
3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2) / RSS-247 5.2 a

Test Item	Limit	Frequency Range (MHz)
DTS Bandwidth	≥500 kHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

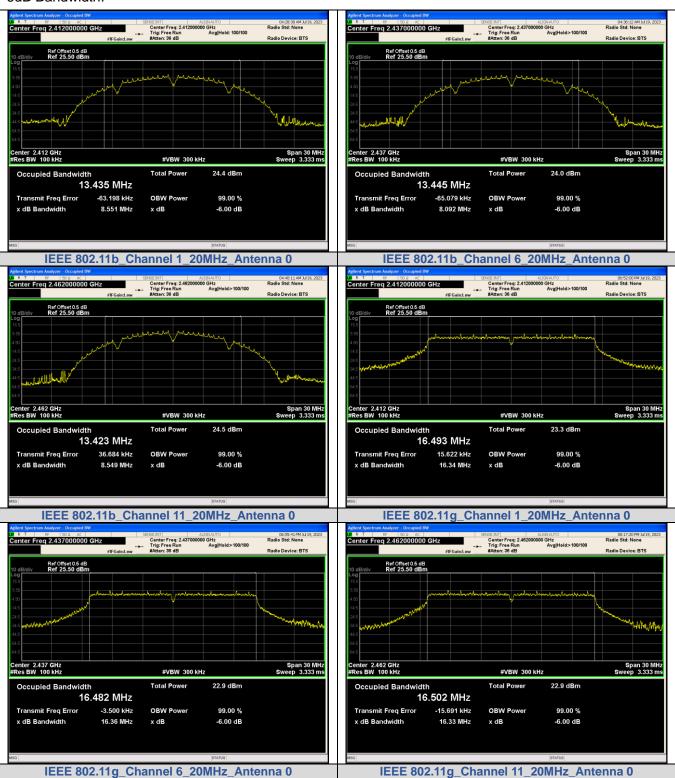
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

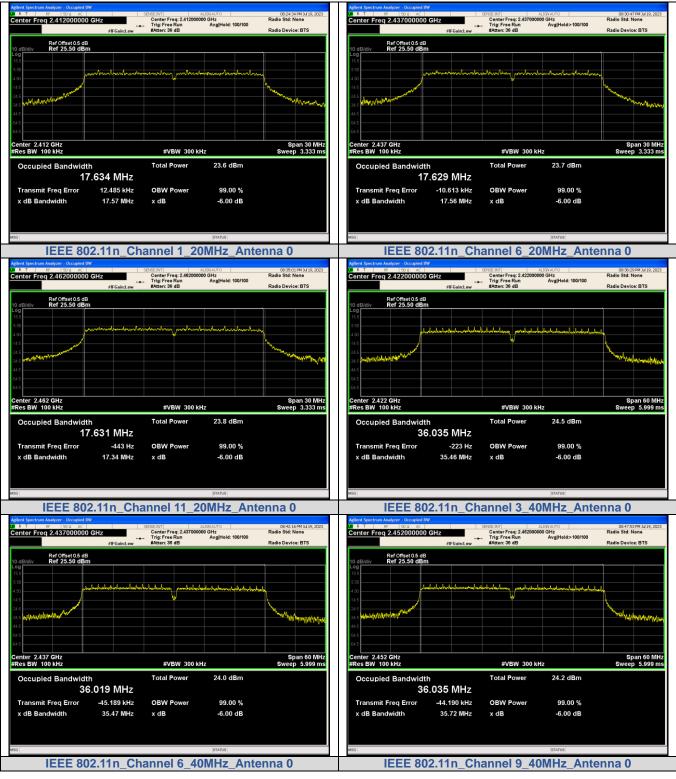
Tel.: (86)755-27521059


可监督管理委员会 中国国家认证认

Test Result

Mode	Channel	Ant.	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	1		2412	8.551		PASS
IEEE 802.11b	6		2437	8.092		PASS
	11		2462	8.549		PASS
	1		2412	16.34		PASS
IEEE 802.11g	6		2437	16.36		PASS
	11	0	2462	16.33	0.5	PASS
IEEE	1	0	2412	17.57	0.5	PASS
802.11n_20	6		2437	17.56		PASS
002.TTT_20	11		2462	17.34		PASS
IEEE	3		2422	35.46		PASS
802.11n 40	6		2437	35.47		PASS
002.111_40	9		2452	35.72		PASS

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China


Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Page 58 of 78

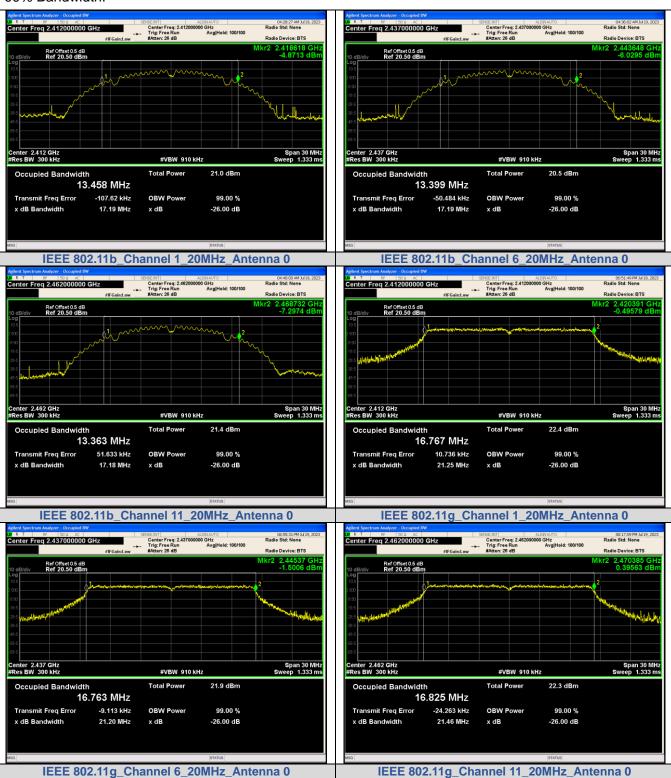
Report No.: CTC20240749E02

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059

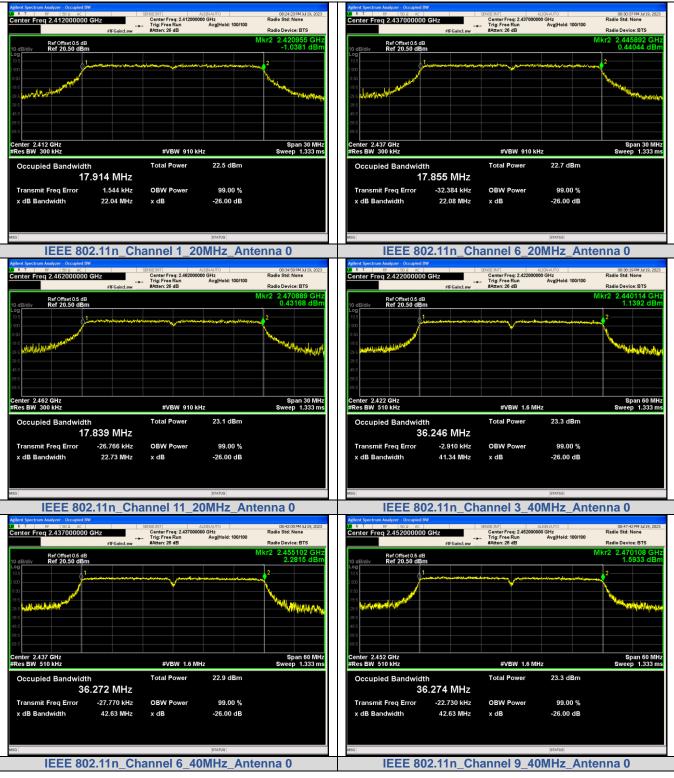
中国国家认证认可监督管理委员会 EN


Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Mode	Channel	Ant.	99% BW (MHz)
	1		13.458
IEEE 802.11b	6		13.399
	11		13.363
	1		16.767
IEEE 802.11g	6		16.763
	11	0	16.825
	1	0	17.914
IEEE 802.11n_20	6		17.855
	11		17.839
	3		36.246
IEEE 802.11n_40	6]	36.272
	9		36.274

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China


Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Page 61 of 78

Report No.: CTC20240749E02

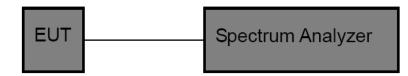
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 Fax: (86)755-27521011

中国国家认证认可监督管理委员会 EN

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.6. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3) / RSS-247 5.4 d

Section	Test Item	Limit	Frequency Range (MHz)
FCC CFR 47 Part15.247 (b)(3)	Maximum Conducted Output Power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Set RBW \geq DTS Bandwidth.
 - (2) Set VBW \geq 3*RBW.
 - (3) Set Span \geq 3*RBW.
 - (4) Sweep time = Auto couple.
 - (5) Detector = Peak.
 - (6) Trace mode = Max hold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Conducted peak output power

Mode	Channel	Ant. 0 (dBm)	Limit (dBm)	Result
	1	20.07	30	PASS
IEEE 802.11b	6	19.57	30	PASS
	11	20.18	30	PASS
	1	24.11	30	PASS
IEEE 802.11g	6	23.74	30	PASS
	11	23.72	30	PASS
	1	24.38	30	PASS
IEEE 802.11n_20	6	24.47	30	PASS
	11	24.49	30	PASS
	3	25.12	30	PASS
IEEE 802.11n_40	6	24.58	30	PASS
	9	24.84	30	PASS

enter Freq 2.412000000 G

ter Freg 2.437000000 GHz

04:28:44 AM Jul 19, 203 Radio Std: None

Radio Device: BTS

NSE:INT ALIGNAUTO Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB

GHz Avg|Hold: 100/100

Center Freq: 2.4370 Trig: Free Run #Atten: 30 dB

04:36:18 AM Jul 19, 202 Radio Std: None

Radio Device: BTS

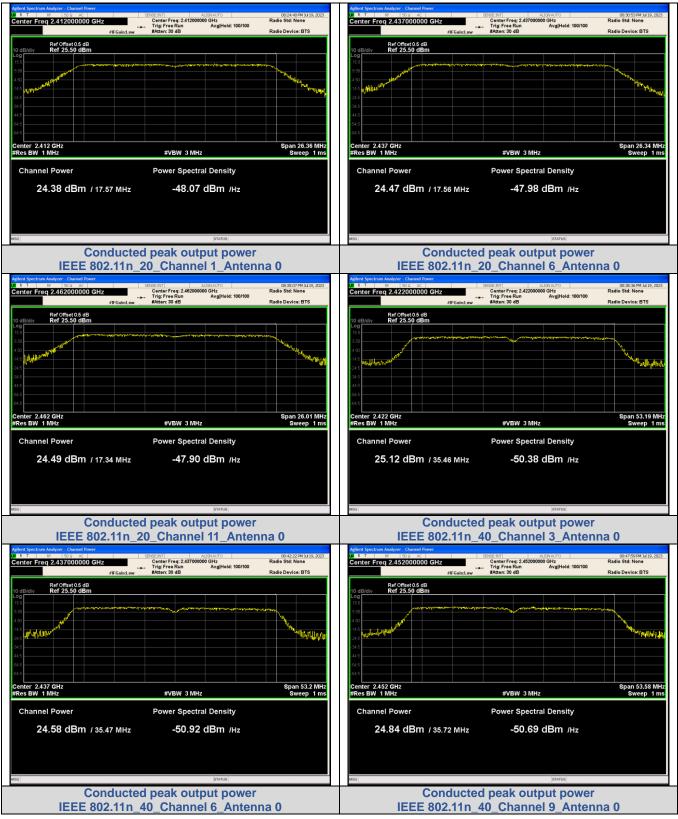
Ref Offset 0.5 dB Ref 25.50 dBm Ref Offset 0.5 dB Ref 25.50 dBm enter 2.412 GHz Res BW 1 MHz Span 20.19 MHz Sweep 1 ms enter 2.437 GHz Res BW 1 MHz Span 20.1 MH Sweep 1 m #VBW 3 MHz #VBW 3 MHz Channel Power Power Spectral Density Channel Power Power Spectral Density 20.07 dBm / 8.551 MHz -49.25 dBm /Hz 19.57 dBm / 8.092 MHz -49.51 dBm /Hz Conducted peak output power Conducted peak output power IEEE 802.11b Channel 1 Antenna 0 IEEE 802.11b_Channel 6_Antenna 0 Center Freq: 2.412000000 GHz Trig: Freq Run Avg|Hold: 100/ #Atten: 30 dB 04:40:17 AM Jul 19, 3 Radio Std: None 06:52:06 PM Jul 19, 2 Radio Std: None er Freq 2.4620 Center Freq: 2.462000000 GHz Trig: Free Run Avg|Hold: 100/10 #Atten: 30 dB eq 2.412 ----Radio Device: BTS Radio Device: BTS Ref Offset 0.5 dB Ref 25.50 dBm Ref Offset 0.5 dB Ref 25.50 dBm Center 2.412 GHz Res BW 1 MHz Span 20.04 MHz Sweep 1 ms Span 24.51 MH Sweep 1 m enter 2.462 GHz Res BW 1 MHz #VBW 3 MHz #VBW 3 MH Channel Power Power Spectral Density Channel Power Power Spectral Density 20.18 dBm / 8.549 MHz -49.14 dBm /Hz 24.11 dBm / 16.34 MHz -48.03 dBm /Hz Conducted peak output power Conducted peak output power IEEE 802.11b_Channel 11_Antenna 0 IEEE 802.11g_Channel 1_Antenna 0 05:55:47 PM 3 Radio Std: None 08:17:26 PM Ju Radio Std: None enter Freq 2.437000000 GH nter Freq 2.462000000 GH Center Freq: 2.43 Trig: Free Run GHz Avg|Hold: 100/100 Trig: Fr Ref Offset 0.5 dB Ref 25.50 dBm Ref Offset 0.5 dB Ref 25.50 dBn Span 24.54 MHz Sweep 1 ms Span 24.49 MH Sweep 1 m Center 2.437 GHz #Res BW 1 MHz Center 2.462 GHz #Res BW 1 MHz #VBW 3 MHz #VBW 3 MHz Power Spectral Density Channel Power Channel Power Power Spectral Density 23.74 dBm / 16.36 MHz -48.40 dBm /Hz 23.72 dBm / 16.33 MHz -48.41 dBm /Hz

Conducted peak output power IEEE 802.11g_Channel 6_Antenna 0

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

中国国家认证认可监督管理委员会


Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Conducted peak output power

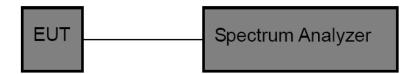
IEEE 802.11g_Channel 11_Antenna 0

Page 65 of 78

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


Power Spectral Density 3.7.

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e) / RSS-247 5.2 b

Test Item	Limit	Frequency Range (MHz)
Power Spectral Density	8 dBm (in any 3 kHz)	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz.

Set the VBW to: 10 kHz.

Detector: peak.

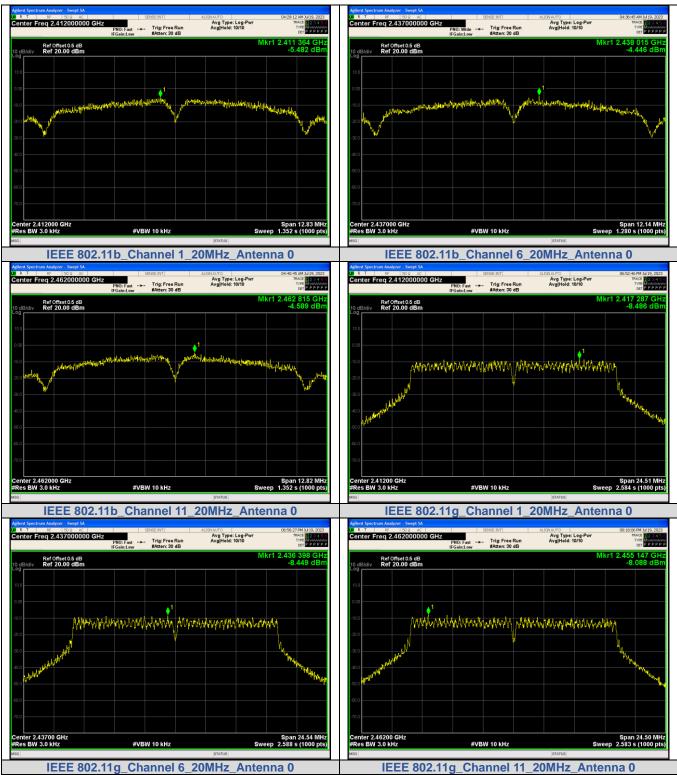
Sweep time: auto.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

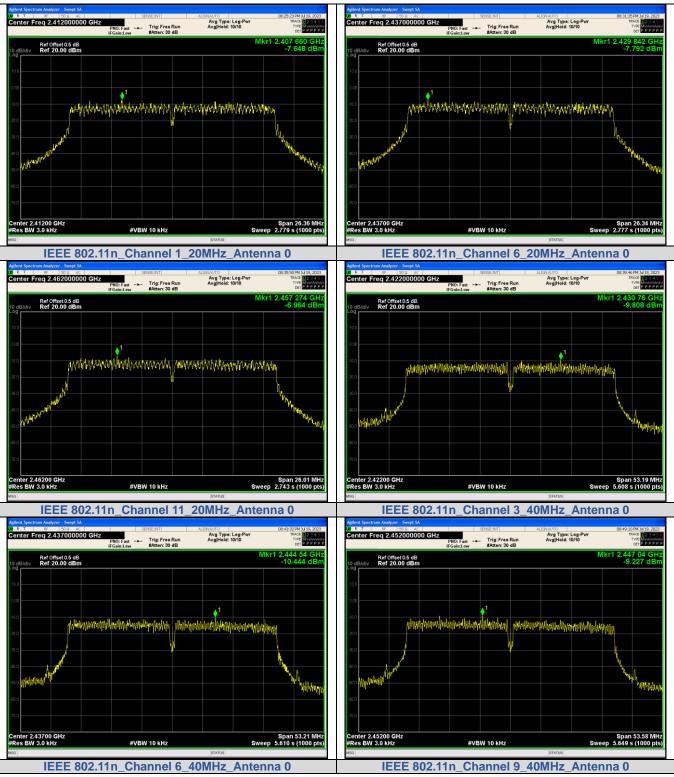
Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



Test Result

Mode	Channel	PSD (dBm/3kHz) Ant. 0	Limit (dBm/3kHz)	Result
	1	-5.482		PASS
IEEE 802.11b	6	-4.446		PASS
	11	-4.589		PASS
	1	-8.486		PASS
IEEE 802.11g	6	-8.449		PASS
	11	-8.088	8	PASS
	1	-7.648	0	PASS
IEEE 802.11n_20	6	-7.792		PASS
	11	-6.964		PASS
	3	-9.808		PASS
IEEE 802.11n_40	6	-10.444		PASS
	9	-9.227		PASS

Test plot as follows:



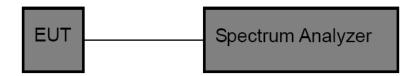
CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

中国国家认证认可监督管理委员会 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

Spectrum Setting:
Set analyzer center frequency to test channel center frequency.
Set the span to 0Hz.
Set the RBW to 10MHz.
Set the VBW to 10MHz.
Detector: Peak.
Sweep time: Auto.
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	1/T Minimum VBW (kHz)	Final Setting for VBW (kHz)
	1	12.418	12.534	99.08	0.08	1
IEEE 802.11b	6	12.418	12.534	99.08	0.08	1
	11	12.418	12.534	99.08	0.08	1
	1	2.066	2.199	93.93	0.48	1
IEEE 802.11g	6	2.066	2.217	93.17	0.48	1
	11	2.066	2.136	96.70	0.48	1
IEEE	1	1.922	2.055	93.50	0.52	1
802.11n 20	6	1.922	2.019	95.17	0.52	1
002.1111_20	11	1.922	2.073	92.69	0.52	1
IEEE	3	0.946	1.025	92.23	1.06	3
802.11n 40	6	0.946	0.989	95.60	1.06	3
002.111_40	9	0.946	1.079	87.61	1.06	3

Test plot as follows:

Allow Low Control Program Bill Statut Allow Color Bill Statut Allow Color Bill Statut Allow Color Bill Statut Bill Statut Allow Color Bill Statut Bill Statut Allow Color Bill Statut Bill Statut Bill Statut Bill Statut Allow Color Bill Statut Bill S
0 g Boldw Ref 28.00 dBm -54.55 dB 0 g Boldw 720 d
Control Control Control Control Control Control Control Span 0 Hz Control Control Control Span 0 Hz Sweep 45.33 ms (40000 pts) Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control C
120 3Δ1 121 3Δ1 122 3Δ1 123 3Δ1 124 3Δ1 125 Span 0 HZ 126 Span 0 HZ 127 Span 0 HZ 128 W1 MMZ 129 Span 0 HZ 129 Span 0 HZ 129 Span 0 HZ 129 V1 Y PI BIN 129 PACTOR 129 PACTOR<
210 3Δ1 3Δ1 420 1 </td
220 301 301 301 230 301 301 301 230 301 301 301 230 301 301 301 230 301 301 301 230 301 301 301 230 301 101 101 101 230 101 101 101 101 101 230 11 1 101 102 101 102 101
220 40 3Δ1 3Δ1 40 40 40 3Δ1 40 40 40 3Δ1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
420 420 521 521 420 500 500 500 500 420 500 500 500 500 500 420 500
Conter 2.412000000 GHz Span 0 Hz Res BW 8 MHz #VBW 8.0 MHz* Sweep 43.33 ms (40000 pts) Mark Inde: t (a) 14.43 ms (a) 11.79 dBm 1 N. t (a) 14.43 ms (a) Function 2 A.1 t (a) 12.43 ms (a) Function 3 A.1 t (a) 12.43 ms (a) 500 ms (a) 3 A.1 t (a) 12.43 ms (a) 500 ms (a) 4 t (a) 12.43 ms (a) 500 ms (a) Function wath 0 at a t (a) 12.43 ms (a) 500 ms (a) 0 at a at a at a at a at a 0 at a at a at a at a at a 0 at a at a at a at a at a 10 at a at a at a at a at a 11 at a at a at a at a at a 11 at a at a at a at a at a 11 at a at a at a at a at a 12 at a at a at a at a a
Span 0 Hz Span 0 Hz Span 0 Hz Sweep 45.33 ms (40000 pts) MIR Noce The Sol × Y Participation Participation<
Res EW 8 MHz #VEW 8.0 MHz* Sweep 45.33 ms (40000 pts) MR MORE IRC, SQL × Y RUNCTION WORTH FUNCTION WORTH 1
1 N 1 14.63 ms 117.9 dBm 3 Δ1 1 L Δ0 12.42 ms Δ0.4 dB 3 Δ1 1 L Δ0 12.53 ms Δ0 54.55 dB 4 Δ3 Δ1 1 L Δ0 12.53 ms Δ0 54.55 dB 6 4 Δ3 Δ1 12.53 ms Δ0 54.55 dB Δ1 6 4 Δ3 Δ1 Δ1 12.53 ms Δ0 54.55 dB Δ1
2 A1 1 1 12.42 ms (Δ) 4.03 dB 4 1 1 12.53 ms (Δ) 54.56 dB 4 1 1 12.53 ms (Δ) 54.56 dB 4 1 1 12.53 ms (Δ) 54.56 dB 4 1 12.53 ms (Δ) 54.56 dB 1 4 1 12.63 ms (Δ) 54.56 dB 1 1 4 1 12.63 ms (Δ) 54.56 dB 1 1 4 1 12.63 ms (Δ) 54.56 dB 1 1 1 4 1
Server and the server
7 8 10 <td< td=""></td<>
9 1
ASG STATUS ASG ST
IEEE 802.11b_20MHz_Channel 1 Additional system of the system of th
Aglient Spectrum Analyzer - Swept SA R T RF S0 G AC SENCEINT ALIONAUTO 04:35:54 AM M19, 2023 Center Freq 2.437000000 GHz PN0: Fast → Trig: Free Run Aren: 38 dB Center Freq 2.43700 dBm Feaint.ow Atten: 38 dB Center 2.40 dBm Center 2.437000000 GHz Ref 27.00 dBm Center 2.437000000 GHz Ref 2.40 dBm Center 2.40 dBm Center 2.40 dBm C
R T PF 50.2 AC SENSE:INT ALIGNAUTO 04/35/54/AM M19/2023 Center Freq 2.437000000 GHz PNO: Fast IFGain:Low Trig: Free Run Arten: 38 dB Avg Type: RMS Trig: August and the second
Million ΔMkr3 12.53 ms -33.03 dB 10 dB/div Ref 27.00 dBm -33.03 dB 300 dBm -33.03 dB 300 dBm -33.01 dB 10 dB/div
Log 1 2Δ1 700 300 3Δ1 330 3Δ1 430 40000 GHz Res EW 8 MHz #VBW 8.0 MHz* Sweep 45.33 ms (40000 pts) MKR MODE TRC SCL × 2 Δ1 1 t 2 Δ1 1 t 4 5 5 5 6 5 7 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7.00 3Δ1 .130 3Δ1 .230 3Δ1 .330
13.0 3Δ1 33.0 3Δ1 33.0 3Δ1 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 43.0 4.0 1 N 1 N 1 1
1330 1
-33.0 -33.0 -43.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 -33.0 Center 2.4.37 000000 GHz Res BW 8 MHz #VBW 8.0 MHz* Span 0 Hz Sweep 45.33 ms (40000 pts) MKR MODE TRC SCL × 1 1 2 A1 1 t 3 A1 1 t 4 -33.03 dB 4 -33.03 dB 4 -33.03 dB 4 -33.03 dB 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 <td< td=""></td<>
-53.0 -53.0 -53.0 Span 0 Hz Center 2.437000000 GHz Res BW 8 MHz #VBW 8.0 MHz* Sweep 45.33 ms (40000 pts) MKR MODE TRC SCL × Y FUNCTION 1 1 t 16.68 ms 14.72 dBm 2 A1 1 t 16.69 ms 3 A1 1 t (Δ) -0.69 dB 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 9 - - - 10 - - - 11 - - - 6 - - - 7 - - - 8 - - - 9 - - - 9 - - - 9 - - - 9 - - - 9 - - - 10 - - - 10 - - </td
CG3.0 Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz #VBW 8.0 MHz* Span 0 Hz Sweep 45.33 ms (40000 pts) MKR MODE TRC SCL × Y FUNCTION FUNCTION VALUE 1 N 1 t 16.68 ms 14.72 dBm 2 Δ1 1 t 10.0 12.42 ms 3 Δ1 1 t (Δ) -0.69 dB 4 1 t (Δ) -33.03 dB 4 4 4 4 4 5 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 11 4 4 4 4 12 4 4 4 4 13 4 4 4 4 14
Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz \$Sweep 45.33 ms (40000 pts) MKR MODE TRC SCI × Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 16.68 ms 14.72 dBm 6 7 3 A1 t (Δ) -0.69 dB - - - 4 5 - - - - - - - 9 -
Res BW 8 MHz #VBW 8.0 MHz* Sweep 45.33 ms (40000 pts) MKR MODE TRC SCL × Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 16.68 ms 14.72 dBm -
1 N 1 t 16.68 ms 14.72 dBm 2 Δ1 1 t (Δ) 12.42 ms (Δ) 0.69 dB 3 Δ1 1 t (Δ) 12.53 ms (Δ) -33.03 dB 4 5 6 7 7 7
4 5 6 7 8 9 9 10 10 11 10 10 10 10 10 10 10
4 5 6 7 8 9 9 10 11 11 10 10 10 10 10 10 10 10 10 10
7
9 10 10 10 10 10 10 10 10 10 10 10 10 10
MSG STATUS

CTC Laboratories, Inc.

日 中国国家认证认可监督管理委员会

Agilent Spectrum Analyzer - Swept SA			
	SENSE:INT	ALIGNAUTO Avg Type: RMS	04:39:52 AM Jul 19, 2023 TRACE 1 2 3 4 5 6
Genter Freq 2.46200000	PNO: Fast 🛶 Trig: Free Run	ing type name	TYPE WWWWWWW DET A A A A A A
	IFGain:Low Atten: 38 dB		
Ref Offset 0.5 dB 10 dB/div Ref 28.00 dBm			ΔMkr3 12.53 ms -55.73 dB
Log			
18.0			
8.00			
-2.00			
-12.0			
-22.0			
-42.0		3∆1	
-52.0		<mark>.</mark>	
-62.0			
Center 2.462000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Sweep	Span 0 Hz 45.33 ms (40000 pts)
MKR MODE TRC SCL X	Y Function	· · · · · ·	NCTION VALUE
1 N 1 t 2 Δ1 1 t (Δ)	20.24 ms 12.26 dBm 12.42 ms (Δ) 3.74 dB 12.53 ms (Δ) -55.73 dB		
$\begin{array}{c} 2 \\ 3 \\ 4 \end{array} \qquad $	12.53 ms (Δ) -55.73 dB		
5			=
7			
8 9 10			
10			×
MSG		STATUS	>
	IEEE 802.11b 20MHz (
Agilent Spectrum Analyzer - Swept SA			
LXIR T RF 50Ω AC	SENSE:INT	ALIGNAUTO	06:51:41 PM Jul 19, 2023
Center Freq 2.412000000	PNO: Fast 🛶 Trig: Free Run	Avg Type: RMS	TRACE 123456 TYPE WWWWWWWW DET A A A A A A
	IFGain:Low Atten: 40 dB		ΔMkr3 2.199 ms
Ref Offset 0.5 dB 10 dB/div Ref 30.00 dBm			20.49 dB
Log			
0.00 Militaria da mandalente al ale	f Bulling militing and the provide standing of the standing of the standing of the standing of the standing of		alaccopelyten reaction (reported
-10.0		3 Δ1	
-20.0			
-30.0	h	2∆1	
-40.0			
-50.0			1 1
-60.0			
Center 2.412000000 GHz			Span 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz*	-	10.00 ms (40000 pts)
MKR MODE TRC SCL X	Y FUNCTION 5.188 ms -38.34 dBm	FUNCTION WIDTH FL	NCTION VALUE
2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ)	5.188 ms -38.34 dBm 2.066 ms (Δ) 0.01 dB 2.199 ms (Δ) 20.49 dB		
6			
7			
7			
8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10			
8			×
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		STATUS	×

EN 中国国家认证认可监督管理委员会

Center Freq 2.437000000 GHz Avg Type: RMS TRA PNO: Fast Trig: Free Run Tr	M Jul 19, 2023 E 1 2 3 4 5 6 PE WWWWWW ET A A A A A A
Ref Offset 0.5 dB	
$\begin{array}{c} 19.0 \\ 9.0 \\ 1.00 \\ 1.00 \\ 1.1$	pan 0 Hz
Res BW 8 MHz #VBW 8.0 MHz* Sweep 10.00 ms (4	
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 4.821 ms 39.70 dBm 1 1 Control Notation 1 1 1 Control Notation 1 1 Control Notation 1	
KG STATUS	
IEEE 802.11g_20MHz_Channel 6	
Cepter Fred 2 462000000 GHz Avg Type: BMS TRA	M Jul 19, 2023 75 1 2 3 4 5 6 76 W uwwww 67 A A A A A A
Ref Offset 0.5 dB CMkr3 2 10 dB/div Ref 29.00 dBm 900	
Ref Offset 0.5 dB CMkr3 2 10 dB/div Ref 29.00 dBm 900	8.60 dB
Ref Offset 0.5 dB AMkr3 2 100 Hord 29.00 dBm 900 Hord 20.00 dBm 910 Hord 20.00 dBm <td< td=""><td>8.60 dB</td></td<>	8.60 dB
Ref Offset 0.5 dB AMkr3 2 10 dB/div Ref 29.00 dBm 900 Provide bound of the standard of the	8.60 dB

EN 中国国家认证认可监督管理委员会

Agilent Spectrum Analyzer - Swept SA ₩ R T RF 50 Ω AC Center Freq 2.412000000 GF	SENSE:INT	ALIGNAUTO Avg Type: RMS	08:24:15 PM Jul 19, 2023 TRACE 11 2 3 4 5 6
	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 40 dB		TRACE 123456 TYPE WWWWWW DET A A A A A A
Ref Offset 0.5 dB 10 dB/div Ref 30.00 dBm			ΔMkr3 2.055 ms 21.90 dB
20.0 Units a post of the property of the prope	a by provide the first state of the first of the state of t	alual	a na pina ana ang ang ang ang ang ang ang ang a
10.0 <mark>Philapholitheon and the states of the </mark>	Weber Marine Barrisha (1997)	nne <mark>– hjärdstadstaden k</mark> inger och staden av her av	e <mark>na hana kana kana kana kana kana kana ka</mark>
-10.0			3∆1
-20.0			2 <u>01</u>
-40.0			
-60.0		<u> '</u>	
Center 2.412000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Swe	Span 0 Hz ep 10.00 ms (40000 pts)
MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
1 1 2 1 3 1			
4 5 6			
7 8			
9 10 11			×
MSG	Ш	STATUS	<u>></u>
	IEEE 802.11n_20MHz	Channel 1	
Agilent Spectrum Analyzer - Swept SA LX0 R T RF 50 Ω AC	SENSE:INT	ALIGNAUTO	08:30:29 PM Jul 19, 2023
Center Freq 2.437000000 G	PNO: Fast ↔ Trig: Free Run IFGain:Low Atten: 40 dB	Avg Type: RMS	TRACE 123456 TYPE WWWWWW DET A A A A A A
Ref Offset 0.5 dB 10 dB/div Ref 30.00 dBm			∆Mkr3 2.019 ms 9.75 dB
	lan Mangelik manalak sa ang panggalak kana ng katang kana ng ka	na pyrony dalary syly than type by here the second	
10.0 1000 1000 1000 1000 1000 1000 1000	energeligenstaal – person televiseren er en benedigens		n tu ay in al an Lug physical find
-10.0			
-20.0		3.	<u>41</u>
-40.0			
-50.0			
Center 2.437000000 GHz			Span 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz*	FUNCTION WIDTH	ep 10.00 ms (40000 pts)
1 1 2 1			
3 1 4 5 8			
67 7			
9 10 11			
<			
MSG		STATUS	

EN 中国国家认证认可监督管理委员会

Agilent Spectrum Analyzer - Swept SA DX R T RF 50 Q AC SENSE:INT ALIGNAUTO Center Freq 2.462000000 GHz PNO: Fast →→ Trig: Free Run IFGain:Low Atten: 40 dB	08:34:42 PM Jul 19, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET A A A A A A
PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 40 dB	TYPE WWWWWWW
	DETAAAAA
Ref Offset 0.5 dB	ΔMkr3 2.073 ms
10 dB/div Ref 29.00 dBm	0.33 dB
19.0 personal sector and comparison of the sector property of the sector person of the sector	an a search an
9.00 <mark>interneting on the second of the secon</mark>	n de gleni - <mark>nikonstan poletikari sekaren be</mark> l
-11.0	
-21.0	
-31.0	
-51.0 Y Y Y	
Center 2.462000000 GHz	Span 0 Hz
Res BW 8 MHz #VBW 8.0 MHz*	Span 0 H2 Sweep 10.00 ms (40000 pts)
MKR, MODE, TRC, SCL. X Y FUNCTION FUNCTION WIDTH	FUNCTION VALUE
STATUS	
IEEE 802.11n_20MHz_Channel 11	
Agilent Spectrum Analyzer - Swept SA	
Image: Series of the serie	08:38:10 PM Jul 19, 2023 TRACE 123456 TYPE WWWWWW
PN0: Fast ++- Ing: Free Run IFGain:Low Atten: 38 dB	DET A A A A A A
Ref Offset 0.5 dB 10 dB/div Ref 27.00 dBm	∆Mkr3 1.025 ms 15.99 dB
-3.00 we with what have a fight and there with the particular terms with the	a ta kani. Nana para ka kana kana ka
-130	
-53.0	
63.0	
Center 2.422000000 GHz Res BW 8 MHz #VBW 8.0 MHz*	Span 0 Hz Sweep 6.667 ms (40000 pts)
KC5 DVV 3 WI12 #VDVV 0.0 WI12 MKRI MODE TRC SCL X Y FUNCTION FUNCTION WIDTH	FUNCTION VALUE
MSG STATUS	

Agilent Spectrum Analyzer - Swept SA			
Center Freq 2.437000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: RMS	08:41:56 PM Jul 19, 2023 TRACE 1 2 3 4 5 6
	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 36 dB		TRACE 1 2 3 4 5 6 TYPE WWWWWW DET A A A A A A
Ref Offset 0.5 dB			ΔMkr3 989.2 μs
10 dB/div Ref 26.00 dBm			-1.04 ḋB
16.0 <mark>otaralizani printetellikitasiatatani pri</mark>	an industries in the second	and the second	
6.00 <mark>194 44 44 </mark> 4 41 499 499 44 49	<mark>endiperior del par</mark> l <mark>e perior parte del parte de</mark>	And Cashir in all additions of the second	is della diversi da e parte <mark>(11, en terri den perpetuanten e</mark>
-24.0			
-34.0		2Δ1 3Δ1	
-44.0		- <mark>Y</mark> 177	
-54.0			in a second s
Center 2.437000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Swe	Span 0 Hz ep 6.667 ms (40000 pts)
MKR MODE TRC SCL X	Y FUNCTION		FUNCTION VALUE
1 1 2 1			
3 1 1 4 1 1 1			
5 6			
7 8			
9 10			
11 <			×
MSG		STATUS	
	IEEE 802.11n_40MH	z_Channel 6	
Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGNAUTO	08:47:34 PM Jul 19, 2023
Center Freq 2.452000000 GHz	PNO: Fast 🟎 Trig: Free Run	Avg Type: RMS	TRACE 123456 TYPE WWWWWW DET A A A A A A
	IFGain:Low Atten: 38 dB		ΔMkr3 1.079 ms
Ref Offset 0.5 dB 10 dB/div Ref 28.00 dBm			15.70 dB
Log			
	in the first of the state of the	International and the property of	transmir is chined that the
-12.0		_3∆1	
-22.0			
-42.0 14.0	\ ∲	2 <mark>01</mark>	
-52.0 <mark>/</mark> /////	<mark></mark>	n	
-62.0			
Center 2.452000000 GHz			Span 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz*		ep 6.667 ms (40000 pts)
MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
2 1 1 3 1 1			
4 5			
6 7 7			
8			
10			×
11			
MSG		STATUS	

3.9. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i)

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna is less than 6dBi, please refer to the EUT internal photographs antenna photo.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下回目家认证认可监督管理委员会 中国国家认证认可监督管理委员会