

RADIO TEST REPORT – 455912-1TRFWL

Type of assessment:

Class 2 Permissive Change

Applicant:

Alert Labs Inc.

Product name (type):

Alert Labs ALRM001 Sub-1GHz Radio Module

Model:

ALRM001

FCC ID:

2AKXF-ALB080

IC Registration number:

22365-ALB080

Specifications:

- ٠ FCC 47 CFR Part 15 Subpart C, §15.247
- RSS-247, Issue 2, Feb 2017, Section 5

Date of issue: January 17, 2022

Mark Libbrecht, EMC/RF Specialist

Tested by

Andrey Adelberg, Senior EMC/RF Specialist

Reviewed by

Mark Lillredt Signature Roelberg

Signature

Lab locations

Company name	Nemko Canada In	iC.			
Facilities	Ottawa site:		Montréal site:	Cambridge site:	Almonte site:
	303 River Road		292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario		Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada		Canada	Canada	Canada
	K1V 1H2		H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 96	680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9	691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Test site registration	Organization	Recognitio	on numbers and location		
	FCC/ISED	FCC: CA20	40; IC: 2040A-4 (Ottawa/Almo	onte); FCC: CA2041; IC: 2040G-5	(Montreal); CA0101 (Cambridge)
Website	www.nemko.com	1			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table o	of Contents	
	Report summary	
1.1	Test specifications	
1.2	Test methods	
1.3	Exclusions	
1.4	Statement of compliance	
1.5	Test report revision history	
Section 1	Engineering considerations	
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 2	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 3	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Continu A	Information provided by the applicant	
Section 4 5.1	Disclaimer	
Section 5.2	Applicant	
5.3	Manufacturer	
5.4	EUT information	
5.5	Technical information	9
5.6	EUT setup details	9
Section 6	Summary of test results	12
6.1	Testing location	
6.2	Testing period	
6.3	Sample information	
6.4	FCC Part 15 Subpart C, general requirements test results	
6.5	FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)	
Section 16.6	ISED RSS-Gen, Issue 5, test results	
6.7	ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)	
Section 8	Test equipment	
7.1	Test equipment list	
	Testing data	
8.1	FCC 15.31(e) Variation of power source	
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	
8.3	FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement	
8.4	FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems	
8.5	FCC 15.247(b) and RSS-247 5.4(d) Transmitter output power and e.i.r.p. requirements for DTS in 900 MHz	22
8.6	FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions	
8.7	FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices	

Report summary

1.1 Test specifications

lèmko

	CC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz
Se _{R:}	RSS-247, Issue 2, Feb 2017, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.2 Test methods

558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread
(April 2, 2019)	spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	January 17, 2022	Original report issued

Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment. Section $\ensuremath{2}$

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Test conditions

3.1 Atmospheric conditions

Nemko

	Temperature	15 °C – 35 °C
Se	Relative humidity	20 % – 75 %
	Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and Sectiment for of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 4.1-1: Measurement uncerta	inty calculations for Radio
----------------------------------	-----------------------------

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Information provided by the applicant

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant Section and the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant

Company name	Alert Labs Inc.
Address	132 Queen Street South, Unit #2, Kitchener, Ontario, Canada N2G 1V9

5.3 Manufacturer

Company name	Alert Labs Inc.
Address	132 Queen Street South, Unit #2, Kitchener, Ontario, Canada N2G 1V9

5.4 EUT information

Product name	Alert Labs ALRM001 Sub-1GHz Radio Module
Model	ALRM001
Serial number	None
Part number	SOM-000014-001
Operating conditions	Test software transmits data on one of 3 channels: 903 MHz, 915 MHz, 927.5 MHz
Product description and theory	ALRM001 is a radio module that operates in the 902 to 928 MHz band using chirp spread spectrum modulation.
of operation	Maximum RF power is approx. 20 dBm

5.5 Technical information

Applicant IC company number	22365
IC UPN number	ALB080
All used IC test site(s) Reg. number	24676
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Category of Wideband Data	Frequency Hopping Spread Spectrum (FHSS) equipment
Transmission equipment	Other types of Wideband Data Transmission equipment (e.g. DSSS, OFDM, etc.).
Frequency band	902–928 MHz
Frequency Min (MHz)	903.0
Frequency Max (MHz)	927.5
RF power Max (W), Conducted	0.0583 W (17.66 dBm)
Field strength, dBµV/m @ 3 m	N/A
Measured BW (kHz), 99% OBW	638.4
Type of modulation	CSS: Chirp Spread Spectrum
Emission classification	X1D
Transmitter spurious, dBµV/m @ 3 m	48.1 @ 10 GHz
Power supply requirements	2.4-3.6 V _{DC} ; Nominal 3.3 V _{DC}
Antenna information	type: PCB trace antenna, manufacturer: Alert Labs, model: None, gain: 0.01 dBi

5.6 EUT setup details

5.6.1 EUT Exercise and monitoring

Methods used to exercise the EUT and all relevant ports:

- The EUT powers up and begins transmitting on 903 MHz at approx. 20 dBm, with a > 500 kHz bandwidth
- The EUT contains a push-button that is used to toggle through the transmit frequencies in the following sequence: 903 MHz, 915 MHz, 927.5 MHz.

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - The following deviations were:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - The following deviations were:
 - None

Monitoring details:

- The EUT contains an LED to show what the current transmit frequency is: Green = 903 MHz, Blue = 915 MHz, Red = 927.5 MHz

5.6 EUT setup details, continued

5.6.2 EUT test configuration

Description	Brand name	Model, Part number, Serial number, Revision level	
Alert Labs ALRM001 Sub-1GHz Radio Module	Alert Labs	MN: ALRM001, PN: SOM-000014-001, SN: None, Rev. N/A	
	Table 5.6-2:	EUT interface ports	
Description			Qty.
•			Qty. 2
Description DC Power input			-
•	Table 5.6-3:	Support equipment	-
•	Table 5.6-3: Brand name	Support equipment Model, Part number, Serial number, Revision level	-

Cable description	From	То	Length (m)
DC Power cable	EUT	DC Power Supply	> 1
AC Power Cable	DC Power supply	AC Mains	> 1

5.6 EUT setup details, continued

5.6.2 EUT test configuration, continued

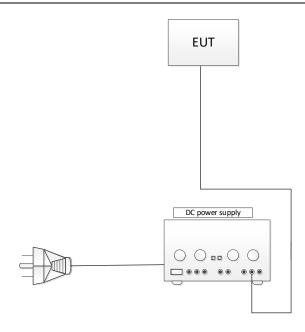


Figure 5.6-1: Radiated testing block diagram

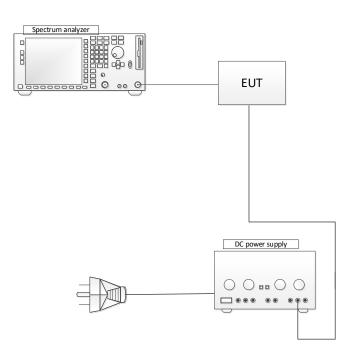


Figure 5.6-2: Antenna port testing block diagram

Summary of test results

6.1 Testing location

Nèmko

Se	Test loc CTION 6	ation (s)	Cambridge		
	6.2	Testing period			
	Test sta	rt date	December 13, 2021	Test end date	December 17, 2021
	6.3	Sample informatio	n		
•	Receipt		December 13, 2021	Nemko sample ID number(s)	1(Conducted),2(Radiated)
	Receipt	uale	December 13, 2021	Nemko sample iD humber(s)	

6.4 FCC Part 15 Subpart C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable ¹
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes:¹ EUT is an DC powered device.

6.5 FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)

Table 6.5-1: FCC 15.247 results for DTS

Part	Test description	Verdict
§15.247(a)(2)	Minimum 6 dB bandwidth	Pass
§15.247(b)(3)	Maximum peak output power in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247I(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247I(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams Not applied to the provided of the pro	
§15.247(d)	Spurious emissions	Pass
§15.247I	Power spectral density	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

6.6 ISED RSS-Gen, Issue 5, test results

Tahle	6.6-1.	RSS-Gen	results
IUDIC	0.0-1.	1133-0611	resuits

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Not applicable ²

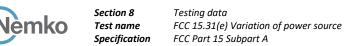
Notes: ¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

²EUT is an DC powered device.

6.7 ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)

Table 6.7-1: RSS-247 results for DTS

Part	Test description	Verdict
5.2 (a)	Minimum 6 dB bandwidth	Pass
5.2 (b)	Maximum power spectral density	Pass
5.3	Hybrid Systems	
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (d)	Systems employing digital modulation techniques	Pass
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Pass


Test equipment

7.1 Test equipment list

Nemko

ection 7 Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	ТDК	SAC-3	FA003012	1 year	April 12, 2022
Flush mount turntable	SUNAR	FM2022	FA003006	_	NCR
Controller	SUNAR	SC110V	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	FA003007	_	NCR
DC Power source	GWInstek			—	VOU
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	November 30, 2022
Spectrum analyzer	Rohde & Schwarz	FSW43	FA002971	1 year	November 30, 2022
Horn antenna (1–18 GHz)	ETS Lindgren	3117	FA002911	1 year	April 21, 2022
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002956	1 year	April 5, 2022
Bilog antenna (20–2000 MHz)	Sun AR	JB1	FA003009	1 year	February 2, 2022
Horn antenna (18–40 GHz)	EMCO	3116B	FA002948	1 year	January 22, 2022
50 Ω coax cable	Huber + Suhner	None	FA003047	1 year	July 13, 2022
50 Ω coax cable	Huber + Suhner	None	FA003043	1 year	July 13, 2022
900 – 928 MHz notch filter	Microwave Circuits	N03916M1	FA003032	1 year	April 23, 2022
3-18 GHz Highpass filter	Microwave Circuits	H3G020G8	FA003026	1 year	April 23, 2022
50 Ω coax cable	Huber + Suhner	None	FA003054	1 year	August 31, 2022
50 Ω coax cable	Huber + Suhner	None	FA003056	1 year	August 31, 2022

Note: NCR - no calibration required, VOU - verify on use

Testing data

8.1 FCC 15.31(e) Variation of power source

Section 8 References, definitions and limits

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 17, 2021

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.
- For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

The manufacturer has declared the upper voltage supply is 3.6V_{DC}, and lower supply voltage is 2.4 V_{DC}

8.1.4 Test data

EUT Power requirements:	\Box AC	🛛 DC	□ Battery
If EUT is an AC or a DC powered, was the noticeable output power variation observed?	□ YES	🛛 NO	🗆 N/A
If EUT is battery operated, was the testing performed using fresh batteries?	🗆 YES	🗆 NO	🖾 N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	□ YES	□ NO	🖾 N/A

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 References, definitions and limits

FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

ISED:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 15, 2021

8.2.3 Observations, settings and special notes

Per ANSI C63.10 Subclause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

Per ANSI C63.10 Subclause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Testing data FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

		Table 8.2-2: Test	channels selection		
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
902.0	928.0	26.0	903.0	915.0	927.5

8.3 FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement

8.3.1 References, definitions and limits

FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ISED:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict		Pass					
Tested by	1	Mark Libbrecht		Test dat	۵	December 15, 2021	
Tested by				1051 001			
8.3.3	Observations, setting	s and special notes					
None							
8.3.4	Test data						
Must the E	UT be professionally install	ed?	🖂 YES				
Does the E	UT have detachable antenr	na(s)?	□ YES	🛛 NO			
	If detachable, is the antenr	na connector(s) non-standard?	□ YES	□ NO	⊠ N/A		
		Table 8.3-1	1: Antenna info	ormation			

		-		
Antenna type	Manufacturer	Model number	Maximum gain	Connector type
PCB Trace	Alert Labs Inc.	N/A	0.01 dBi	N/A

8.4 FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems

8.4.1 References, definitions and limits

FCC:

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

ISED:

The minimum 6 dB bandwidth shall be 500 kHz.

RSS-GEN, Section 6.7:

6 dB bandwidth is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

8.4.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 17, 2021

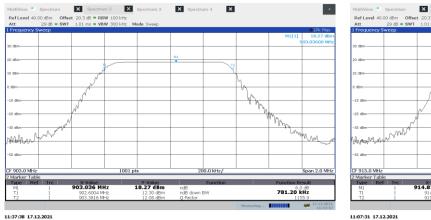
8.4.3 Observations, settings and special notes

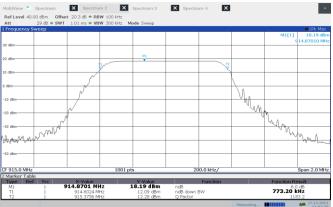
The test was performed as per KDB 558074, section 8.2 with reference to ANSI C63.10 subclause 11.8. Spectrum analyser settings:

6 dB Bandwidth

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Frequency span	2 –5 × OBW
Detector mode	Peak
Trace mode	Max Hold

99% Occupied Bandwidth


Resolution bandwidth	1–5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1.5 –5 × OBW
Detector mode	Peak
Trace mode	Max Hold



Testing data FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems FCC Part 15 Subpart C and RSS-247, Issue 2

8.4.4 Test data

	Table 8.4-1: 6 dB	bandwidth results	
Frequency, MHz	6 dB bandwidth, kHz	Minimum limit, kHz	Margin, kHz
903.0	781.2	500.0	281.2
915.0	773.2	500.0	273.2
927.5	761.2	500.0	261.2

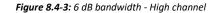

11:37:38 17.12.2021

Figure 8.4-1: 6 dB bandwidth - Low channel

Figure 8.4-2: 6 dB bandwidth - Mid channel

11:10:34 17.12.2021

Test data, continued

Table 8.4-2: 99% occupied bandwidth results

Frequency, MHz 99% occupied bandwidth, kHz	
903.0	638.4
915.0	636.4
927.5	632.2

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

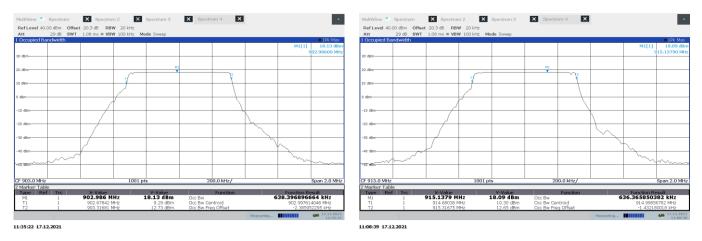
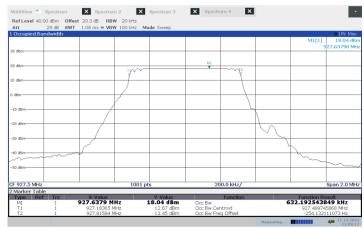



Figure 8.4-4: 99% occupied bandwidth on 802.11b, sample plot

Figure 8.4-5: 99% occupied bandwidth on 802.11g, sample plot

11:09:17 17.12.2021

Figure 8.4-6: 99% occupied bandwidth on 802.11n HT20, sample plot

8.5 FCC 15.247(b) and RSS-247 5.4(d) Transmitter output power and e.i.r.p. requirements for DTS in 900 MHz

8.5.1 References, definitions and limits

FCC:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902–928 MHz band: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

ISED:

d. For DTSs employing digital modulation techniques operating in the 902–928 MHz band, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Testing data FCC 15.247(b) and RSS-247 5.4(d) Transmitter output power and e.i.r.p. requirements FCC Part 15 Subpart C and RSS-247, Issue 2

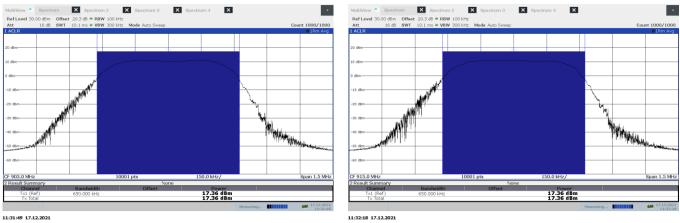
8.5.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 17, 2021

8.5.3 Observations, settings and special notes

The test was performed as per KDB 558074, section 8.3 with reference to ANSI C63.10 subclause 11.9.2 (average power) using method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each sweep). Spectrum analyser settings:

Resolution bandwidth	100 kHz
Video bandwidth	≥3 × RBW
Frequency span	> 1.5 × OBW
Detector mode	RMS
Trace mode	Power Average
Averaging sweeps number:	1000
Integration Bandwidth	650 kHz



8.5.4 Test data

Table 8.5-1: Output power and EIRP results (antenna port measurement)

	Conducted						
Frequency,	output	Output power	Output power	Antenna gain,	EIRP,	EIRP limit,	EIRP margin,
MHz	power, dBm	limit, dBm	margin, dB	dBi	dBm	dBm	dB
903.0	17.66	30.00	12.34	0.01	17.67	36.00	18.33
915.0	17.66	30.00	12.34	0.01	17.67	36.00	18.33
927.5	17.51	30.00	12.49	0.01	17.52	36.00	18.48

Note: EIRP [dBm] = Conducted output power [dBm] + Antenna gain [dBi] + w.FL to SMA cable (0.3 dB)r

11:31:49 17.12.2021

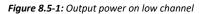
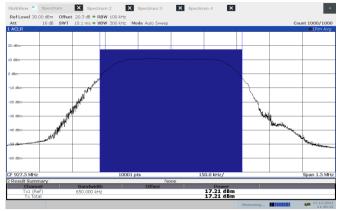
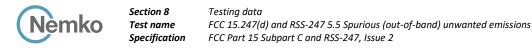




Figure 8.5-2: Output power on mid channel

11:30:26 17.12.2021

Figure 8.5-3: Output power on high channel

8.6 FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions

8.6.1 References, definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

ISED:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.6-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Table 8.6-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495–0.505	13.36–13.41	608–614	8.025-8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677–5.683	73–74.6	2200–2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260–3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125–167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500-4400	Above 38.6
12.29–12.293	240–285	4500–5150	Above 38.0
12.51975-12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.6-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.6-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.6.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 17, 2021

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

8.6.3 Observations, settings and special notes

As part of the current assessment, the test range of 9 kHz to 10th harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.

EUT was set to transmit with 100 % duty cycle.

Radiated measurements were performed at a distance of 3 m.

DTS emissions in non-restricted frequency bands test was performed as per KDB 558074, section 8.5 with reference to ANSI C63.10 subclause 11.11. Since fundamental power was tested using maximum conducted (average) output power procedure to demonstrate compliance, the spurious emissions limit

is -30 dBc/100 kHz.

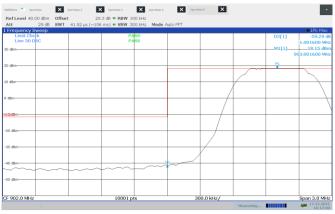
DTS band-edge emission measurements test was performed as per KDB 558074, section 8.7 with reference to ANSI C63.10 subclause 11.13. All radiated spurious measurements 30 MHz – 3 GHz were measured with a 902-928 MHz notch filter identified in the equipment list. All radiated spurious measurements 3 - 10 GHz were measured with a 3-18 GHz Highpass filter identified in the equipment list.

Spectrum analyser settings for radiated measurements below 1 GHz:

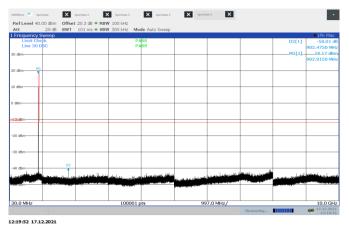
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak(preview), Quasi-peak(final)
Trace mode:	Max Hold

Spectrum analyser settings for radiated measurements above 1 GHz:

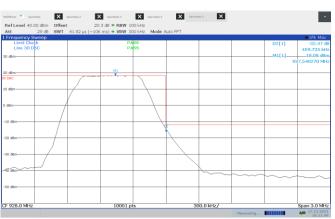
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak(preview), Peak(final), Average(final)
Trace mode:	Max Hold


Spectrum analyser settings for conducted band edge and spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold


Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

8.6.1 Test data



16:17:00 17.12.2021

Figure 8.6-1: Conducted band edge spurious emissions at 902 MHz

16:11:50 17.12.2021

Figure 8.6-2: Conducted band edge spurious emissions at 928 MHz

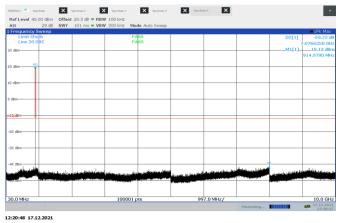
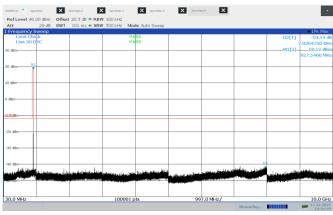
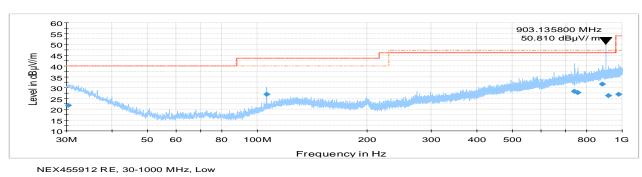
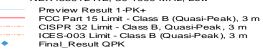
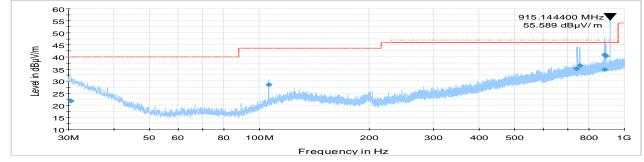



Figure 8.6-4: Conducted spurious emissions on mid channel

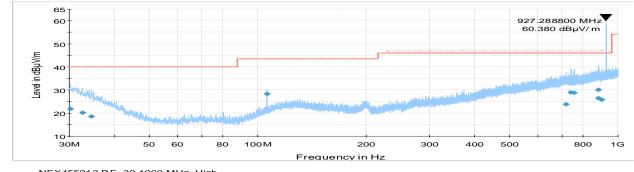

12:21:33 17.12.2021


Figure 8.6-5: Conducted spurious emissions on high channel




Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued



NEX455912 RE, 30-1000 MHz, Mid

Preview Result 1-PK+ FCC Part 15 Limit - Class B (Quasi-Peak), 3 m ICES-003 Limit - Class B (Quasi-Peak), 3 m Final_Result QPK

Figure 8.6-7: Radiated spurious emissions 30 - 1000 MHz, Mid Channel

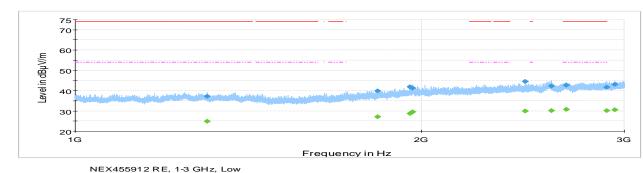
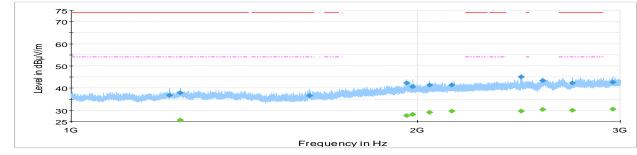

NEX455912 RE, 30-1000 MHz, High Preview Result 1-PK+ FCC Part 15 Limit - Class B (Quasi-Peak), 3 m ICES-003 Limit - Class B (Quasi-Peak), 3 m Fina_Result QPK

Figure 8.6-8: Radiated spurious emissions 30 – 1000 MHz, High Channel

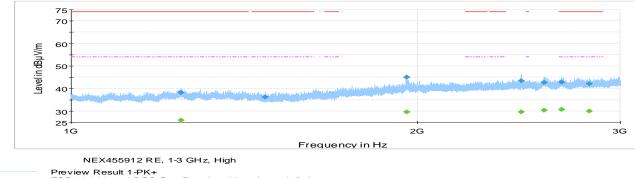
Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2


Test data, continued

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Final_Result PK+ Final_Result CAV

Figure 8.6-9: Radiated spurious emissions 1 - 3 GHz, Low Channel



NEX455912 RE, 1-3 GHz, Mid

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits Final_Result PK+

Final_Result CAV

Figure 8.6-10: Radiated spurious emissions 1 - 3 GHz, Mid Channel

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits Final_Result PK+

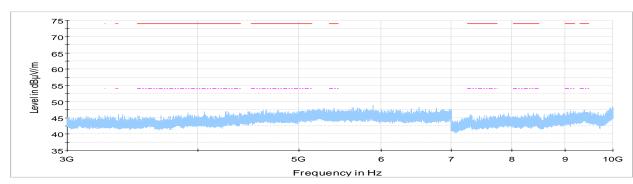
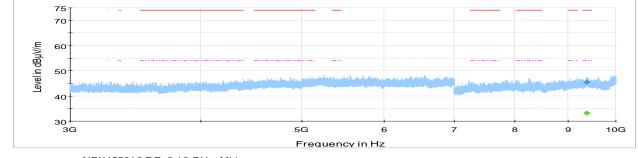

Final Result CAV

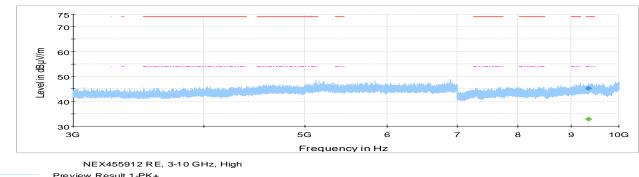
Figure 8.6-11: Radiated spurious emissions 1 - 3 GHz, High Channel

Testing data FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2


Test data, continued

NEX455912 RE, 3-10GHz, Low

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits


Figure 8.6-12: Radiated spurious emissions 3 - 10 GHz, Low Channel

NEX455912 RE, 3-10 GHz, Mid

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits Final_Result PK+ Final_Result CAV

Figure 8.6-13: Radiated spurious emissions 3 - 10 GHz, Mid Channel

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits Final_Result PK+ Final_Result CAV

Figure 8.6-14: Radiated spurious emissions 3 - 10 GHz, High Channel

8.7 FCC 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices

8.7.1 References, definitions and limits

FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

ISED:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

5.3 Hybrid systems

Hybrid systems employ a combination of both frequency hopping and digital transmission techniques and shall comply with the following: With the frequency hopping turned off, the digital transmission operation shall comply with the power spectral density requirements for digital modulation systems set out in of section 5.2(b) or section 6.2.4 for hybrid devices operating in the band 5725–5850 MHz.

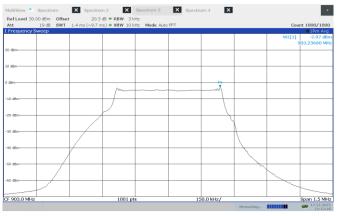
8.7.2 Test summary

Verdict	Pass		
Tested by	Mark Libbrecht	Test date	December 17, 2021

8.7.3 Observations, settings and special notes

Power spectral density test was performed as per KDB 558074, section 8.4 with reference to ANSI C63.10 subclause 11.10. The test was performed using method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep). Spectrum analyser settings:

Resolution bandwidth:	3 kHz
Video bandwidth:	≥3 × RBW
Frequency span:	1.5 × DTS BW
Detector mode:	RMS
Trace mode:	Power Average
Averaging sweeps number:	1000

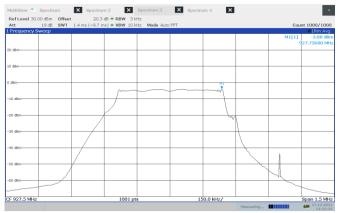


Testing data FCC Clause 15.247(e) and RSS-247 5.2(b) Power spectral density for digitally modulated devices FCC Part 15 Subpart C and RSS-247, Issue 2

8.7.4 Test data

Tuble 6.7-1. FSD Tesuits furthering Dort measurement	Table 8.7-1: PSD results	(antenna port measurement
---	--------------------------	---------------------------

Frequency, MHz	PSD, dBm/3 kHz	PSD limit, dBm/3 kHz	Margin, dB
903.0	-3.0	8.0	11.0
915.0	-3.2	8.0	11.2
927.5	-3.9	8.0	11.9



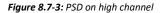

11:12:48 17.12.2021

Figure 8.7-1: PSD on low channel

Figure 8.7-2: PSD on mid channel

11:12:16 17.12.2021

End of the test report