

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC20231517E07

FCC ID.....: 2AKXB-W3011020

Applicant: Woan Technology (Shenzhen) Co., Ltd.

Road, Mabu Community, Xixiang Sub-district, Bao'an District,

Shenzhen, Guangdong, P.R.China, 518100

Manufacturer...... Woan Technology (Shenzhen) Co., Ltd.

Road, Mabu Community, Xixiang Sub-district, Bao'an District,

Jim Jiang

Ziczhang Jehonas

Shenzhen, Guangdong, P.R.China, 518100

Product Name SwitchBot Mini Robot Vacuum K10+

SwitchBot Mini Robot Vacuum K10

Trade Mark: SwitchBot

Model/Type reference.....: W3011020

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........ Jul. 10, 2023

Date of testing...... Jul. 10, 2023 to Aug. 1, 2023

Date of issue...... Aug. 13, 2023

Result...... PASS

Compiled by:

(Printed name+signature) Jim Jiang

Supervised by:

(Printed name+signature) Eric Zhang

Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

	Table of Contents	Page
1. TE	EST SUMMARY	
1.1.	Test Standards	
1.2.	REPORT VERSION	
1.3.	Test Description	3
1.4.	Test Facility	
1.5.	MEASUREMENT UNCERTAINTY	c
1.6.	Environmental Conditions	
2. GE	ENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	ACCESSORY EQUIPMENT INFORMATION	
2.4.	OPERATION STATE	
2.5.	Measurement Instruments List	
3. TE	EST ITEM AND RESULTS	10
3.1.	CONDUCTED EMISSION	10
3.2.	RADIATED EMISSION	13
3.3.	BAND EDGE EMISSIONS (RADIATED)	30
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3.5.	DTS BANDWIDTH	
3.6.	PEAK OUTPUT POWER	
3.7.	Power Spectral Density	
3.8.	Duty Cycle	
3 0	ANTENNA RECHIDEMENT	79

Page 3 of 78 Report No.: CTC20231517E07

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS-247 Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Aug. 13, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 2					
Took Itom	Standard	Section	Result	Test	
Test Item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang	
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang	
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang	

Note:

- 1. The measurement uncertainty is not included in the test result.
- N/A: means this test item is not applicable for this device according to the technology characteristic of 2. device.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn Page 4 of 78

Report No.: CTC20231517E07

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

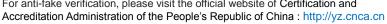
During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Woan Technology (Shenzhen) Co., Ltd.
Address:	Room 1101, Qiancheng Commercial Center, No. 5 Haicheng Road, Mabu Community, Xixiang Sub-district, Bao'an District, Shenzhen, Guangdong, P.R.China, 518100
Manufacturer:	Woan Technology (Shenzhen) Co., Ltd.
Address:	Room 1101, Qiancheng Commercial Center, No. 5 Haicheng Road, Mabu Community, Xixiang Sub-district, Bao'an District, Shenzhen, Guangdong, P.R.China, 518100


2.2. General Description of EUT

ectrical circuit and o in the accessory mop in the ction.		
o in the accessory		
I		
ctrical circuit and		
DC24V 1A		
V1.9.0.3080-0.3		

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkPad T460s	/	Lenovo		
Cable Information					
Name	Shielded Type	Ferrite Core	Length		
USB Cable	Unshielded	NO	150cm		
Test Software Information					
Name	Version	/	1		
QA Tool	0.0.1.88	/	1		

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/ (HT40)	HT-MCS0

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

FN 中国国家认证认可监督管理委员会

2.5. Measurement Instruments List

Tonsce	Tonscend RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023	
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023	
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024	
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023	
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023	
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024	
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024	
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023	
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024	
10	JS1120 RF Test System	TONSCEND	v2.6	/	/	

Radiate	Radiated Emission (3m chamber 2)						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024		
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024		
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023		
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024		
5	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023		
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023		
7	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023		
8	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024		

Conduc	cted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023

Note: 1. The Cal. Interval was one year.

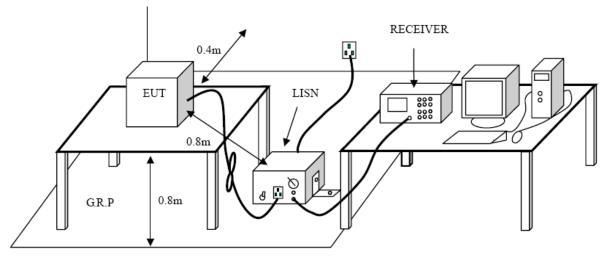
- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

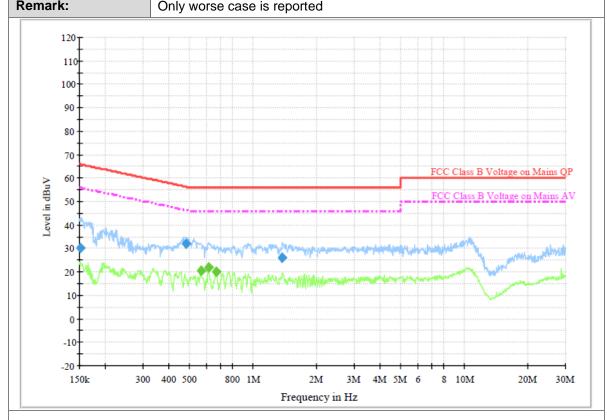
FCC CFR Title 47 Part 15 Subpart C Section 15.207 / RSS-Gen 8.8

Fraguency (MHz)	Conducted Limit (dBµV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 *				
0.5 - 5	56	46				
5 - 30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

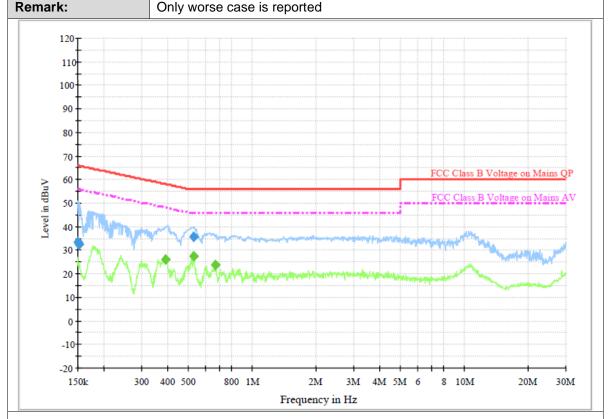
Please refer to the clause 2.4.

Test Result

Damark	Only years and it was add
Terminal:	Line
Test Voltage:	AC 120V/60Hz

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ı	0.151200	30.2	1000.00	9.000	On	L1	9.7	35.7	65.9	
	0.477380	31.9	1000.00	9.000	On	L1	9.7	24.5	56.4	
	1.369520	26.0	1000.00	9.000	On	L1	9.7	30.0	56.0	


Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.564530	20.7	1000.00	9.000	On	L1	9.7	25.3	46.0	
0.613890	21.7	1000.00	9.000	On	L1	9.7	24.3	46.0	
0.664920	20.0	1000.00	9.000	On	L1	9.7	26.0	46.0	

Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60Hz
Terminal: Neutral

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150600	33.6	1000.00	9.000	On	N	10.0	32.4	66.0	
0.152410	32.6	1000.00	9.000	On	N	10.0	33.3	65.9	
0.529600	35.5	1000.00	9.000	On	N	10.0	20.5	56.0	

Final Measurement Detector 2

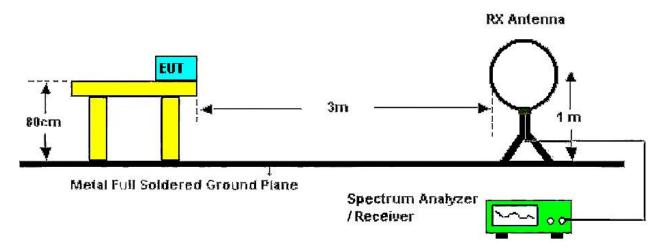
ſ	Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
- 1	(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
-			(ms)						(V)	
	0.389450	26.2	1000.00	9.000	On	N	10.0	21.9	48.1	
	0.527490	27.3	1000.00	9.000	On	Ν	10.0	18.7	46.0	
	0.667580	23.7	1000.00	9.000	On	N	10.0	22.3	46.0	

Emission Level = Read Level + Correct Factor

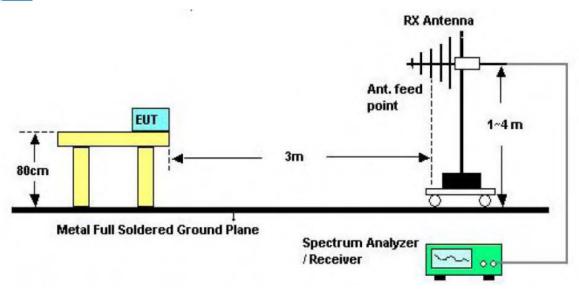
3.2. Radiated Emission

<u>Limit</u>

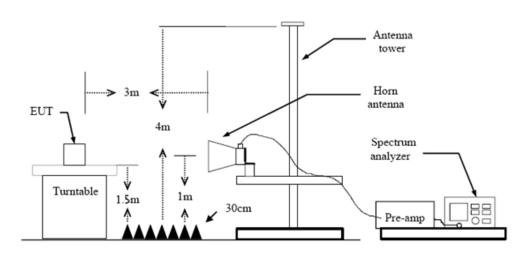
FCC CFR Title 47 Part 15 Subpart C Section 15.209 / RSS-Gen 8.9


Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Eroguanov Pango (MHz)	dBμV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBμV/m)=20log Emission Level (μV/m).


Test Configuration

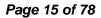
Below 30MHz Test Setup

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously. 5.
- 6. Use the following spectrum analyzer settings
- Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:


RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

CTC Laboratories, Inc.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

Ant. Pol.	Horizontal								
Test Mode:	TX 802.11b Mode 2412MHz								
Remark:	Only worse case is rep	orted.							
90.0 dBuV/m									
80									
70									
60		FCC Part	t15 RE-Class B 30-1000M						
50		Margin-6	6-dB						
40		1 2	3 456						
30									
20	 	An robusto	L. A. A. T. W.						
10 // / // ////////////////////////////	on when the property of the second section of the second section of the second								
0									
-10									
30.000 60.	00	(MHz) 300.00	1000.0						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	257.2416	56.79	-18.38	38.41	46.00	-7.59	QP
2	369.4045	51.94	-15.53	36.41	46.00	-9.59	QP
3	738.6236	48.19	-8.76	39.43	46.00	-6.57	QP
4	869.1301	45.21	-6.32	38.89	46.00	-7.11	QP
5	903.9429	45.39	-5.83	39.56	46.00	-6.44	QP
6 '	932.2714	45.20	-5.49	39.71	46.00	-6.29	QP

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.			Ver	Vertical									
Tes	t Mode		TX	TX 802.11b Mode 2412MHz									
Rer	mark:		On	Only worse case is reported.									
90.0	dBuV/π	1											1
80													
70													
60								FCC Part15	RE-CI	ass B 30-	1000M		
50								Margin -6 d	В				
10							1 *				3 2 X	456	
30						n . A			.	11	×		
20						The state of the s	Martin J.	HAMPY OF THE STATE	rent M		MMADALA	.,	
10	MANNA / WA	Madrick March	white of the	Mary Mary	majorted/b/	A .							
)													
10 20	0.000		0.00			(MHz)	20	00.00				100	
31	J. 000	t t	O. UU			(m/12)	31	JU.UU				100	U. UI
	No.	Freque (MH:		Rea (dB		Factor (dB/m)	Level (dBuV/m)	Limi (dBuV/	- 1	Margi (dB)	1110	tector	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	244.5749	57.39	-18.79	38.60	46.00	-7.40	QP
2	738.6236	44.90	-8.76	36.14	46.00	-9.86	QP
3	779.0601	46.16	-7.66	38.50	46.00	-7.50	QP
4	824.0185	46.45	-6.94	39.51	46.00	-6.49	QP
5 *	876.4754	46.14	-6.22	39.92	46.00	-6.08	QP
6	934.8903	44.68	-5.45	39.23	46.00	-6.77	QP

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.	Horizontal			
Test Mode:	TX 802.11b Mode 2412MHz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.754	43.12	2.20	45.32	74.00	-28.68	peak
2 *	4823.825	31.00	2.20	33.20	54.00	-20.80	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.761	30.99	2.20	33.19	54.00	-20.81	AVG
2	4823.890	42.74	2.20	44.94	74.00	-29.06	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	4874.090	30.93	2.30	33.23	54.00	-20.77	AVG
2	4874.432	42.67	2.30	44.97	74.00	-29.03	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.880	42.52	2.30	44.82	74.00	-29.18	peak
2 *	4873.925	31.30	2.30	33.60	54.00	-20.40	AVG

Remarks:

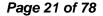
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal			
Test Mode:	TX 802.11b Mode 2462MHz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.999	31.30	2.41	33.71	54.00	-20.29	AVG
2	4924.120	42.46	2.41	44.87	74.00	-29.13	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4924.280	30.62	2.41	33.03	54.00	-20.97	AVG
2	4924.302	42.07	2.41	44.48	74.00	-29.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.800	30.09	2.20	32.29	54.00	-21.71	AVG
2	4823.874	42.66	2.20	44.86	74.00	-29.14	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin_value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4824.034	41.56	2.20	43.76	74.00	-30.24	peak
2 *	4824.146	30.67	2.20	32.87	54.00	-21.13	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.000	41.79	2.30	44.09	74.00	-29.91	peak
2 *	4874.000	30.86	2.30	33.16	54.00	-20.84	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.800	30.39	2.30	32.69	54.00	-21.31	AVG
2	4873.813	41.40	2.30	43.70	74.00	-30.30	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal				
Test Mode:	TX 802.11g Mode 2462MHz				
Remark:	No report for the emission which more than 20 dB below the prescribed limit.				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.200	41.79	2.41	44.20	74.00	-29.80	peak
2 *	4924.340	30.63	2.41	33.04	54.00	-20.96	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923.766	41.50	2.41	43.91	74.00	-30.09	peak
2 *	4923.840	30.09	2.41	32.50	54.00	-21.50	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.386	29.93	2.20	32.13	54.00	-21.87	AVG
2	4824.450	41.93	2.20	44.13	74.00	-29.87	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.170	41.78	2.20	43.98	74.00	-30.02	peak
2 *	4824.211	30.93	2.20	33.13	54.00	-20.87	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.780	42.33	2.30	44.63	74.00	-29.37	peak
2 *	4873.820	30.67	2.30	32.97	54.00	-21.03	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4873.789	41.58	2.30	43.88	74.00	-30.12	peak
2 *	4874.108	30.00	2.30	32.30	54.00	-21.70	AVG

Remarks:

 $1. Factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ Factor \ (dB) - Pre-amplifier \ Factor$

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.230	42.26	2.41	44.67	74.00	-29.33	peak
2 *	4924.308	30.45	2.41	32.86	54.00	-21.14	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	4823.714	41.53	2.20	43.73	74.00	-30.27	peak
2 *	4823.825	30.12	2.20	32.32	54.00	-21.68	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.741	30.86	2.24	33.10	54.00	-20.90	AVG
2	4843.852	41.93	2.24	44.17	74.00	-29.83	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin_value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.860	29.69	2.24	31.93	54.00	-22.07	AVG
2	4843.952	40.62	2.24	42.86	74.00	-31.14	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4874.208	30.81	2.30	33.11	54.00	-20.89	AVG
2	4874.220	41.80	2.30	44.10	74.00	-29.90	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical			
Test Mode:	TX 802.11n(HT40) Mode 2437MHz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.021	40.59	2.30	42.89	74.00	-31.11	peak
2 *	4874.112	29.29	2.30	31.59	54.00	-22.41	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4803.749	30.99	2.16	33.15	54.00	-20.85	AVG
2	4803.869	41.90	2.16	44.06	74.00	-29.94	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

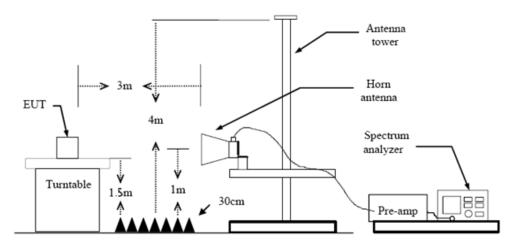
2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4903.790	29.95	2.36	32.31	54.00	-21.69	AVG
2	4903.869	40.98	2.36	43.34	74.00	-30.66	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

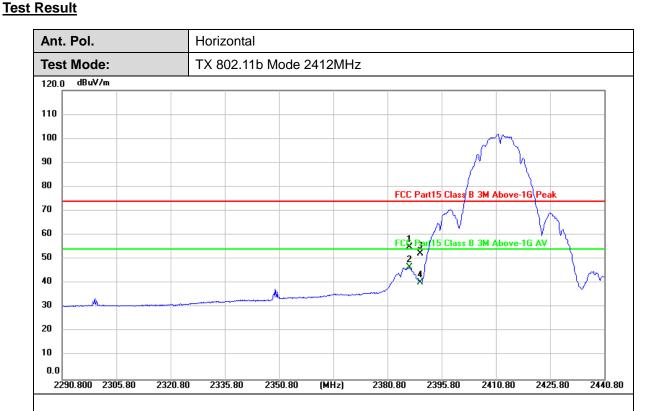
Restricted Frequency Band	(dBµV/m) (at 3m)			
(MHz)	Peak	Average		
2310 ~ 2390	74	54		
2483.5 ~ 2500	74	54		

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

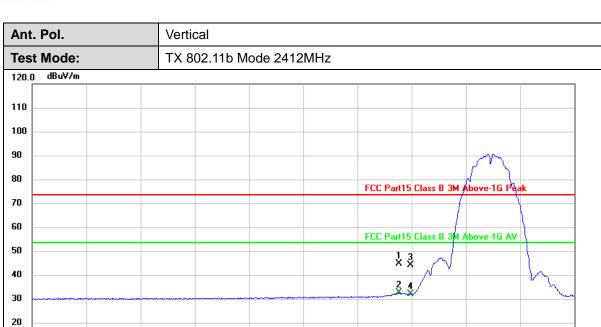
RBW=1MHz, VBW=3MHz Peak detector for Peak value.


RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.


Page 31 of 78 Report No.: CTC20231517E07

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2386.920	62.79	-7.73	55.06	74.00	-18.94	peak
2 *	2386.920	54.26	-7.73	46.53	54.00	-7.47	AVG
3	2390.000	60.19	-7.72	52.47	74.00	-21.53	peak
4	2390.000	48.22	-7.72	40.50	54.00	-13.50	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2386.720	53.09	-7.74	45.35	74.00	-28.65	peak
2 *	2386.720	41.32	-7.74	33.58	54.00	-20.42	AVG
3	2390.000	52.54	-7.72	44.82	74.00	-29.18	peak
4	2390.000	40.50	-7.72	32.78	54.00	-21.22	AVG

(MHz)

2375.20

2390.20

2405.20

2420.20

2435.20

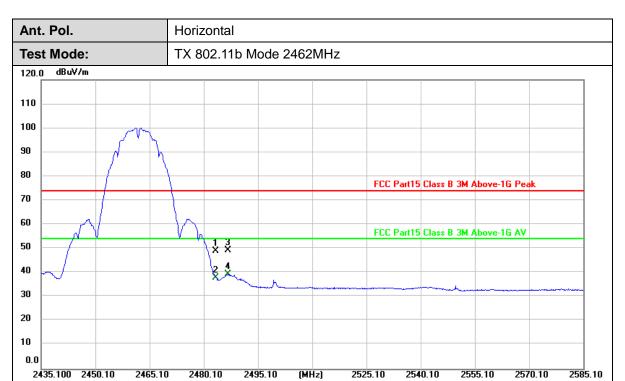
Remarks:

10 0.0

2285.200 2300.20

2315.20

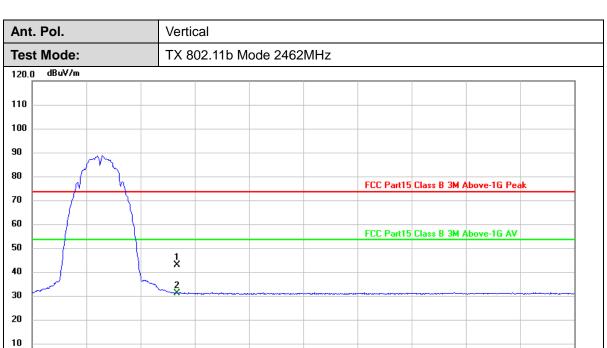
2330.20


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2345.20

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	56.38	-7.32	49.06	74.00	-24.94	peak
2	2483.500	45.28	-7.32	37.96	54.00	-16.04	AVG
3	2486.940	56.57	-7.30	49.27	74.00	-24.73	peak
4 *	2486.940	46.67	-7.30	39.37	54.00	-14.63	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	50.94	-7.32	43.62	74.00	-30.38	peak
2 *	2483.500	39.40	-7.32	32.08	54.00	-21.92	AVG

(MHz)

2533.20

2548.20

2563.20

2578.20

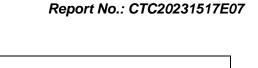
2593.20

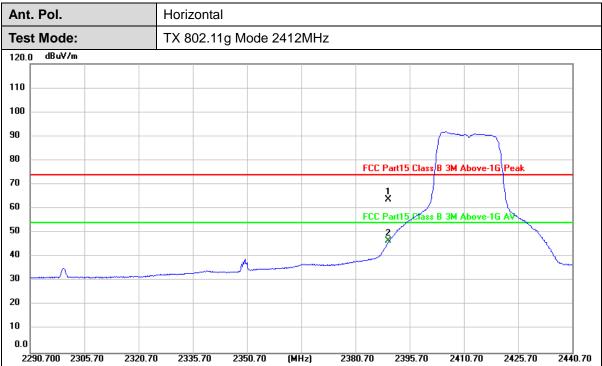
Remarks:

0.0

2443.200 2458.20

2473.20

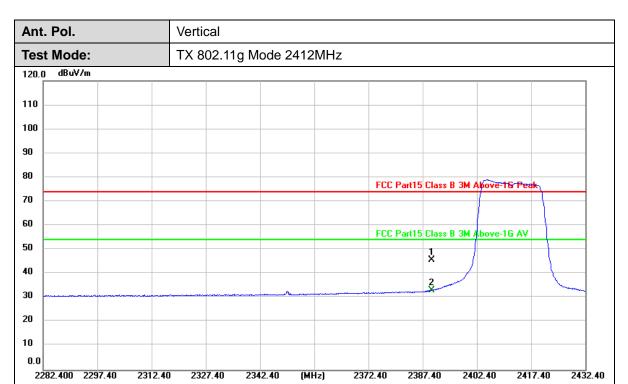

2488.20


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2503.20

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



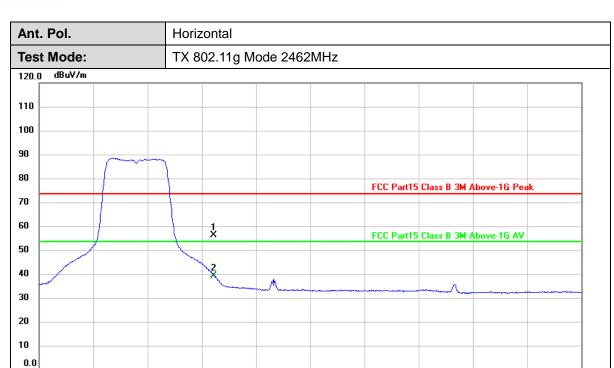
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	71.42	-7.72	63.70	74.00	-10.30	peak
2 *	2390.000	54.49	-7.72	46.77	54.00	-7.23	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	53.36	-7.72	45.64	74.00	-28.36	peak
2 *	2390.000	40.81	-7.72	33.09	54.00	-20.91	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

2585.10

2570.10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	64.21	-7.32	56.89	74.00	-17.11	peak
2 *	2483.500	47.37	-7.32	40.05	54.00	-13.95	AVG

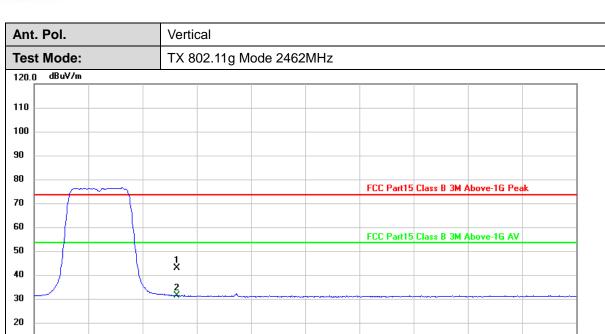
(MHz)

2525.10

2540.10

2555.10

Remarks:


2435.100 2450.10

2465.10

2480.10

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2495.10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	51.07	-7.32	43.75	74.00	-30.25	peak
2 *	2483.500	39.45	-7.32	32.13	54.00	-21.87	AVG

(MHz)

2534.00

2549.00

2564.00

2579.00

2594.00

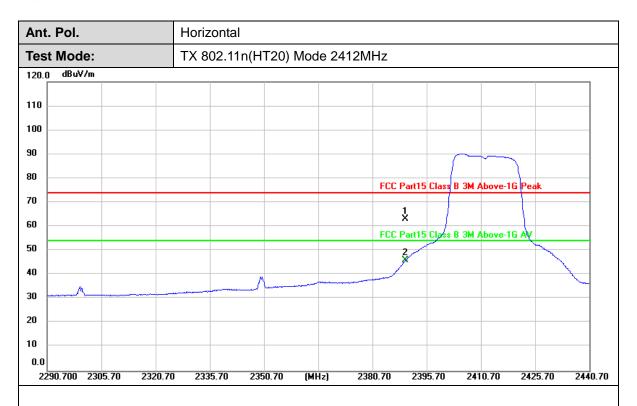
Remarks:

10 0.0

2444.000 2459.00

2474.00

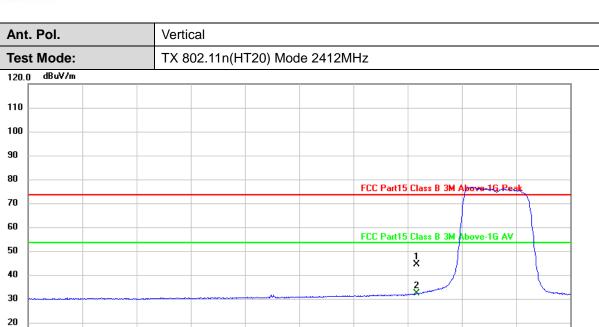
2489.00


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2504.00

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	71.02	-7.72	63.30	74.00	-10.70	peak
2 *	2390.000	53.86	-7.72	46.14	54.00	-7.86	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	52.82	-7.72	45.10	74.00	-28.90	peak
2 *	2390.000	40.79	-7.72	33.07	54.00	-20.93	AVG

(MHz)

2372.40

2387.40

2402.40

2417.40

2432.40

Remarks:

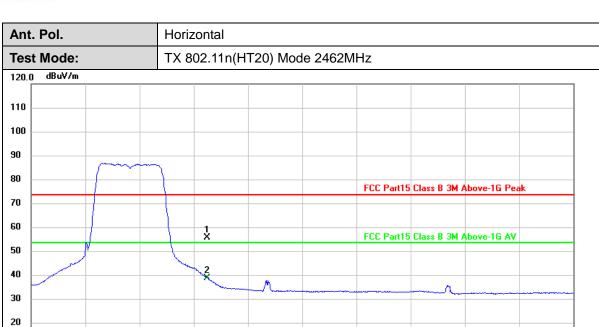
10 0.0

2282.400 2297.40

2312.40

2327.40

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2342.40

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

2584.60

2569.60

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	63.65	-7.32	56.33	74.00	-17.67	peak
2 *	2483.500	46.84	-7.32	39.52	54.00	-14.48	AVG

(MHz)

2524.60

2539.60

2554.60

Remarks:

10 0.0

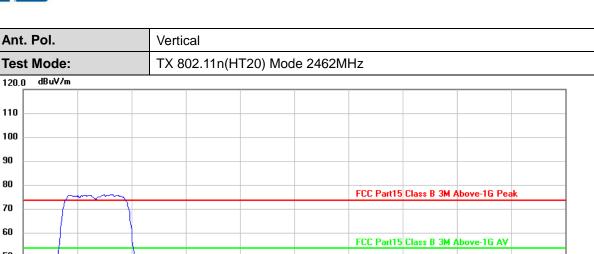
2434.600 2449.60

2464.60

2479.60

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2494.60


2591.80

90

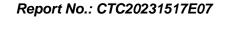
60

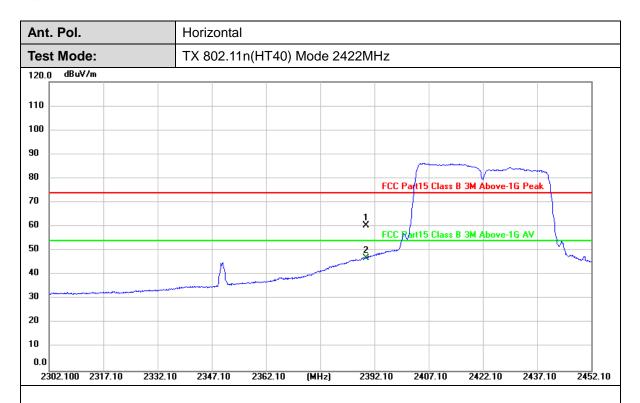
50

2441.800 2456.80

(MHz)

2531.80


2546.80


Remarks:

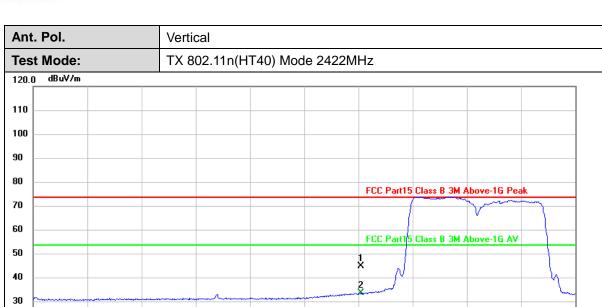
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2501.80

X

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	68.28	-7.72	60.56	74.00	-13.44	peak
2 *	2390.000	54.72	-7.72	47.00	54.00	-7.00	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2434.20

2449.20

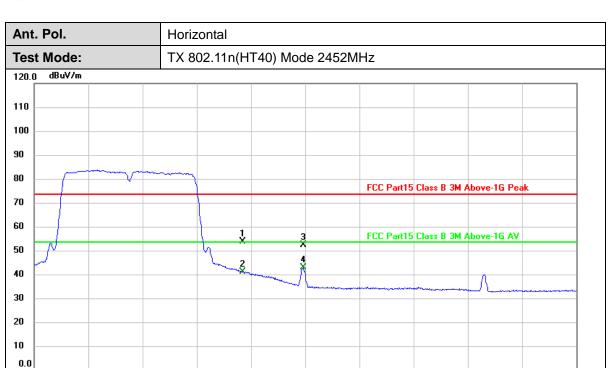
20 10 0.0

2299.200 2314.20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	53.14	-7.72	45.42	74.00	-28.58	peak
2 *	2390.000	41.94	-7.72	34.22	54.00	-19.78	AVG

(MHz)

2404.20


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2560.60

2575.60

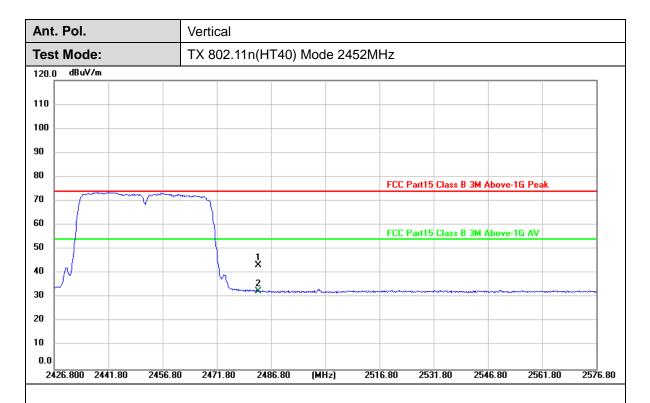
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	61.92	-7.32	54.60	74.00	-19.40	peak
2	2483.500	49.07	-7.32	41.75	54.00	-12.25	AVG
3	2500.000	60.24	-7.25	52.99	74.00	-21.01	peak
4 *	2500.000	51.02	-7.25	43.77	54.00	-10.23	AVG

(MHz)

2530.60

Remarks:

2425.600 2440.60


2455.60

2470.60

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

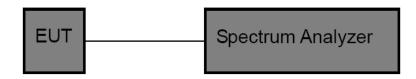
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	50.53	-7.32	43.21	74.00	-30.79	peak
2 *	2483.500	39.81	-7.32	32.49	54.00	-21.51	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Page 47 of 78

Report No.: CTC20231517E07


3.4. Band Edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- Measure and record the results in the test report.

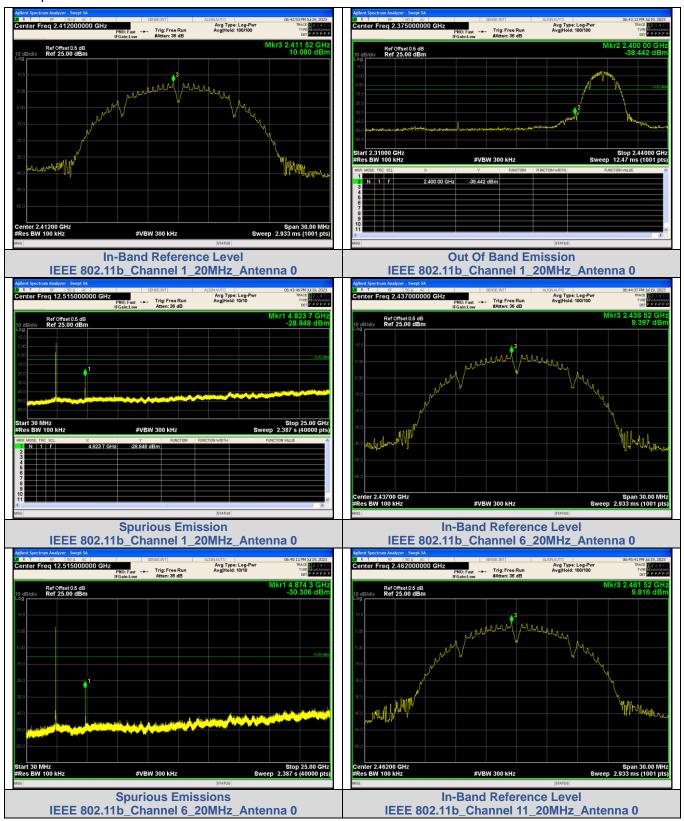
Test Mode

Please refer to the clause 2.4.

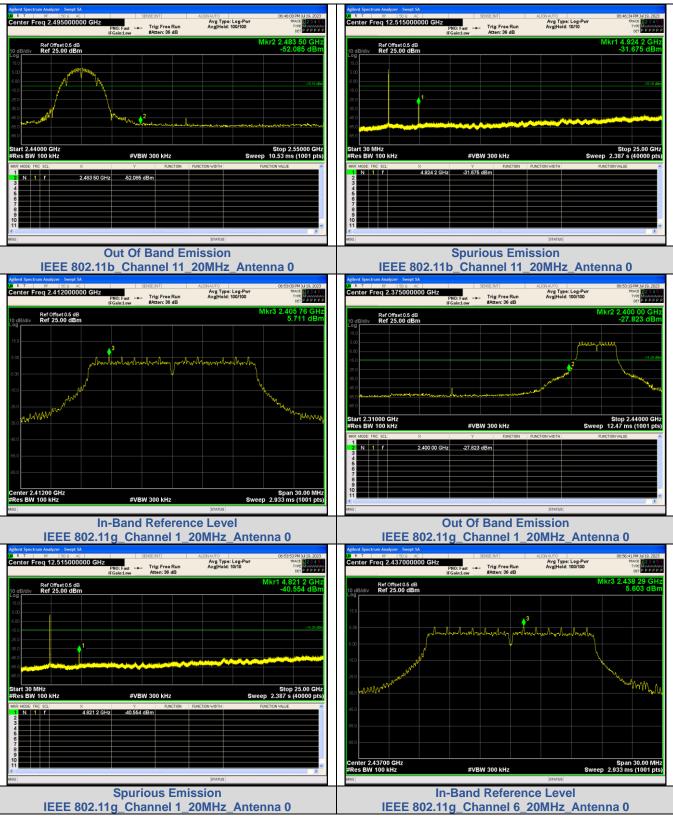
Tel.: (86)755-27521059

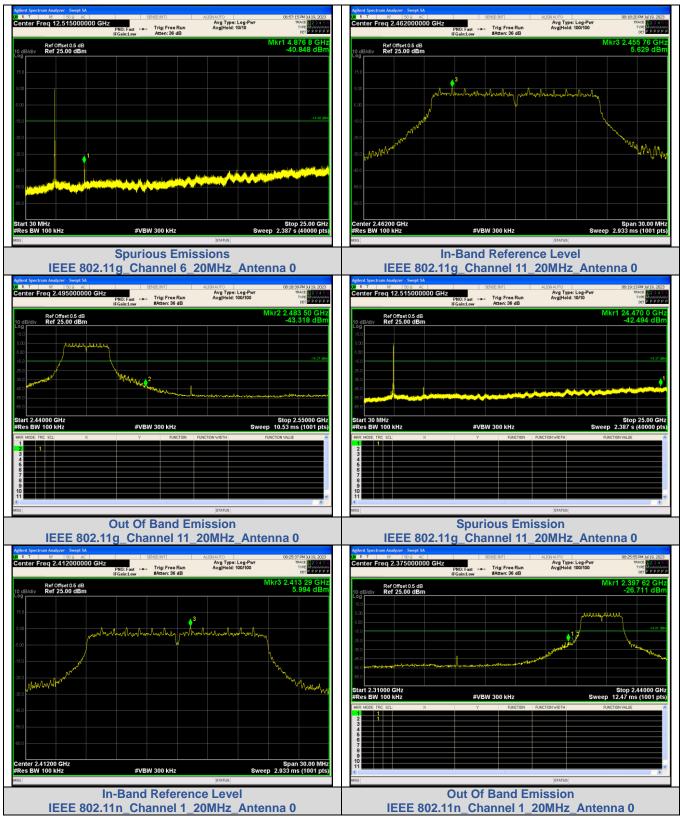
CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn



Test Result


Mode	Channel	Ant.	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
	1		2400.00	-38.442	-9.92	-29	PASS
	ı		4823.74	-28.848	-9.92	-18.928	PASS
IEEE 802.11b	6		4874.30	-30.306	-10.6	-19.706	PASS
	11		2483.50	-52.085	-10.18	-42	PASS
	11		4924.24	-31.675	-10.18	-21.495	PASS
	1		2400.00	-27.823	-14.29	-14	PASS
	I		4821.24	-40.554	-14.29	-26.264	PASS
IEEE 802.11g	6		4876.80	-40.848	-14.4	-26.448	PASS
	11		2483.50	-43.318	-14.37	-29	PASS
			24470.0	-42.494	-14.37	-28.124	PASS
		0	2400.00	-26.853	-14.01	-12.843	PASS
	1		2397.62	-26.711	-14.01	-12.701	PASS
IEEE			4825.00	-40.355	-14.01	-26.345	PASS
802.11n_20	6		4878.05	-39.284	-13.7	-25.584	PASS
	11		2483.50	-37.287	-13.89	-23	PASS
	11		4924.87	-40.188	-13.89	-26.298	PASS
	3		2400.00	-24.521	-15.54	-9	PASS
IEEE			4845.58	-36.534	-15.54	-20.994	PASS
802.11n 40	6		23627.9	-41.927	-15.9	-26.027	PASS
002.1111_40	۵		2483.50	-34.344	-15.78	-19	PASS
	9		4893.03	-41.186	-15.78	-25.406	PASS


Test plot as follows:

