test voltage.	DC 3.7V

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

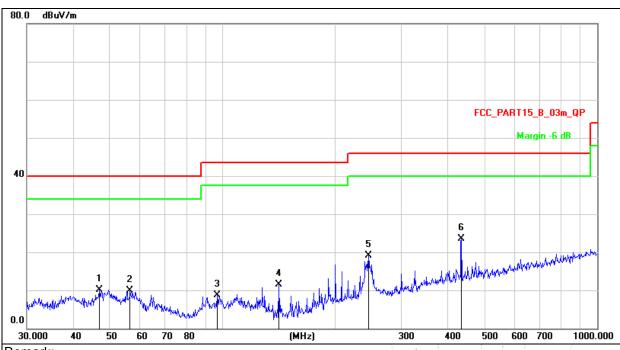
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


No.: BCTC/RF-EMC-007

Page: 20 of 80

Between 30MHz - 1GHz

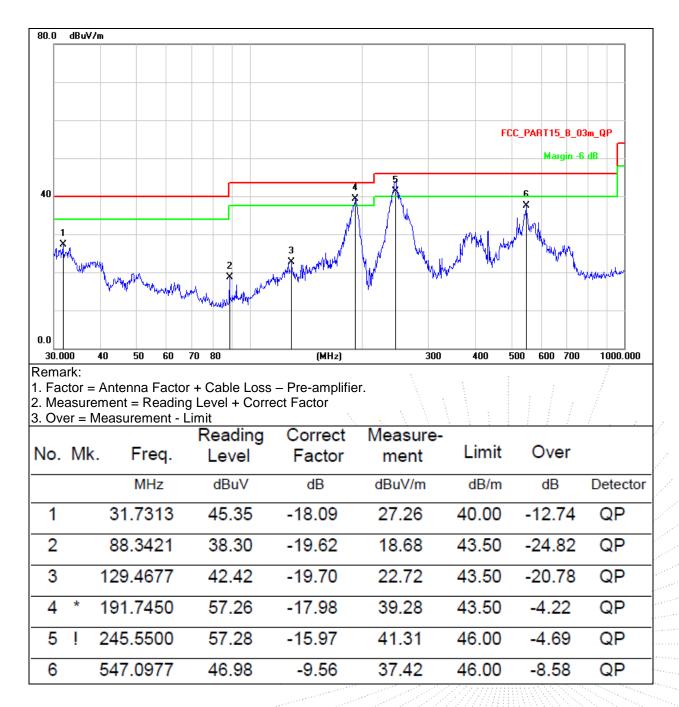
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 5	Test Voltage :	DC 3.7V

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor 3. Over = Measurement - Limit

No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dB/m dB Detector 1 46.8303 26.08 -15.95 10.13 40.00 -29.87 QP 2 56.5929 26.44 -16.58 9.86 40.00 -30.14 QP 3 96.7749 26.92 -18.23 8.69 43.50 -34.81 QP 4 141.3298 31.95 -20.48 11.47 43.50 -32.03 QP 5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP 6 * 434.0651 35.22 -11.72 23.50 46.00 -22.50 QP	3. UVE	$e^{r} = ive$	easurement - i	Limit					
1 46.8303 26.08 -15.95 10.13 40.00 -29.87 QP 2 56.5929 26.44 -16.58 9.86 40.00 -30.14 QP 3 96.7749 26.92 -18.23 8.69 43.50 -34.81 QP 4 141.3298 31.95 -20.48 11.47 43.50 -32.03 QP 5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP	No.	Mk.	Freq.	•			Limit	Over	
2 56.5929 26.44 -16.58 9.86 40.00 -30.14 QP 3 96.7749 26.92 -18.23 8.69 43.50 -34.81 QP 4 141.3298 31.95 -20.48 11.47 43.50 -32.03 QP 5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
3 96.7749 26.92 -18.23 8.69 43.50 -34.81 QP 4 141.3298 31.95 -20.48 11.47 43.50 -32.03 QP 5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP	1		46.8303	26.08	-15.95	10.13	40.00	-29.87	QP
4 141.3298 31.95 -20.48 11.47 43.50 -32.03 QP 5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP	2		56.5929	26.44	-16.58	9.86	40.00	-30.14	QP
5 245.0900 35.18 -15.98 19.20 46.00 -26.80 QP	3		96.7749	26.92	-18.23	8.69	43.50	-34.81	QP
	4		141.3298	31.95	-20.48	11.47	43.50	-32.03	QP
6 * 434.0651 35.22 -11.72 23.50 46.00 -22.50 QP	5		245.0900	35.18	-15.98	19.20	46.00	-26.80	QP
	6	* 4	434.0651	35.22	-11.72	23.50	46.00	-22.50	QP


. . .

JC JC JC

淜

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 5	Test Voltage :	DC 3.7V

检

Between 1GHz – 25GHz

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			GFSK Low ch	annel			
V	4804.00	54.61	-0.43	54.18	74.00	-19.82	PK
V	4804.00	46.18	-0.43	45.75	54.00	-8.25	AV
V	7206.00	47.47	8.31	55.78	74.00	-18.22	PK
V	7206.00	37.27	8.31	45.58	54.00	-8.42	AV
Н	4804.00	50.79	-0.43	50.36	74.00	-23.64	PK
Н	4804.00	41.08	-0.43	40.65	54.00	-13.35	AV
Н	7206.00	45.45	8.31	53.76	74.00	-20.24	PK
Н	7206.00	38.39	8.31	46.70	54.00	-7.30	AV
		G	FSK Middle c	hannel	•		•
V	4882.00	50.91	-0.38	50.53	74.00	-23.47	PK
V	4882.00	43.00	-0.38	42.62	54.00	-11.38	AV
V	7323.00	41.12	8.83	49.95	74.00	-24.05	PK
V	7323.00	32.47	8.83	41.30	54.00	-12.70	AV
Н	4882.00	47.09	-0.38	46.71	74.00	-27.29	PK
Н	4882.00	36.20	-0.38	35.82	54.00	-18.18	AV
Н	7323.00	39.49	8.83	48.32	74.00	-25.68	PK
Н	7323.00	32.28	8.83	41.11	54.00	-12.89	AV
			GFSK High ch	annel			
V	4960.00	53.57	-0.32	53.25	74.00	-20.75	PK
V	4960.00	43.37	-0.32	43.05	54.00	-10.95	AV
V	7440.00	46.61	9.35	55.96	74.00	-18.04	PK
V	7440.00	36.80	9.35	46.15	54.00	-7.85	AV
Н	4960.00	50.72	-0.32	50.40	74.00	-23.60	PK
Н	4960.00	41.46	-0.32	41.14	54.00	-12.86	AV
Н	7440.00	45.55	9.35	54.90	74.00	-19.10	PK
Н	7440.00	36.58	9.35	45.93	54.00	-8.07	AV

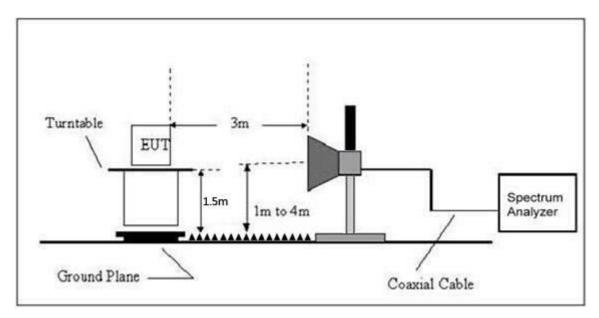
Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

CO.,L7

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M) Peak Average			
Frequency (MIRZ)				
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result
			(dBuV/m)	(dB)	РК	PK	AV	
			Low	Channel 2	402MHz			
	Н	2390.00	53.73	-6.70	47.03	74.00	54.00	PASS
	Н	2400.00	56.90	-6.71	50.19	74.00	54.00	PASS
	V	2390.00	53.84	-6.70	47.14	74.00	54.00	PASS
GFSK	V	2400.00	54.07	-6.71	47.36	74.00	54.00	PASS
GFSK			High	h Channel 2	480MHz			
	Н	2483.50	51.94	-6.79	45.15	74.00	54.00	PASS
	Н	2500.00	48.82	-6.81	42.01	74.00	54.00	PASS
	V	2483.50	52.73	-6.79	45.94	74.00	54.00	PASS
	V	2500.00	47.84	-6.81	41.03	74.00	54.00	PASS
			Low	Channel 2	402MHz			
	Н	2390.00	53.66	-6.70	46.96	74.00	54.00	PASS
	Н	2400.00	58.65	-6.71	51.94	74.00	54.00	PASS
	V	2390.00	53.26	-6.70	46.56	74.00	54.00	PASS
π/4DQPSK	V	2400.00	54.74	-6.71	48.03	74.00	54.00	PASS
II/4DQP3K			High	h Channel 2	480MHz			
	Н	2483.50	52.63	-6.79	45.84	74.00	54.00	PASS
	Н	2500.00	50.42	-6.81	43.61	74.00	54.00	PASS
	V	2483.50	52.57	-6.79	45.78	74.00	54.00	PASS
	V	2500.00	48.89	-6.81	42.08	74.00	54.00	PASS
			Low	Channel 2	402MHz			
	Н	2390.00	53.17	-6.70	46.47	:74.00	54.00	PASS
	Н	2400.00	57.44	-6.71	50.73	74.00	54.00	PASS
	V	2390.00	52.40	-6.70	45.70	74.00	54.00	PASS
	V	2400.00	52.46	-6.71	45.75	74.00	54.00	PASS
8DPSK			High	h Channel 2	480MHz			
	Н	2483.50	51.37	-6.79	44.58	74.00	54.00	PASS
	Н	2500.00	49.88	-6.81	43.07	74.00	54.00	PASS
	V	2483.50	51.68	-6.79	44.89	74.00	54.00	PASS
	V	2500.00	48.62	-6.81	41.81	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

E

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

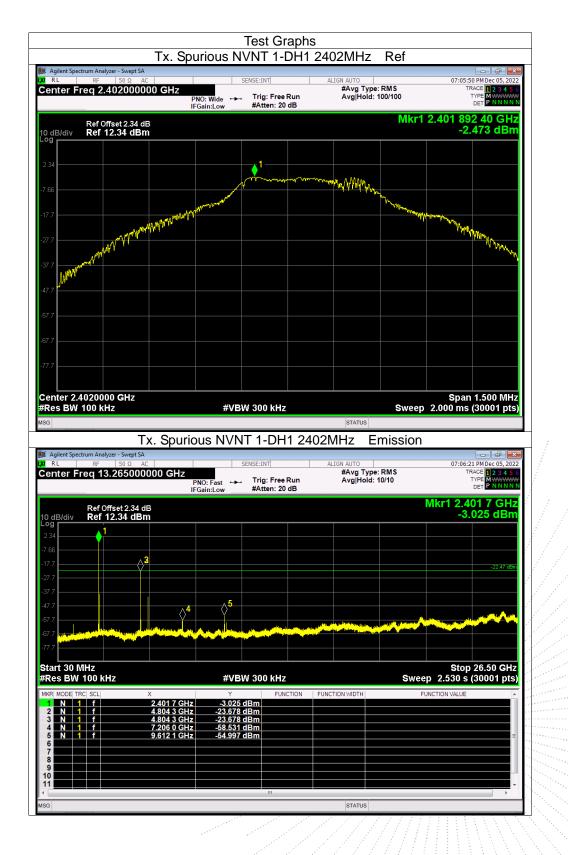
9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

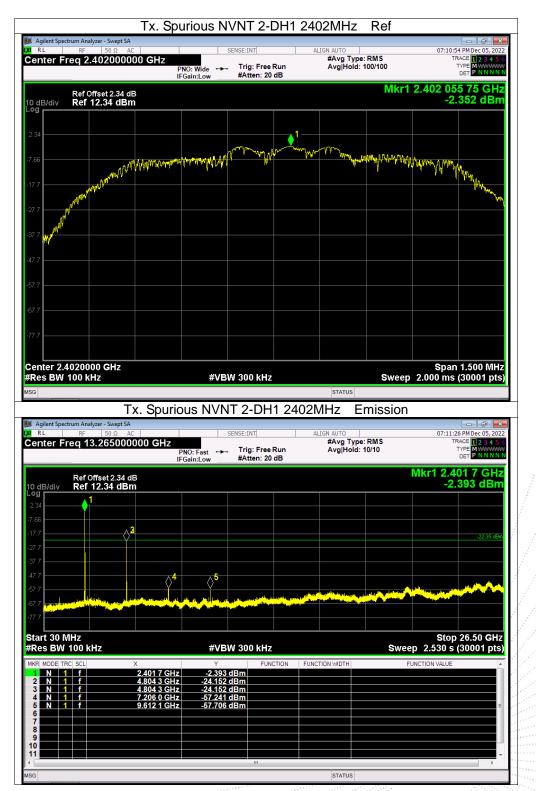
Detector function = peak, Trace = max hold


Page: 27 of 8

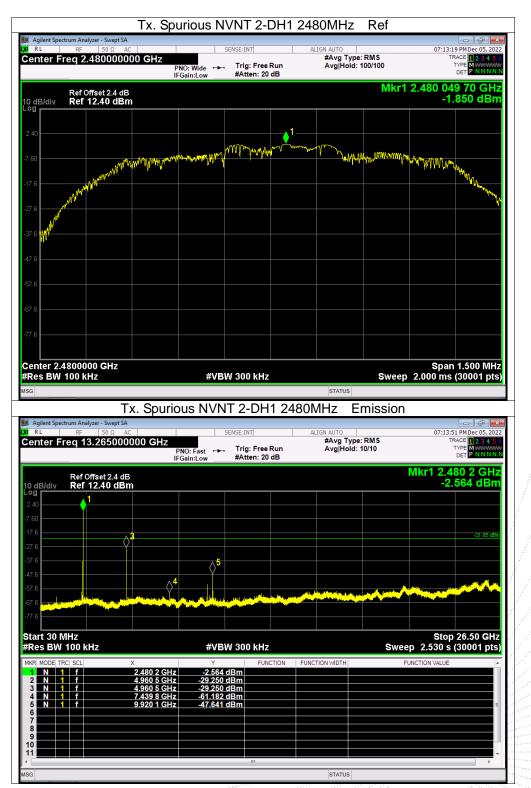
Edition: A.5

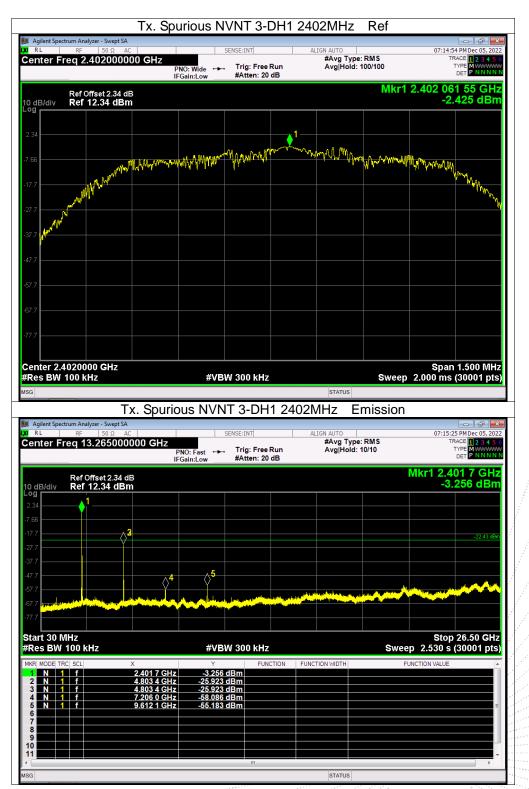
JC 3C

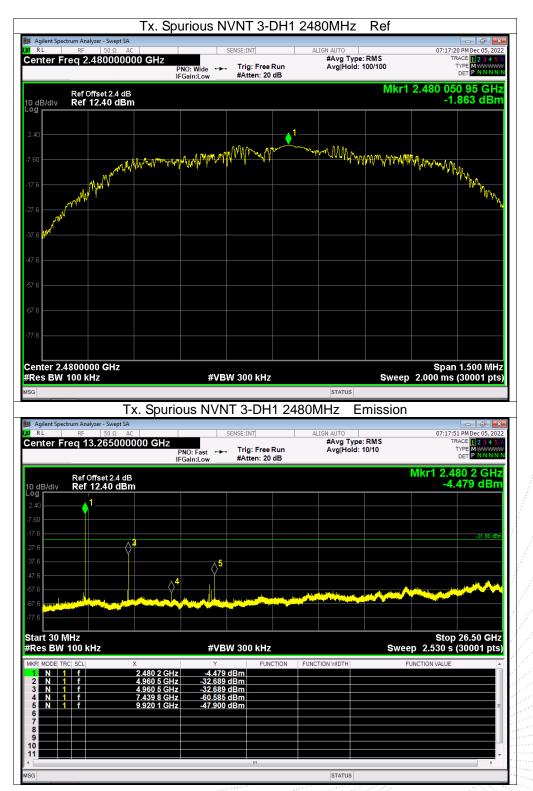
9.4 Test Result


Edition: A.5

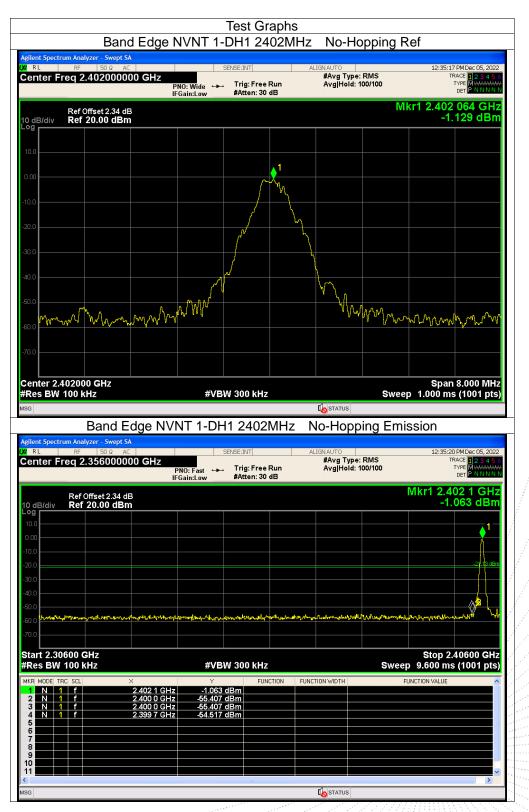
No.: BCTC/RF-EMC-007



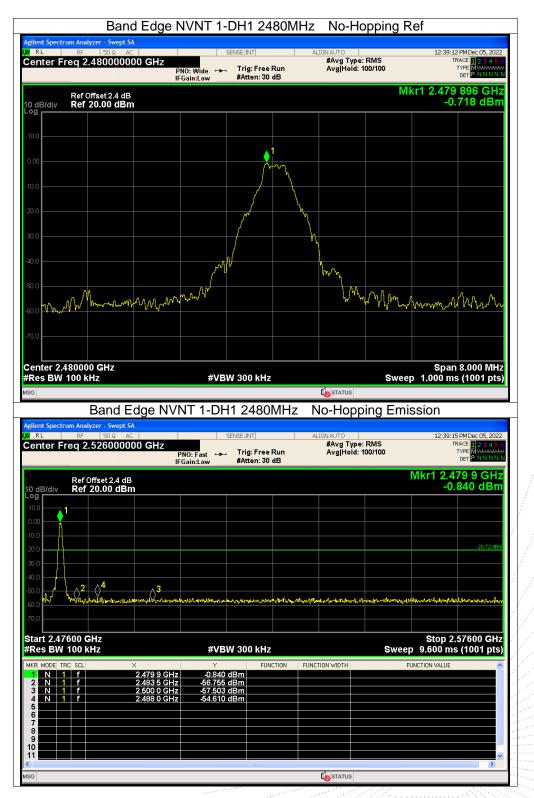


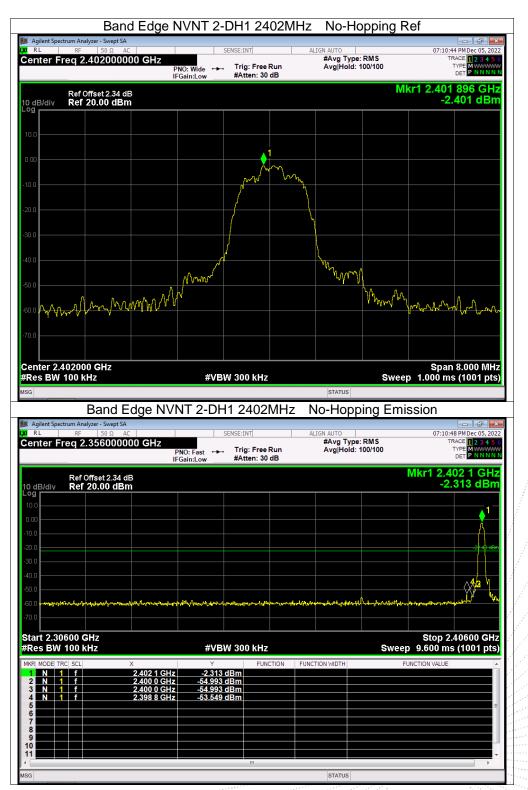

Edition: A.5

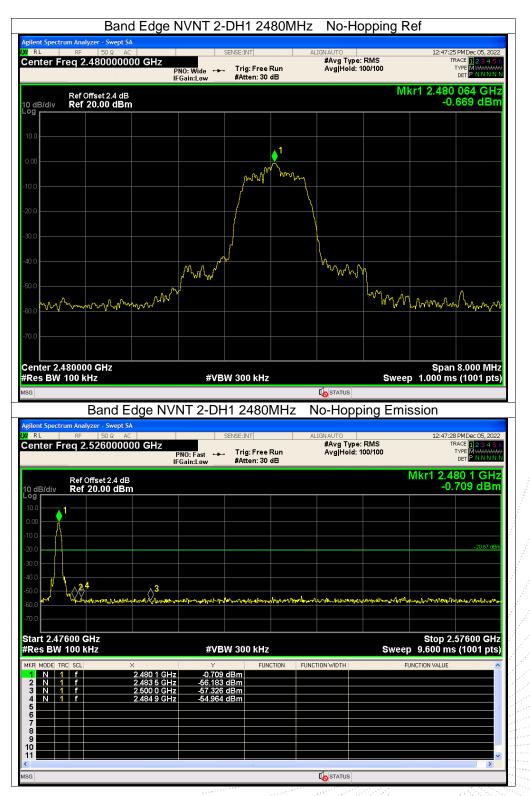
No.: BCTC/RF-EMC-007



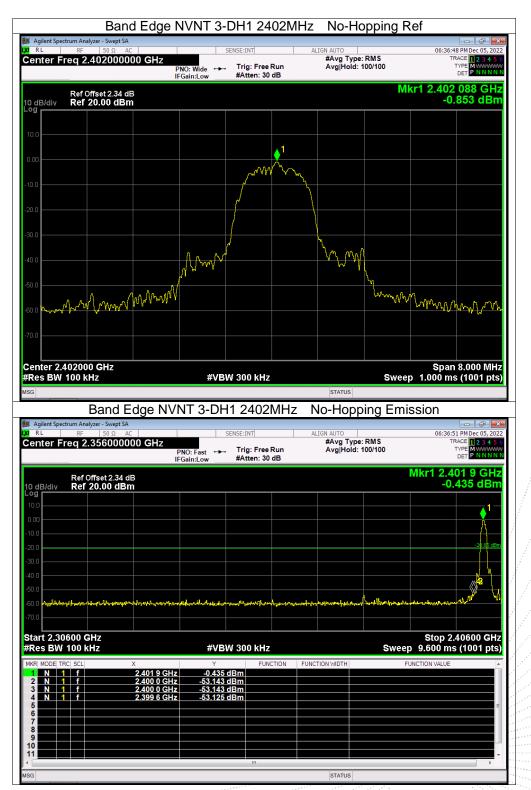
Agilent Spectrum Analyzer - Swept RL RF 50 Ω	AC AC	SE	NSE:INT	ALIGN AUTO		07:16:	20 PM Dec 05, 20
enter Freq 2.44100	0000 GHz	NO: Wide	Trig: Free Run #Atten: 20 dB	#Avg Typ Avg Hold:	e: RMS : 100/100	т	RACE 1 2 3 4 5 TYPE MWWW DET PNNNN
Ref Offset 2.36 dB/div Ref 12.36 dl					Mkr1	2.441 05 0	0 00 GH .092 dBr
'9			1				
36				an liking and			
64	MANNIM	Marty My Marry M	II YYMARY	Marin M Mari	MVVmmmmmMMM	MALAWARA TAL	,
64 7.6						·	1 - Promy Pro-
ANN ^M							المر
7.6 1							
7.6							
7.6							
7.6							
7.6							
7.6							
enter 2.4410000 GHz						Spar	1.500 MH
les BW 100 kHz							
		#VBW	300 kHz	STATUS	Sweep	2.000 ms	
	Ty Spurio			STATUS	•	2.000 ms	
Agilent Spectrum Analyzer - Swept	SA	ous NVNT	⁻ 3-DH1 24	41MHz E	Sweep Emission		(30001 pts
Agilent Spectrum Analyzer - Swept R L RF 50 Ω	sa AC 00000 GHz	DUS NVNT	3-DH1 24	A1MHZ E Align auto #Avg Typ		07:16: T	(30001 pts
Agilent Spectrum Analyzer - Swept RL RF 50 Ω	AC DOOOOO GHz	ous NVNT	⁻ 3-DH1 24	41MHz E	e: RMS 10/10	07:16: T	(30001 pts 52 PM Dec 05, 207 RACE 1 2 3 4 5 TYPE DET P N N N
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.38	SA AC 000000 GHz F IF		3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20 RACE 1 2 3 4 5 TYPE M DET P. NNNN 41 4 GH
Agilent Spectrum Analyzer - Swept RL RF 50 0 enter Freq 13.26500 Ref Offset 2.36 dB/div Ref 12.36 d	SA AC 000000 GHz F IF		3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20 RACE 1 2 3 4 5 TYPE M DET P. NNNN 41 4 GH
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Ref Offset 2.30 dB/div Ref 12.36 d	sA AC D00000 GHz P IF		3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20 RACE 1 2 3 4 5 TYPE M DET P. NNNN 41 4 GH
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.36 dB/div Ref 12.36 d	SA AC 000000 GHz F IF		3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 200 RACE 1 2 3 4 5 TYPE M DET P.N.N.N 41 4 GH2
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Ref Offset 2.36 dB/div Ref 12.36 d	sA AC D00000 GHz P IF	PNO: Fast	3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20. RACE 2.34 5 DET PNNNN 059 dBn
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Ref Offset 2.36 dB/div Ref 12.36 d 9 1 6 4 7 6 7 6 7 6	sA AC D00000 GHz P IF		3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20. RACE 2.34 5 DET PNNNN 059 dBn
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Bldiv Ref 12.36 d 76 76 76 76	sA AC D00000 GHz P IF	PNO: Fast	3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20. RACE 2.34 5 DET PNNNN 059 dBn
Agilent Spectrum Analyzer - Swept RL RF 50Ω enter Freq 13.26500	sA AC D00000 GHz P IF	PNO: Fast	3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4	(30001 pts 52 PM Dec 05, 20. RACE 2.34 5 DET PNNNN 059 dBn
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Benter Freq 13.26500 Ref Offset 2.36 d 9 G G G G G G G G G G G G G G G G G G	sA AC D00000 GHz P IF	PNO: Fast	3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Wkr1 2.4 -0.	(30001 pt: 22 PM Dec 05, 20 RACE] 23 4 5 DET P NNNN 41 4 GH 059 dBn 19.91 dB
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 dB/div Ref 12.36 d g dB/div Ref 13.36 d g dB/div	sA AC D00000 GHz P IF	PNO: Fast	3-DH1 24	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Mkr1 2.4 -0.	(30001 pt: 32 PMDec 05, 20 32 PMDec 05, 20 41 4 GH 059 dBn 19 01 48 19
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Ref Offset 2.36 d 9 0 0 0 0 0 0 0 0 0 0 0 0 0	sa AC DODOOO GHz P IF S dB Bm	PNO: Fast	SEINT Trig: Free Run #Atten: 20 dB	A1MHZ E Align auto #Avg Typ	e: RMS 10/10	07:16: T Mkr1 2.4 -0.	(30001 pts 32 PM Dec 05, 201 ACE 2 34 5 DET PNNNN 41 4 GH 059 dBn 10.01 @
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Benter Freq 13.26500 Ref Offset 2.36 d 36 47 57 58 58 58 58 58 58 58 58 58 58	SA AC D00000 GHz P IF S dB Bm A A A A A A A A A A A A A	PNO: Fast CGain:Low #VBW -0.059 df -21.791 df	SEINT Trig: Free Run #Atten: 20 dB	41MHz E	e: RMS 10/10	07:16: T Wkr1 2.4 -0. Stop p 2.530 s	(30001 pts 32 PM Dec 05, 201 ACE 2 34 5 DET PNNNN 41 4 GH 059 dBn 10.01 @
Agilent Spectrum Analyzer - Swept RL RF 50 Ω conter Freq 13.26500 Ref Offset 2.30 dB/div Ref 12.36 d g 1 1 G 1 1 G 1 1 G 2 1 1 G 2 1 1 1 G 2 1 1 1 G 2 1 1 1 R MOB 1 1 1 N 1 1 1 1	SA AC D00000 GHz P IF S dB Bm AC AC P IF AC AC AC AC AC AC AC AC AC AC	DUS NVNT SET Sent.Low	Trig: Free Run #Atten: 20 dB	41MHz E	e: RMS 10/10	07:16: T Wkr1 2.4 -0. Stop p 2.530 s	(30001 pts 52 PM Dec 05, 20. RACE 2.34 5 DET PNNNN 059 dBn
Agilent Spectrum Analyzer - Swept RL RF 50 2 enter Freq 13.26500 Ref Offset 2.30 Ref Offset 2.30 Ref 12.36 d 9 36 64 7 6 7 7 7 7 7 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	SA AC DOUDOO GHz F F S dB Bm 2 4 2.441 4 GHz 4.882 0 GHz	DUS NVNT SET Sent.Low	Trig: Free Run #Atten: 20 dB	41MHz E	e: RMS 10/10	07:16: T Wkr1 2.4 -0. Stop p 2.530 s	(30001 pts 32 PM Dec 05, 201 ACE 2 34 5 DET PNNNN 41 4 GH 059 dBn 10.01 @
Agilent Spectrum Analyzer - Swept RL RF 50 Ω conter Freq 13.26500 Ref Offset 2.30 dB/div Ref 12.36 d g 1 1 G 1 1 G 1 1 G 2 1 1 G 2 1 1 1 G 2 1 1 1 G 2 1 1 1 R MOB 1 1 1 N 1 1 1 1	SA AC D00000 GHz P IF S dB Bm AC AC P IF AC AC AC AC AC AC AC AC AC AC	DUS NVNT SET Sent.Low	Trig: Free Run #Atten: 20 dB	41MHz E	e: RMS 10/10	07:16: T Wkr1 2.4 -0. Stop p 2.530 s	(30001 pts 32 PM Dec 05, 201 ACE 2 34 5 DET PNNNN 41 4 GH 059 dBn 10.01 @

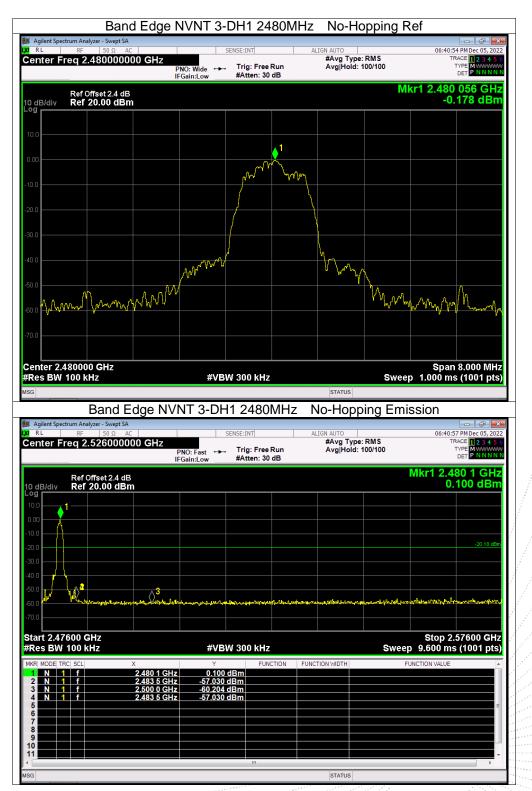






JC JC PPR







Agilent Spectrum A			NVNT 3-DH1		lopping Ref	
RL RI	F 50 Ω AC		SENSE:INT	ALIGN AUTO	06:51:2	B PM Dec 05, 20
enter Freq	2.402000000 GH	PNO: Wide ←	Trig: Free Run	#Avg Type: RN Avg Hold: 2000	1/2000	ACE 1 2 3 4 5 YPE MWWW DET P N N N
		IFGain:Low _	#Atten: 30 dB		Mkr1 2.404	
dB/div Re	f Offset 2.34 dB ef 20.00 dBm				-0.	069 dBi
.0						
			a m Mal	maman	Mr Manana ()	
.0				here with the second	<u>тү тү</u> (- WW - WW
.0			<u> </u>			
.0						
.0						
.0		MA Rol				
o	Λ	N 74.				
Marrow	MMMM	V.V.				
.0						
nter 2.4020 es BW 100		#V	BW 300 kHz		Span Sweep 1.000 ms	8.000 MH (1001 pt
				STATUS	-	
Ba	and Edge(Ho	opping) NV	NT 3-DH1 24	02MHz Hop	ping Emission	1
Agilent Spectrum A RL RI	Analyzer - Swept SA F 50 Ω AC		SENSE:INT	ALIGN AUTO	06:52:0	L PM Dec 05, 20
	2.356000000 GH	IZ PNO: Fast ←	T	#Avg Type: RM Avg Hold: 2000	IS TR	ACE 1 2 3 4 5 YPE MWWWW DET P NNN
		IFGain:Low	#Atten: 30 dB			
	of Offset 2.34 dB				Mkr1 2.4	067 dBr
dB/div Re	ef 20.00 dBm					
dB/div Re	ef 20.00 dBm					
dB/div Re	ef 20.00 dBm					
dB/div Re 9 	ef 20.00 dBm					
dB/div Re	f 20.00 dBm					20.07 dE
dB/div Re						
dB/div Re 9 00 00 00 00 00 00 00 00 00 00 00 00 0	f 20.00 dBm					
dB/div Re 9 9 00 00 00 00 00 00 00 00 00 00 00 00	20.00 dBm			Autoria in a start of the start	ulvernmal ruha un horigi	
dB/div Re 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ef 20.00 dBm	hall the second s		n an		-20 07 dE
dB/div Reg 9	ef 20.00 dBm	 #V	BW 300 kHz	New Address of the Address of Addre		4 4 1111 40600 GH
dB/div Reg 9	ef 20.00 dBm	Y	FUNCTION		Stop 2.	4 4 1111 40600 GH
dB/div Reg 9 - 00 - 0	ef 20.00 dBm	0 GHz 0.00 0 GHz -55.79	FUNCTION 67 dBm 95 dBm		Stop 2. Sweep 9.600 ms	4 4 1111 40600 GH
dB/div Reg 9 - 0 - 00 -	21 20.00 dBm	0 GHz 0.00 0 GHz -55.79 0 GHz -55.79	FUNCTION		Stop 2. Sweep 9.600 ms	4 4 1111 40600 GH
dB/div Reg 9	21 20.00 dBm	0 GHz 0.00 0 GHz -55.79 0 GHz -55.79	FUNCTION 67 dBm 95 dBm 95 dBm		Stop 2. Sweep 9.600 ms	4 4 1111 40600 GH
dB/div Re 9	21 20.00 dBm	0 GHz 0.00 0 GHz -55.79 0 GHz -55.79	FUNCTION 67 dBm 95 dBm 95 dBm		Stop 2. Sweep 9.600 ms	4 4 1111 40600 GH
dB/div Re Image: Second	21 20.00 dBm	0 GHz 0.00 0 GHz -55.79 0 GHz -55.79	FUNCTION 67 dBm 95 dBm 95 dBm		Stop 2. Sweep 9.600 ms	4 4 1111 40600 GH

nter Freg 2.48000		SENSE:	INT	ALIGN AUTO #Avg Type	RMS		06 PM Dec 05, 3
	Р		ig: Free Run tten: 30 dB	Avg Hold:	2000/2000		
Ref Offset 2.4 IB/div Ref 20.00 d					M	kr1 2.478 0	3 056 G
B/div Ref 20.00 d							
)	1						
	_ _	~					
"mymy "	May a M	mar has	www.www				
) 			Ý				
				h			
)				Y WYN	MA		
)					White	᠕᠕᠋ᢕᠬ᠕ᢧᡕ	nMm
nter 2.480000 GHz es BW 100 kHz			I		1		n 8.000 M
		#VBW 30		status MHz Ho	opping E		n
gilent Spectrum Analyzer - Swep R L RF 50 Ω	AC GHZ	ng) NVNT 3	-DH1 2480	MHZ H	opping E	missio	10 40 PM Dec 05, RACE 1234
gilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 2.52600	AC A	ng) NVNT 3	-DH1 2480	MHZ H	opping E RMS 2000/2000	missio 06:54	A0 PM Dec 05, RACE 1234 TYPE MWW DET P NNN
gilent Spectrum Analyzer - Swep RL RF 50 Ω Inter Freq 2.52600 Ref Offset 2.4 Ref Offset 2.4	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	AD PM Dec 05, TYPE MUM DET NNN
gilent Spectrum Analyzer - Swep RL PF 50 Ω nter Freq 2.52600 Ref Offset 2.4 IB/div Ref 20.00 c	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	10 PM Dec 05, 3 RACE 1 2 3 4 TYPE MWWW DET P NNN
gilent Spectrum Analyzer - Swep RL PF 50 Ω nter Freq 2.52600 Ref Offset 2.4 IB/div Ref 20.00 c	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	10 00 00 00 00 00 00 00 00 00 00 00 00 0
gilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 2.52600 Ref Offset 2.4 IB/div Ref 20.00 c	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	10 40 PM Dec 05, 7 TYPE DET PNNN 177 1 G
gilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 2.52600 Ref Offset 2.4 Ref Offset 2.4 Ref 20.00 c	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	n 40 PM Dec 05, Trace [] 2 3 4 Det [] 2 3 4 Det [] 1 4 2 77 1 GI .236 dB
gilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 2.52600	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	n 40 PM Dec 05, Trace [] 2 3 4 Det [] 2 3 4 Det [] 1 4 2 77 1 GI .236 dB
gilent Spectrum Analyzer - Swep Ref Offset 2.4 Ref Offset 2.4 Ref 20.00 c	AC AC F AC F IOOOOO GHZ	ng) NVNT 3 sense: PNO: Fast ↔ Tri	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54 06:54	n 40 PM Dec 05, Trace [] 2 3 4 Det [] 2 3 4 Det [] 1 4 2 77 1 GI .236 dB
gilent Spectrum Analyzer - Swep L RF 50 Ω hter Freq 2.52600 Ref Offset 2.4 IB/div Ref 20.00 d 1 1 1 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	AC AC F AC F IOOOOO GHZ IF	ng) NVNT 3	-DH1 2480	MHZ H	opping E RMS 2000/2000	06:54	n 40 PM Dec 05, 1777 1 GI 236 dB -1985
gilent Spectrum Analyzer - Sweg Ref Offset 2.4 IB/div Ref 20.00 d 1 1 1 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	AC A	ng) NVNT 3	-DH1 2480	MHZ H	opping E 2000/2000	06:54	n 40 PM Dec 05, 1777 1 GI 236 dB -1985
gilent Spectrum Analyzer - Swep L RF 50 Ω nter Freq 2.52600 Ref Offset 2.4 Ref Offset 2.4 Ref 20.00 c 1 4 4 4 4 4 4 4 4 4 4 4 4 4	AC 00000 GHz F	ng) NVNT 3 SENSE: PNO: Fast → Tri FGain:Low #A	-DH1 2480	ALIGN AUTO #Avg Type Avg Hold: :	opping E 2000/2000	Mkr1 2.4 0 5 5 5 9,600 m	n 40 PM Dec 05, 1777 1 GI 236 dB -1985
gilent Spectrum Analyzer - Swep L RF 50 Ω nter Freq 2.52600 Ref Offset 2.4 Ref Offset 2.4 Ref 20.00 c 1 1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	AC AC AC AC AC AC AC AC AC AC	ng) NVNT 3 SENSE: PNO: Fast → Tri Gain:Low → #A #VBW 30 #VBW 30 Y 0.236 dBm -58.110 dBm	-DH1 2480	ALIGN AUTO #Avg Type Avg Hold: :	opping E 2000/2000	Mkr1 2.4 0 5 5 5 9,600 m	n 40 PM Dec 05, 1777 1 GI 236 dB -1985
glient Spectrum Analyzer - Swep Ref Offset 2.4 Her Freq 2.52600 Ref Offset 2.4 Her Freq 20.00 c Her Freq 2.52600 Her Freq 2.52600	AC 4 AC 4 I dB 18 4 4 2.477 1 GHz 2.433 5 GHz	ng) NVNT 3 SENSE: PNO: Fast → Tri Gain:Low → #A #VBW 30 #VBW 30 Y 0.236 dBm -58.110 dBm	-DH1 2480	ALIGN AUTO #Avg Type Avg Hold: :	opping E 2000/2000	Mkr1 2.4 0 5 5 5 9,600 m	n 40 PM Dec 05, 1777 1 GI 236 dB -1985

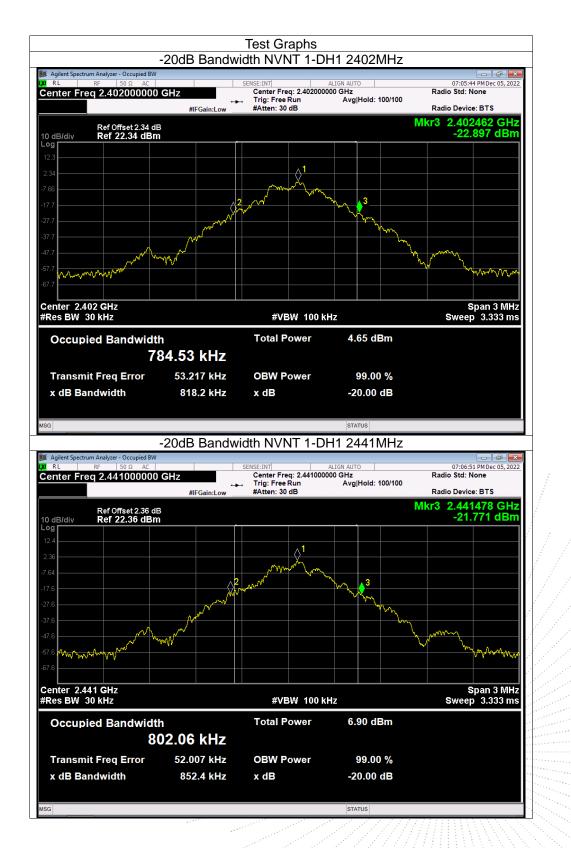
10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

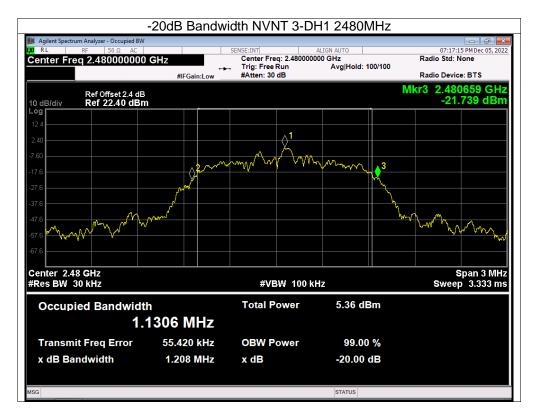

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict	
1-DH1	2402	0.818	Pass	
1-DH1	2441	0.852	Pass	
1-DH1	2480	0.862	Pass	
2-DH1	2402	1.221	Pass	
2-DH1	2441	1.239	Pass	
2-DH1	2480	1.250	Pass	
3-DH1	2402	1.208	Pass	
3-DH1	2441	1.213	Pass	
3-DH1	2480	1.208	Pass	
	1-DH1 1-DH1 1-DH1 2-DH1 2-DH1 2-DH1 3-DH1 3-DH1	Mode (MHz) 1-DH1 2402 1-DH1 2441 1-DH1 2480 2-DH1 2402 2-DH1 2441 2-DH1 2441 3-DH1 2402 3-DH1 2441	Mode (MHz) (MHz) 1-DH1 2402 0.818 1-DH1 2441 0.852 1-DH1 2480 0.862 2-DH1 2402 1.221 2-DH1 2441 1.239 2-DH1 2480 1.250 3-DH1 2441 1.213	

TC 3C PPR



No.: BCTC/RF-EMC-007

No.: BCTC/RF-EMC-007

Page: 54 of 80

11. Maximum Peak Output Power

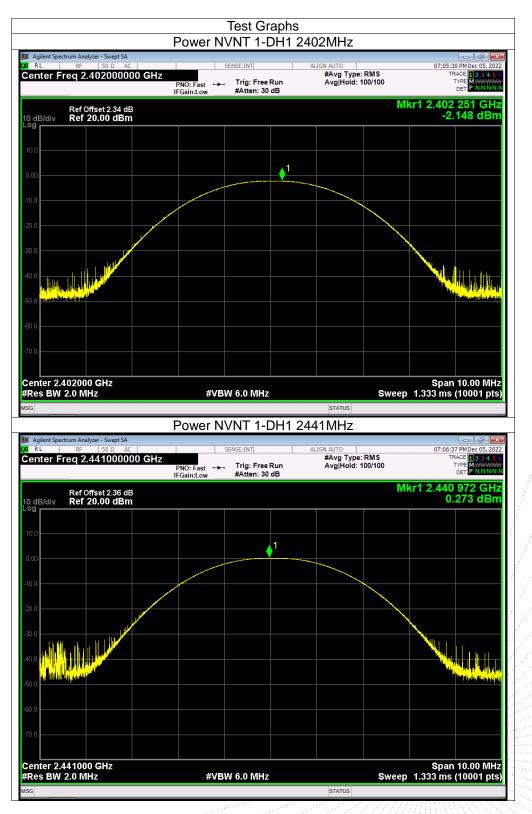
11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS			

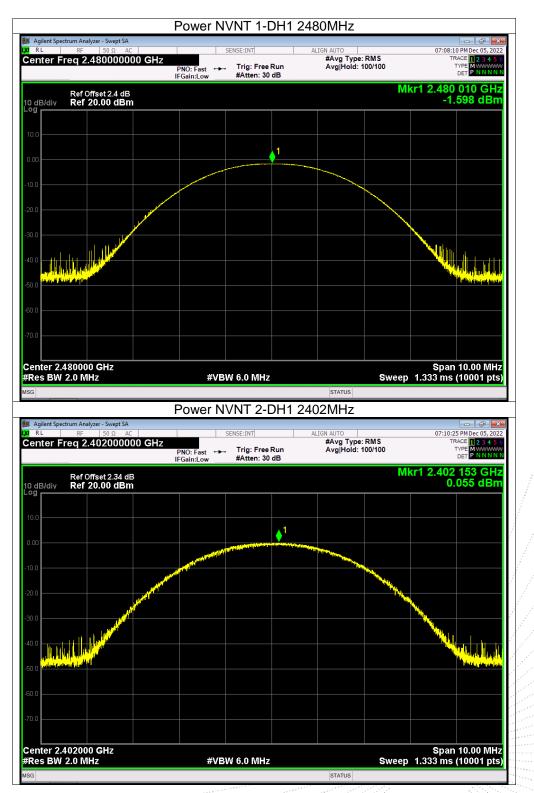
11.3 Test procedure

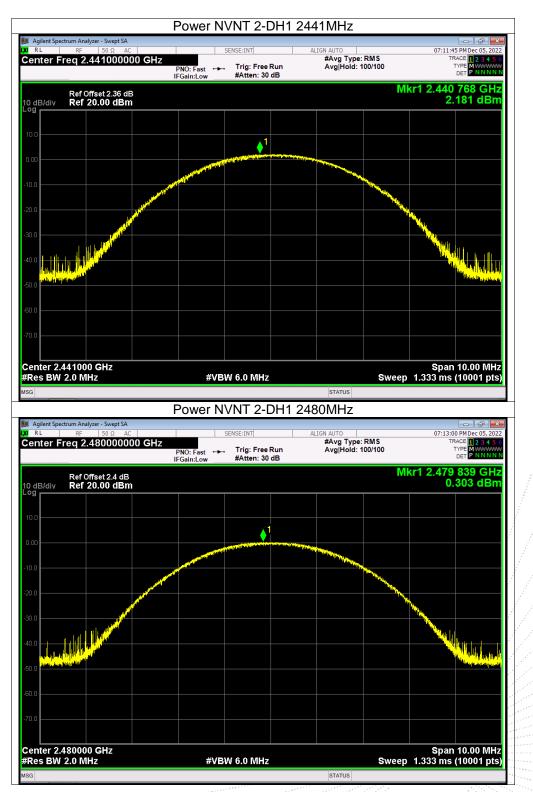
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

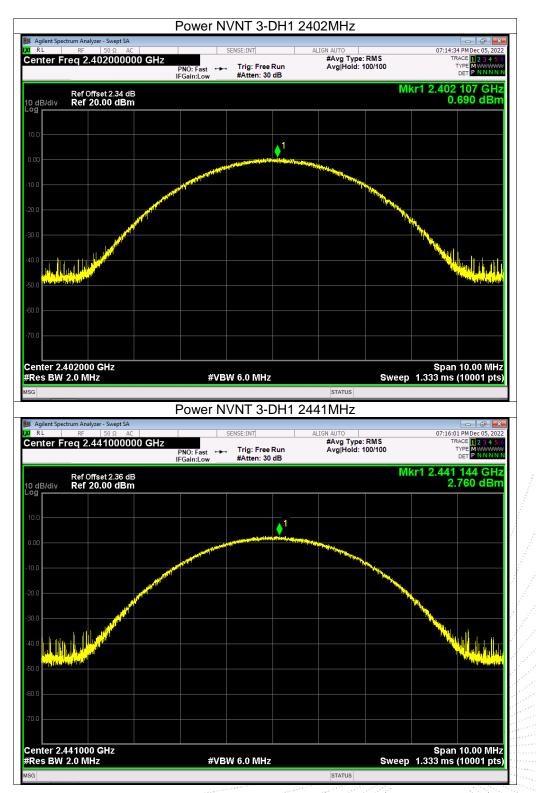

2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

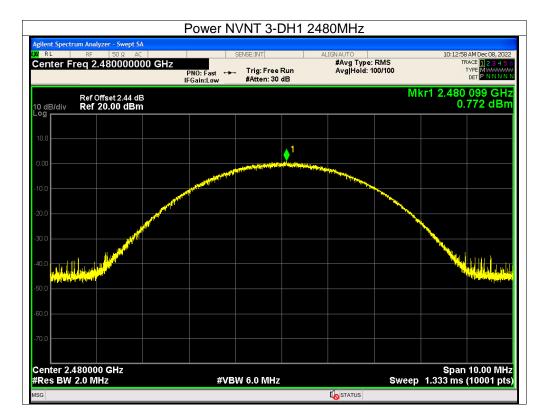
11.4 Test Result


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.15	21	Pass
NVNT	1-DH1	2441	0.27	21	Pass
NVNT	1-DH1	2480	-1.60	21	Pass
NVNT	2-DH1	2402	0.06	21	Pass
NVNT	2-DH1	2441	2.18	21	Pass
NVNT	2-DH1	2480	0.30	21	Pass
NVNT	3-DH1	2402	0.69	21	Pass
NVNT	3-DH1	2441	2.76	21	Pass
NVNT	3-DH1	2480	0.77	21	Pass


Normal S



则为


No.: BCTC/RF-EMC-007

Page: 60 of 80

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2402.066	2403.058	0.992	0.818	Pass
NVNT	1-DH1	2441.062	2442.064	1.002	0.852	Pass
NVNT	1-DH1	2479.060	2480.058	0.998	0.862	Pass
NVNT	2-DH1	2402.062	2403.062	1.000	0.814	Pass
NVNT	2-DH1	2441.058	2442.058	1.000	0.826	Pass
NVNT	2-DH1	2479.056	2480.060	1.004	0.833	Pass
NVNT	3-DH1	2402.062	2403.060	0.998	0.805	Pass
NVNT	3-DH1	2441.060	2442.056	0.996	0.809	Pass
NVNT	3-DH1	2479.058	2480.058	1.000	0.805	Pass

12.4 Test Result