ENGINEERING TEST REPORT

 \mathcal{T}

Alert Labs RN2903 Model: Alert Labs RN2903 FCC ID: 2AKXF-ALB010

Applicant:

Alert Labs Inc. 132 Queen Street South, Unit #2 Kitchener, ON N2G 1V9 Canada

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Digital Modulation Systems (DTS) Operating in 902-928 MHz Band

UltraTech's File No.: 18ALERT003 FCC15C247DTS

This Test report is Issued under the Authority of Tri M. Luu Vice President of Engineering UltraTech Group of Labs

Date: November 26, 2018

Report Prepared by: Dan Huynh

Tested by: Hung Trinh

Test Dates: September 25, 26, 2018 November 25, 2018

Fax.: (905) 829-8050

Issued Date: November 26, 2018

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by any agency of the US Government.

This test report shall not be reproduced, except in full, without a written approval from UltraTech

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

1309

APEC TEL CA0001

CA 0001/2049

AT-1945

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE RELATED SUBMITTAL(S)/GRANT(S) NORMATIVE REFERENCES	
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS ASSOCIATED ANTENNA DESCRIPTIONS LIST OF EUT'S PORTS ANCILLARY EQUIPMENT	2 2 3 3 3 3 3 3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1. 3.2.	CLIMATE TEST CONDITIONS OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	4 4
EXHIBIT	4. SUMMARY OF TEST RESULTS	5
4.1. 4.2. 4.3.	LOCATION OF TESTS APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5 5 5
EXHIBIT	5. TEST DATA	6
5.1. 5.2. 5.3.	PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)] TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205] RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]	6
EXHIBIT	6. TEST EQUIPMENT LIST	17
EXHIBIT	7. MEASUREMENT UNCERTAINTY	18
7.1. 7.2.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY RADIATED EMISSION MEASUREMENT UNCERTAINTY	18 18

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247		
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 – Radio Frequency Devices		
Purpose of Test:	Equipment Certification for Digital Modulation Systems (DTS) Operating Under §15.247		
Test Procedures:	 ANSI C63.4 ANSI C63.10 FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05 		
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment		

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2018	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC, KDB Publication No. 558074 D01 15.247 Meas Guidance v05	2018	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

Applicant		
Name:	Alert Labs Inc.	
Address:	132 Queen Street South, Unit #2 Kitchener, ON N2G 1V9 Canada	
Contact Person:	Mr. Kevin Wright Phone #: 519-279-6786 Email Address: kevin@alertlabs.com	

Manufacturer		
Name:	Alert Labs Inc.	
Address:	132 Queen Street South, Unit #2 Kitchener, ON N2G 1V9 Canada	
Contact Person:	Mr. Kevin Wright Phone #: 519-279-6786 Email Address: kevin@alertlabs.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Alert Labs Inc.	
Product Name:	Alert Labs RN2903	
Model Name or Number:	Alert Labs RN2903	
Serial Number:	Test Sample	
Type of Equipment:	Digital Transmission System (DTS)	
Input Power Supply Type:	External DC Power Supply	
Primary User Functions of EUT:	The Alert Labs RN2903 is a low power long range transceiver module	

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter		
Equipment Type:	Mobile	
Intended Operating Environment:	Commercial, industrial or business environmentResidential environment	
Power Supply Requirement:	3.3 Vdc	
RF Output Power Rating:	0.081W	
Operating Frequency Range:	903-927.5 MHz	
RF Output Impedance:	50 Ω	
Modulation Type:	FSK	
Antenna Connector Types:	PCB Trace	

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Antenna Type	Manufacturer	Model	Maximum Gain (dBi)
Helical PCB Antenna	Alert Labs Inc		3.37

2.5. LIST OF EUT'S PORTS

The EUT is a module, integrated into final Alert Labs Sumple Sump Pump Monitor host device. The host contained an antenna connector and a USB port.

2.6. ANCILLARY EQUIPMENT

The EUT is a module, integrated into final Alert Labs Sumple Sump Pump Monitor host device. The host contained a USB port, connected to following ancillary equipment:

Ancillary Equipment # 1		
Description:	USB Power Adapter	
Brand name:	Generic	
Model Name or Number:	WRP2U-050200U	
Serial Number:		
Connected to EUT's Port:	Connected to USB port on Host device	

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	5 VDC to Host device via USB power adapter

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	Test software provided by the Applicant to operate the EUT at each channel frequency continuously and in the range of typical modes of operation.
Special Hardware Used:	The EUT was tested in the host device (Alert Labs Sumple Sump Pump Monitor).
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as described with the test results.

Transmitter Test Signals	
Frequency Band(s):	903-927.5 MHz
Frequency(ies) Tested:	903 MHz, 914.9 MHz, 927.5 MHz
RF Power Output: (measured maximum output power at antenna terminals)	18.98 dBm Peak
Normal Test Modulation:	FSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3, Expiry : 2020-03-27).

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes
15.207(a)	AC Power Line Conducted Emissions	N/A*
15.247(a)(2)	6 dB Bandwidth	N/A*
15.247(b)(3)	Peak Conducted Output Power - DTS	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	N/A*
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(e)	Power Spectral Density	N/A*
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

*Not required for Class II Permissive Change.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 5. TEST DATA

5.1. PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)]

5.1.1. Limit(s)

§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

§ 15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2. Method of Measurements

FCC KDB 558074 D01 15.247 Meas Guidance v05, Section 8.3.1.1 RBW ≥ DTS bandwidth, Subclause 11.9.1.1 of ANSI C63.10

5.1.3. Test Arrangement

5.1.4. Test Data

Frequency (MHz)	Peak Conducted Output Power (dBm)	Original Filing Peak Conducted Output Power (dBm)	Limit (dBm)	
903.0	18.37	19.08	30	
914.9	18.98	18.99	30	
927.5	18.20	18.84	30	

ULTRATECH GROUP OF LABS File # 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

ULTRATECH GROUP OF LABS File #: 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

ULTRATECH GROUP OF LABS File # 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.2. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.2.1. Limit(s)

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Section 15.205(a)	- Restricted	Bands of C	peration
-------------------	--------------	------------	----------

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
10.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8-75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43-36.5
12.57675–12.57725	322-335.4	3600–4400	(2)
13.36–13.41.			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

Section 15.209(a) -	Field Strength Limit	s within Restricted	Frequency Bands
---------------------	----------------------	---------------------	------------------------

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490 0.490 - 1.705 1.705 - 30.0 30 - 88 88 - 216 216 - 960	2,400 / F (kHz) 24,000 / F (kHz) 30 100 150 200	300 30 30 3 3 3 3

5.2.2. Method of Measurements

FCC KDB 558074 D01 15.247 Meas Guidance v05 Sections 8.5, 8.6 and 8.7 / Subclauses 11.11, 11.12 and 11.13.of ANSI C63.10.

Radiated Emissions

5.2.3. Test Arrangement

Band-Edge Radiated Emissions

ULTRATECH GROUP OF LABS File #: 1 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.2.4. Test Data

5.2.4.1. Transmitter Spurious Radiated Emissions

Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- Exploratory tests performed to determined worst-case test configurations, the following test results represent the worst-case.

Fundamental Frequency:		903.0 MHz	2				
Frequency Te	est Range:	30 MHz –	30 MHz – 10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
903.0	112.51		V				
903.0	116.15		Н				
2709.0	46.98	39.27	V	54.0	96.2	-14.7	Pass*
2709.0	47.79	40.13	Н	54.0	96.2	-13.9	Pass*

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency:		914.9 MHz	2				
Frequency Te	est Range:	30 MHz –	30 MHz – 10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
914.9	112.44		V				
914.9	115.77		Н				
2744.7	50.60	44.48	V	54.0	95.8	-9.5	Pass*
2744.7	47.78	39.74	Н	54.0	95.8	-14.3	Pass*

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency:		927.5 MHz	2				
Frequency Te	st Range:	30 MHz –	10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
927.5	110.96		V				
927.5	111.14		Н				
2782.5	51.68	44.34	V	54.0	91.1	-9.7	Pass*
2782.5	53.12	47.39	Н	54.0	91.1	-6.6	Pass*

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.2.4.2. Band-Edge Radiated Emissions

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 18ALERT003_FCC15C247DTS November 26, 2018

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 18ALERT003_FCC15C247DTS November 26, 2018

5.3. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]

5.3.1. Limits

§ **1.1310:** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)							
	(A) Limits for Occupational/Controlled Exposures										
0.3-3.0	614	1.63	*(100)	6							
3.0-30	1842/f	4.89/f	*(900/f ²)	6							
30-300	61.4	0.163	1.0	6							
300-1500			f/300	6							
1500-100,000			5	6							
	(B) Limits for Gener	al Population/Uncontrolled	d Exposure								
0.3-1.34	614	1.63	*(100)	30							
1.34-30	824/f	2.19/f	*(180/f ²)	30							
30-300	27.5	0.073	0.2	30							
300-1500			f/1500	30							
1500-100,000			1.0	30							

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz

* = Plane-wave equivalent power density

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

5.3.2. Method of Measurements

Calculation Method of Power Density/RF Safety Distance:

$$S = \frac{PG}{4\pi \cdot r^2} = \frac{EIRP}{4\pi \cdot r^2}$$

Where,

P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

- S: power density mW/cm²
- G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

$$r = \sqrt{\frac{PG}{4\pi \cdot S}} = \sqrt{\frac{EIRP}{4\pi \cdot S}}$$

5.3.3. RF Evaluation

Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	Antenna Gain, G (dBi)	EIRP (dBm)	EIRP (mW)	Evaluation Distance, r (cm)	Power Density, S (mW/cm²)	MPE Limit (mW/cm²)	Margin (mW/cm²)
903.0	19.08	3.37	22.45	175.79	20	0.035	0.6	-0.57

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSU26	200946	20Hz–26.5 GHz	25 Jul 2020		
DC Block	Hewlett Packard	11742A	12460	0.045 – 26.5 GHz	See Note 1		
Attenuator	Hewlett Packard	8493C	0461	DC - 26.5 GHz	See Note 1		
EMI Receiver	Rohde & Schwarz	ESU40	100037	20Hz-40 GHz	04 May 2019		
RF Amplifier	Com-Power	PAM-0118A	551052	0.5 – 18 GHz	26 Jul 2019		
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	*04 Oct 2018		
Biconilog	EMCO	3142C	26873	26-2000 MHz	27 Apr 2019		
Horn Antenna	EMCO	3155	5061	1 – 18 GHz	30 Apr 2019		
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	See Note 1		
Attenuator	Pasternack	PE7024-10	4	DC–26.5 GHz	See Note 1		
Log Periodic	ETS-Lindgren	3148	23845	200 – 2000 MHz	02 Aug 2020		
Note 1: Internal Verification/Calibration check							

EXHIBIT 6. **TEST EQUIPMENT LIST**

*Test equipment used before cal. due date

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = $2u_c(y)$	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration