

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where:

S = power density P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

PWR in dBm Maximum peak output power at antenna input terminal:	19.0 dBm
Maximum peak output power at antenna input terminal:	79.4 mW
Ant. gain in dBi Antenna gain(maximum):	0.01 dBi
Maximum antenna gain:	1.0 numeric
Use the duty cycle from test report or 100% Time Averaging:	100 %
Separation distance from antenna to user in cm. Prediction distance:	20 cm
Freq. in MHz Prediction frequency:	915 MHz
FCC MPE limit for uncontrolled exposure at prediction frequency:	0.61 mW/cm ²
IC MPE limit for uncontrolled exposure at prediction frequency:	2.77 W/m ²
Power density at prediction frequency:	0.02 mW/cm ²
This equates to:	0.16 W/m^2