FCC TEST REPORT

For

DISPLAY & TECHNOLOGY LIMITED

TPMS Sensor

Test Model: ES188I

: DISPLAY & TECHNOLOGY LIMITED Prepared for

Address : ROOM 1303, AUSTIN TOWER, 22 AUSTIN AVE., T.S.T.,

NEW TERRITORIES HONGKONG

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing

Street, Baoan District, Shenzhen, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test : March 04, 2021

sample

Number of tested samples : 1

Serial number : 210303003A

Date of Test : March 04, 2021 ~ March 16, 2021

Date of Report : March 17, 2021

FCC/IC TEST REPORT FCC CFR 47 PART 15C(15.231)

Report Reference No.:: LCS210303003AEA

Date of Issue: March 17, 2021

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing

Street, Baoan District, Shenzhen, China

Testing Location/ Procedure....: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method \square

Applicant's Name: DISPLAY & TECHNOLOGY LIMITED

Address : ROOM 1303, AUSTIN TOWER, 22 AUSTIN AVE., T.S.T.,

NEW TERRITORIES HONGKONG

Test Specification

Standard.....: FCC CFR 47 PART 15 Subpart C

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....:: TPMS Sensor

Trade Mark.....: N/A

Test Model.....: ES188I

Ratings: DC 3.0V By CR1632

Result: Positive

Supervised by: Compiled by: Approved by:

Chorry Chen

Cherry Chen/ Administrator Jin Wang/ Technique principal Gavin Liang/ Manager

FCC/IC TEST REPORT

Test Report No.: LCS210303003AEA

March 17, 2021 Date of issue

Test Mode.....: ES188I EUT.....: TPMS Sensor Applicant.....: : DISPLAY & TECHNOLOGY LIMITED Address..... ROOM 1303, AUSTIN TOWER, 22 AUSTIN AVE., T.S.T., NEW TERRITORIES HONGKONG Telephone..... Fax..... : / Manufacturer.....: SHENZHEN NOVACOM ELECTRONICS CO., LTD. 7TH FLOOR BLOCK 3 JIAAN SCIENCE & TECHNOLOGY Address....:: PARK LIUXIAN 1ST ROAD 67TH DISTRICT XINAN STREET BAOAN DISTRICT SHENZHEN CHINA Telephone.....: : / Fax.....: : / Factory.....:: SHENZHEN NOVACOM ELECTRONICS CO., LTD. Address.....: 7TH FLOOR BLOCK 3 JIAAN SCIENCE & TECHNOLOGY PARK LIUXIAN 1ST ROAD 67TH DISTRICT XINAN STREET BAOAN DISTRICT SHENZHEN CHINA Telephone..... Fax..... : /

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AKWC-ES1881

Report No.: LCS210303003AEA

Revision History

Revision	Issue Date	Revisions	Revised By
000	March 17, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. OBJECTIVE	
1.3. ENVIRONMENTAL CONDITIONS	
1.4. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.5. EXTERNAL I/O PORT	
1.7. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	
2.3. GENERAL TEST PROCEDURES	
2.4. Instrument Calibration	9
2.5. TEST MODE	10
3. SYSTEM TEST CONFIGURATION	11
3.1. JUSTIFICATION	11
3.2. EUT Exercise Software	11
3.3. Special Accessories	11
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
4. SUMMARY OF TEST RESULTS	
5. TEST ITEMS AND RESULTS	
5.1. DURATION OF EACH TRANSMISSION AND THE SILENT PERIOD	
5.2. TRANSMITTER FIELD STRENGTH OF EMISSIONS	
5.3. 20DB BANDWIDTH EMISSIONS	
5.5. ANTENNA REQUIREMENT	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS	
8. EXTERIOR PHOTOGRAPHS OF THE EUT	
9. INTERIOR PHOTOGRAPHS OF THE EUT	

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT TPMS Sensor

Test Model ES188I

Power Supply DC 3.0V By CR1632

Hardware Version V1.0 V1.0 Software Version

Transmitter

Frequency Range 433.92MHz

Channel Number Modulation Type **FSK**

Internal Antenna, 0dBi Antenna Description

1.2. Objective

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators and Industry CanadaRSS-210 for Low Power, License-Exempt Radio Communication Devices. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules and Industry Canada Radio Standards Procedure RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

1.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C - Humidity: 30-60 %

- Atmospheric pressure: 86-106kPa

1.4. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.5. External I/O Port

I/O Port Description	Quantity	Cable

1.6. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

1.7. Statement of The Measurement Uncertainty

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Test Item	Frequency Range	Uncertainty	Note
	9KHz~30MHz	3.10dB	(1)
Radiation	30MHz~200MHz	2.96dB	(1)
Uncertainty	200MHz~1000MH	3.10dB	(1)
Officertainty	Z		
	1GHz~26.5GHz	3.80dB	(1)
Conduction	150kHz~30MHz	1.63dB	(1)
Uncertainty			
Power disturbance 30MHz~300MHz		1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode. The TX frequency that was fixed which was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.231 under the FCC Rules Part 15 Subpart C and RSS-210.

2.3. General Test Procedures

2.3.1 Conducted Emissions(N/A)

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

2.4. Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

2.5. Test Mode

The EUT has been tested under engineering mode. The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The worst case of Y axis was reported.

A new battery supplied DC 3.0V power to the EUT for testing.

The EUT transmits signal as soon as it is powered on, and recorded the result in this report.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C				
FCC Rules	FCC Rules Description of Test			
§15.203	Antenna Requirement	Compliant		
§15.205	Restricted Bands Of Operation	Compliant		
§15.209	§15.209 Radiated Emission Limits, General Requirements.			
§15.231 (e)	Field Strength Of Fundamental And Harmonics	Compliant		
§15.231 (c)	5.231 (c) 20dB Bandwidth			
§15. 231(e)	§15. 231(e) Duration of each Transmission and the silent period			
§15.231	§15.231 Duty cycle Factor			
§15.207	§15.207 Conducted Emissions			

5. TEST ITEMS AND RESULTS

5.1. Duration of each Transmission and the silent period

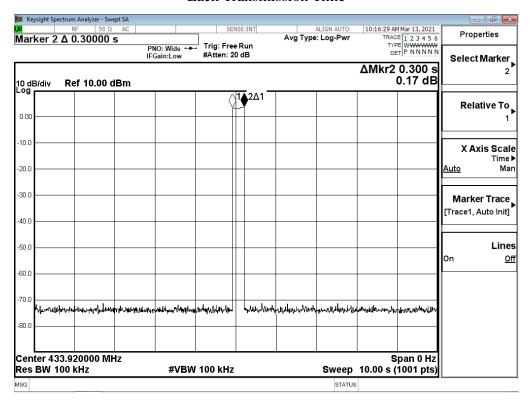
FCC 15.231 (e)

5.1.1. Limit

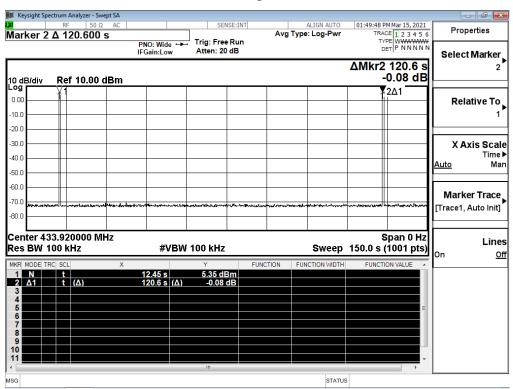
devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

5.1.2. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. The antenna was all opened.


5.1.3. Test Results

Temperature	23.2℃	Humidity	53.2%
Test Engineer	Jay Li		


Frequency (MHz)	Duration of each Transmission Time (s)	Limit (s)	Conclusion
433.92	0.300	≤ 1	PASS

Frequency (MHz)	the silent period (s) Limit 30 times the dura the transmission		Limit (s)	Conclusion
433.92	120.6	≥9.81	≥10	PASS

Each Transmission Time

Silent period

5.2. Transmitter Field Strength of Emissions

5.2.1. Limit

FCC §15.231 (e) /15.209

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

		<u> </u>
Fundamental	Field Strength of	Field Strength of spurious
frequency	Fundamental	emissions
(MHz)	(microvolt/meter)	(microvolt/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500	50 to 150
174-260	1,500	150
260-470	1,500 to 5,000	150 to 500
Above 470	5,000	500

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, μ V/m at 3 meters = 16.66667(F) - 2833.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		·

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

5.2.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

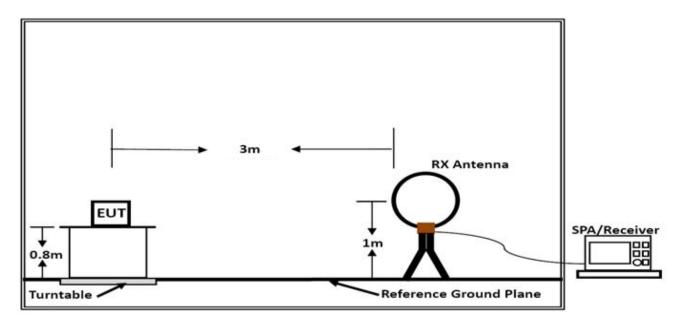
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

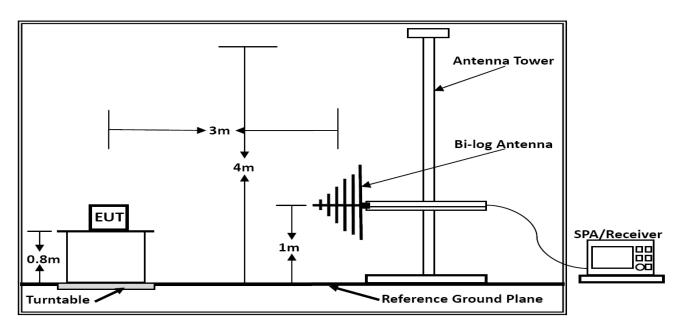
3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

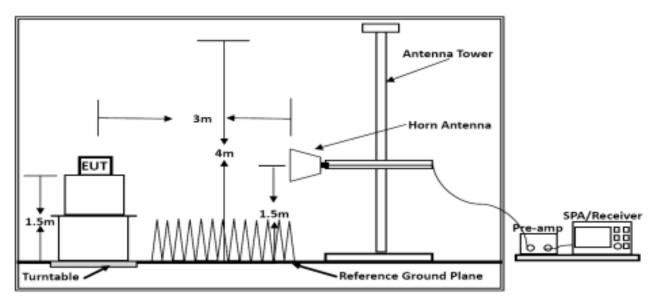
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.


Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height is 1.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.


Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.


5.2.4. Test Setup Layout

Below 30MHz

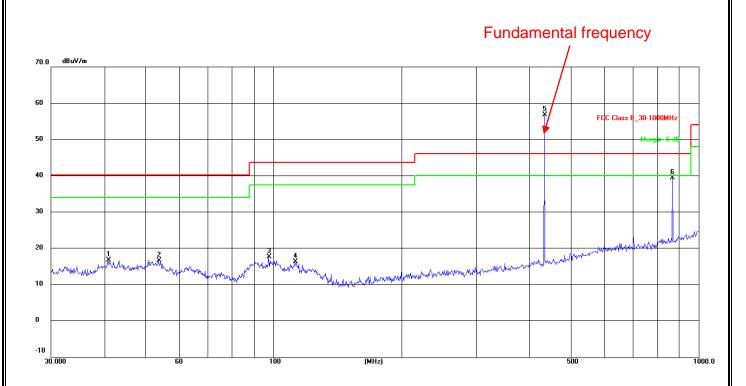
Below 1GHz

Above 1GHz

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

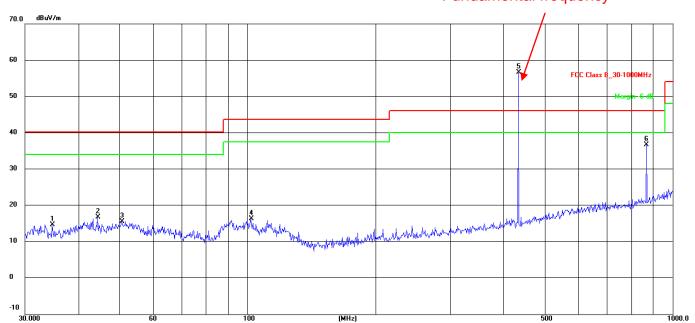
5.2.6. Results of Radiated Emissions (9kHz~30MHz)


The low frequency, which started from 9KHz to 30MHz, was pre-scan and the result was 20dB lower than the limit line per 15.31(o) was not reported.

Note: Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2.7. Results of Radiated Emissions (30MHz~1GHz)


Temperature	24.8℃	Humidity	56.5%
Test Engineer	Jay Li	Pol	Horizontal
Test Mode	Tx		

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	40.8446	46.46	-29.71	16.75	40.00	-23.25	QP
2	53.6932	45.87	-29.28	16.59	40.00	-23.41	QP
3	97.4560	45.41	-27.78	17.63	43.50	-25.87	QP
4	112.5244	44.49	-28.13	16.36	43.50	-27.14	QP
5	434.0651	82.69	-25.22	57.47	46.00	11.47	Peak
6 *	869.1302	58.16	-18.68	39.48	46.00	-6.52	Peak

Temperature	24.8℃	Humidity	56.5%
Test Engineer	Jay Li	Pol	Vertical
Test Mode	Tx		

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.7602	46.22	-31.50	14.72	40.00	-25.28	QP
2	44.4308	45.90	-29.04	16.86	40.00	-23.14	QP
3	50.5860	44.51	-28.86	15.65	40.00	-24.35	QP
4	102.0014	43.85	-27.46	16.39	43.50	-27.11	QP
5 *	434.0651	82.82	-25.22	57.60	46.00	11.60	Peak
6	869.1302	55.35	-18.68	36.67	46.00	-9.33	Peak

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report (TX (Low Channel)).
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3.). Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level. Margin = Limit - Level

Fundamental Peak Result							
Polarization	Frequency (MHz)	Reading Level (dB _µ V/m)	Factor (dB /m)	Peak Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	result
Н	433.92	82.69	-25.22	57.47	92.85	-35.38	PASS
V	433.92	82.82	-25.22	57.60	92.85	-35.25	PASS

Fundamental Average Result								
Polarization	Frequency (MHz)	Peak Level (dB _µ V/m)	AV Factor (dB /m)	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	result	
Н	433.92	57.47	0	57.47	72.85	-15.38	PASS	
V	433.92	57.60	0	57.60	72.85	-15.25	PASS	

	Harmonics Result							
	Polarization	Frequency	Peak Reading level (dB _µ V/m)	Factor (dB /m)	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	result
	I	867.84	39.48	0	39.48	52.85	-13.37	PASS
Ī	V	867.84	36.67	0	36.67	52.85	-16.18	PASS

Note:

- 1. AV Factor is based on section 5.4.
- 2. Level = Reading + Factor

Margin = Level - Limit

3. Average values = Peak + DC Factor

Margin = Average values - Limit

5.2.8. Results of Radiated Emissions (1-5GHz)

Temperature	24.8℃	Humidity	56.5%
Test Engineer	Jay Li	Test Mode	Тх

Peak Value:						
Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB/m)	Peak value (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	Polarization
1303.49	36.06	5.30	41.36	74	-32.64	Horizontal
1735.22	33.08	4.68	37.76	74	-36.24	Horizontal
2171.57	35.23	2.48	37.71	74	-36.29	Horizontal
1300.12	30.25	5.30	35.55	74	-38.45	Vertical
1735.35	35.95	4.68	40.63	74	-33.37	Vertical
2169.11	40.61	2.48	43.09	74	-30.91	Vertical

Average Value:							
Frequency (MHz)	Reading Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	Polarization	
1300.66	41.74	0	41.74	54	-12.26	Horizontal	
1736.97	40.36	0	40.36	54	-13.64	Horizontal	
2167.71	34.27	0	34.27	54	-19.73	Horizontal	
1301.18	39.22	0	39.22	54	-14.78	Vertical	
1736.53	36.97	0	36.97	54	-17.03	Vertical	
2169.63	32.71	0	32.71	54	-21.29	Vertical	

- 1. Measuring frequencies from 9k~10th harmonic (ex. 5GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 5GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Margin= Average- Limit

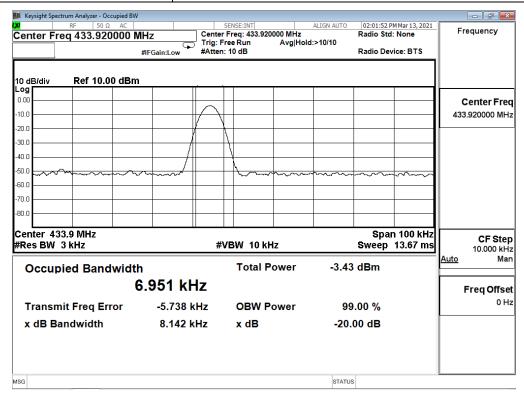
Average= Reading+ Duty cycle factor

5.3. 20dB Bandwidth Emissions

FCC 15.231 (c)

5.3.1. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.


5.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

5.3.3. Test Data

Temperature	23.2℃	Humidity	53.2%
Test Engineer	Jay Li	Test Mode	Тх

Transmit Frequency	Limit	20dB Bandwidth	Result		
(MHz)	(kHz)	(kHz)			
433.92	1084.8	8.142	PASS		
Maximum allowed bandwidth	⊠0.25% of the centre operating frequency				
Maximum allowed bandwidth:	□0.5% of the centre operating frequency				
RBW:	□10kHz □100kHz ⊠other kHz				
VBW: □30kHz □300kHz ⊠other kHz					

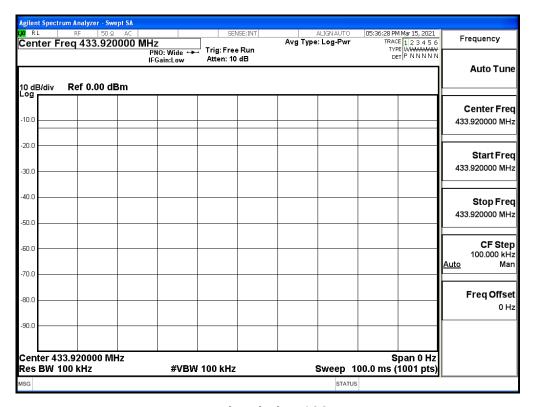
5.4. Duty cycle

5.4.1. Limit

No dedicated limit specified in the Rules.

- 5.4.2. Test Procedure
- 5.4.2.1. Place the EUT on the table and set it in transmitting mode.
- 5.4.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.4.2.3. Set centre frequency of spectrum analyzer=operating frequency.
- 5.4.2.4. Set the spectrum analyzer as RBW=100kHz, VBW=100KHz, Span=0Hz, Adjust Sweep=100ms to obtain the "worst-case" pulse on time
- 5.4.2.5. Repeat above procedures until all frequency measured was complete.

5.4.3. Test Data


Ton =100(ms)

Tp = 100(ms)

The duty cycle=100/100=1

Average Correction Factory = 20log (duty cycle) =20*log 1 = 0dB

Note: The signal bandwidth was measured and less then 100kHz RBW so PDCF factor is not required to correct the fundamental signal peak result.

pulse during 100ms

5.5. Antenna Requirement

FCC 15.203

5.5.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.5.2. Result

Compliant.

The antenna is internal antenna which is permanently attached to the PCB and no consideration of replacement. Please see EUT photo for details.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2020-06-22	2021-06-21
2	Power Sensor	R&S	NRV-Z81	100458	2020-06-22	2021-06-21
3	Power Sensor	R&S	NRV-Z32	10057	2020-06-22	2021-06-21
4	Test Software	Tonscend	JS1120-2	/	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2020-11-17	2021-11-16
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020-11-17	2021-11-16
7	DC Power Supply	Agilent	E3642A	N/A	2020-11-13	2021-11-12
8	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2020-06-22	2021-06-21
10	Positioning Controller	MF	MF7082	MF78020803	2020-06-22	2021-06-21
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2023-09-19
15	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2020-06-22	2021-06-21
16	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
17	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-17	2021-11-16
18	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21
19	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-22	2021-06-21
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03СН03-НҮ	2020-06-22	2021-06-21
21	6dB Attenuator	/	100W/6dB	1172040	2020-06-22	2021-06-21
22	3dB Attenuator	/	2N-3dB	/	2020-11-17	2021-11-16
23	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
24	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
25	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2020-06-22	2021-06-21

7	TFST	SETU	D DL	IOT	CR	APHS
	1631	SEIU	г гг	11 / 1 /	LJCJR.	AFDS

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----