

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.: CQASZ20220100129E

Applicant: Shenzhen Mingchuangzhilian Technology Co., Ltd

Address of Applicant: 4/F, B Block, No.3, East Region, Shangxue Science Park, Bantian St,

Longgang Dist, Shenzhen, China

Equipment Under Test (EUT):

EUT Name: Baby Monitor

Model No.: SM935A, SM935ARX, SM935ATX, SM935TRX, SM935TTX, SM35,

SM35RX, SM935E, SM35PTZ.

Test Model No.: SM935A

Brand Name: N/A

FCC ID: 2AKVZ-SM935ATX

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2022-01-23

Date of Test: 2022-01-23 to 2022-02-10

Date of Issue: 2022-02-25

Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Lewis Zhou)

Reviewed By:

(Rock Huang)

Approved By:

(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.:CQASZ20220100129E

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220100129E	Rev.01	Initial report	2022-02-25

Report No.:CQASZ20220100129E

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	· ANSI C63.10 (2013)	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT.	5
4.3 TEST ENVIRONMENT AND MODE.	
4.4 DESCRIPTION OF SUPPORT UNITS	
4.5 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.6 TEST LOCATION	
4.7 TEST FACILITY	
4.8 DEVIATION FROM STANDARDS	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	10
5 TEST RESULTS AND MEASUREMENT DATA	11
5.1 Antenna Requirement	11
5.2 CONDUCTED EMISSIONS	12
5.3 RADIATED EMISSION	
5.4 20dB Bandwidth	
6 PHOTOGRAPHS	26
6.1 RADIATED EMISSION TEST SETUP	26
6.2 CONDUCTED EMISSION TEST SETUP	27
6.3 EUT CONSTRUCTIONAL DETAILS	28

4 General Information

4.1 Client Information

Applicant:	Shenzhen Mingchuangzhilian Technology Co., Ltd
Address of Applicant:	4/F, B Block, No.3, East Region, Shangxue Science Park, Bantian St, Longgang Dist, Shenzhen, China
	Longyang Dist, Onenzhen, Onina
Manufacturer:	Shenzhen Mingchuangzhilian Technology Co., Ltd
Address of Manufacturer:	4/F, B Block, No.3, East Region, Shangxue Science Park, Bantian St, Longgang Dist, Shenzhen, China
Factory:	Shenzhen Mingchuangzhilian Technology Co., Ltd
Address of Factory:	4/F, B Block, No.3, East Region, Shangxue Science Park, Bantian St, Longgang Dist, Shenzhen, China

4.2 General Description of EUT

EUT Name:	Baby Monitor
Model No.:	SM935A, SM935ARX, SM935ATX, SM935T, SM935TRX, SM935TTX, SM35, SM35RX, SM935E, SM35PTZ.
Test Model No.:	SM935A
Trade Mark:	N/A
Software Version:	V21
Hardware Version:	V04
Frequency Range:	2410.875MHz~2471.625MHz
Modulation Type:	GFSK
Number of Channels:	3
Sample Type:	☐ Mobile ☐ Portable ☒ Fix Location
Test Software of EUT:	RF Test
Antenna Type:	External Antenna
Antenna Gain:	3 dBi
Power Supply:	DC 5V for adapter
	MODEL: AW007WR-0500070VV
	INPUT: 100-240V~50/60Hz 0.3A
	OUTPUT: 5V 0.7A 3.5W

Note:

Model No.: SM935A, SM935ARX, SM935ATX, SM935T, SM935TRX, SM935TTX, SM35, SM35RX, SM935E, SM35PTZ.

Only the model SM935A was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Report No.:CQASZ20220100129E

Operation Frequency each of channel						
Channel	Channel Frequency Channel Frequency Channel Frequency					
1	2410.875MHz	2	2441.25MHz	3	2471.625MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel(CH1)	2410.875MHz	
The Middle channel(CH2)	2441.25MHz	
The Highest channel(CH3)	2471.625MHz	

Report No.:CQASZ20220100129E

4.3 Test Environment and Mode

Operating Environment	:
Radiated Emissions:	
Temperature:	27 °C
Humidity:	59 % RH
Atmospheric Pressure:	1009mbar
Temperature:	26 °C
Humidity:	59 % RH
Atmospheric Pressure:	1009mbar
Radio conducted item t	est (RF Conducted test room):
Temperature:	25.3 °C
Humidity:	55 % RH
Atmospheric Pressure:	1009mbar
Test mode:	
Transmitting mode:	Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	1	1	/

2) Cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	/

Report No.:CQASZ20220100129E

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for **CQA** laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	5.12dB	(1)
Radiated Emission	Above 1GHz	4.60dB	(1)
Conducted Disturbance	0.15~30MHz	3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.:CQASZ20220100129E

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.7 Test Facility

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.8 Deviation from Standards

None

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.:CQASZ20220100129E

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/9
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

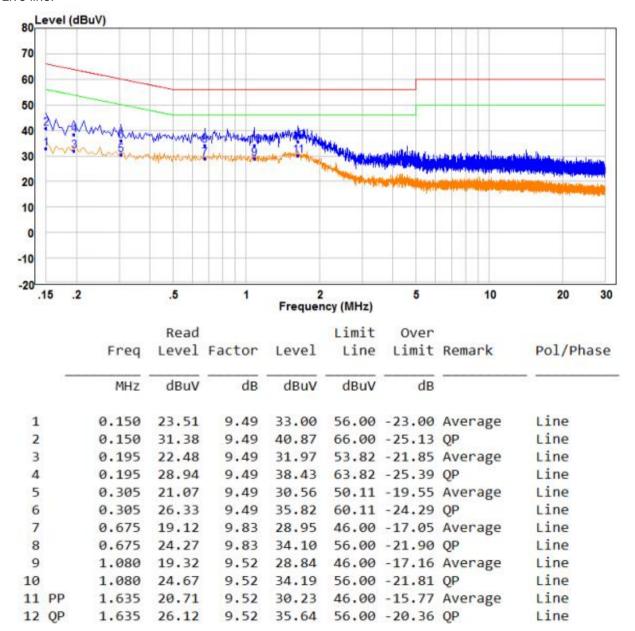
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is External antenna. The best case gain of the antenna is 3dBi.

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Francisco de la constancia (MIIII)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	 The mains terminal disturb room. The EUT was connected 	•				
	Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal gr 4) The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bon mounted on top of the ground the closest points of the L and associated equipment 5) In order to find the maximuland all of the interface cat ANSI C63.10: 2013 on con	etwork) which provides cables of all other CN 2, which was bonders the LISN 1 for the was used to connect reating of the LISN was reced upon a non-metal and for floor-standing a cound reference plane. It has vertical ground reference was bonded of a ground reference plane. The LISN 1 and the EUT. It was at least 0.8 m from the mission, the relationer must be changed as the case of the country of the country of the country of the case	s a 50Ω/50μH + 5Ω linear units of the EUT were at the ground reference unit being measured. A multiple power cables to a not exceeded. Illic table 0.8m above the rrangement, the EUT was ference plane. The rear ound reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between All other units of the EUT m the LISN 2.			
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Mai	Test Receiver			

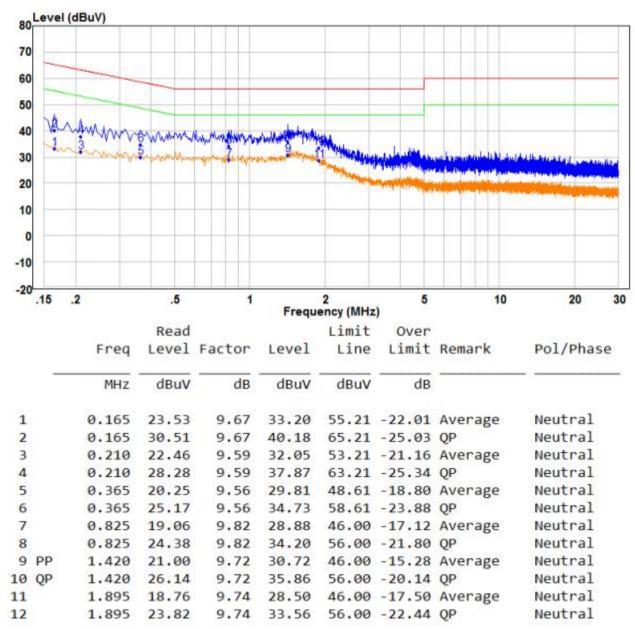


Report No.:CQASZ20220100129E

Test Mode:	Transmitting mode.
Final Test Mode:	Transmitting mode
Test Results:	Pass

Measurement Data:

Live line:



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Radiated Emission

Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30KHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30KHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak			
	Ab 2112 4 O L I =	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
	Note: For fundamental f value, RMS detect			5MHz, Peak o	detector is for	· PK		
Limit: (Spurious Emissions	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurem distance (
and band edge)	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak 3				
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 1) 15.35(b), Unless otherwise specified, the limit on peak radio freque emissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the total pemission level radiated by the device. 2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.							
Limit:	Frequency	Limit (dBu\	//m @3m)	Rem	nark	1		
(Field strength of the		94.		Average		1		
fundamental signal)	2400MHz-2483.5MHz	114				-		
	114.0 Peak Value							

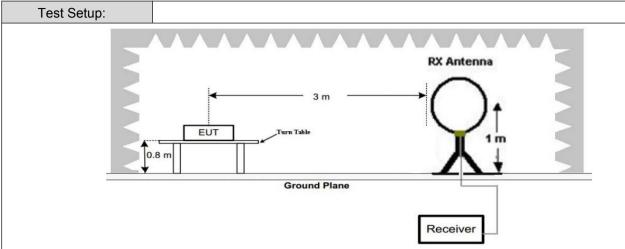
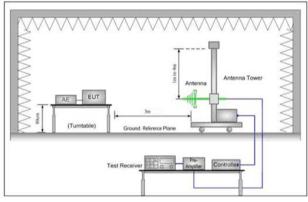



Figure 1. Below 30MHz

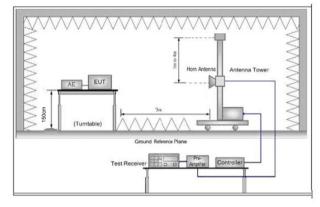


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table

	was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth
	with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit
	specified, then testing could be stopped and the peak values of the EUT would be
	reported. Otherwise the emissions that did not have 10dB margin would be re-
	tested one by one using peak, quasi-peak or average method as specified and then
	reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting mode.
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
T (D "	
Test Results:	Pass

6 pp

Report No.:CQASZ20220100129E

VERTICAL

VERTICAL

VERTICAL

MHz	~1GHz								
st mo	ode:		Trans	mitting			Vertic	al	
80 ^{Le}	evel (dE	BuV/m)							
70									
60									
50									
40	Δ	4				4			8
							5	1111118	11 000
30		2	h m					I JAMES CONTRACTOR	Mhouse will fee
COST I	mand	Part Market	Marin Marin	Madawasaya	my will			disable de la	hhammed or
	myss	Marin	May May	March was Might sep . Po	mile and the				ht remaining for
20	my d	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	May May	100	Frequer	200 ncy (MHz)	Manhambland	500	1000
20		50	Read	100 Factor		ncy (MHz) Limit	Over	500 Remark	
20				Factor	Level	ncy (MHz) Limit			
20	30	Freq	Level	Factor	Level	Limit Line dBuV/m	Limit ———————————————————————————————————	Remark QP	POI/Phase VERTICAL VERTICAL

191.75 28.10 8.06 36.16 43.50 -7.34 Peak

312.18 20.91 14.03 34.94 46.00 -11.06 Peak

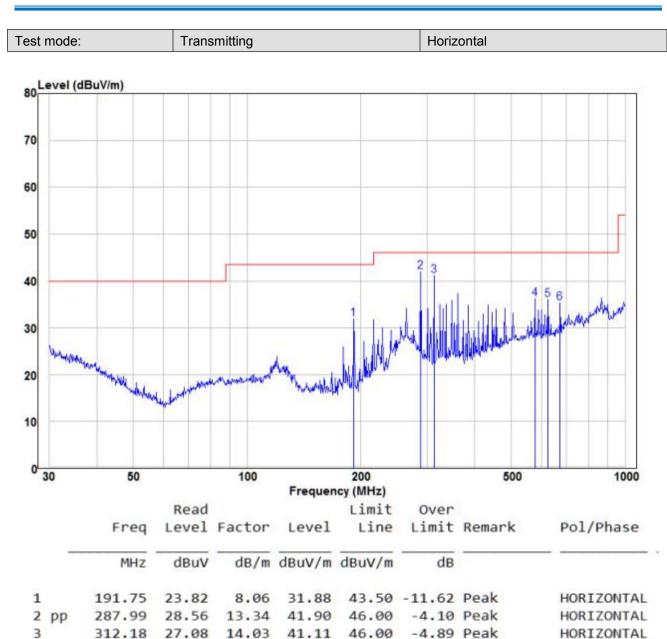
612.06 20.90 19.02 39.92 46.00 -6.08 Peak

4

5

576.64 17.22

625.08 16.80 19.25


Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.:CQASZ20220100129E

HORIZONTAL

HORIZONTAL

HORIZONTAL

18.91 36.13 46.00 -9.87 Peak

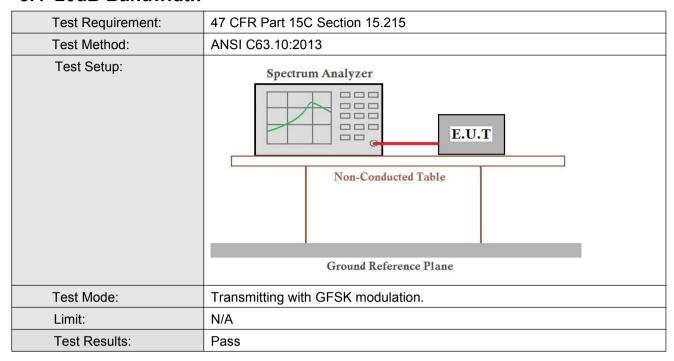
-9.95 Peak

36.05 46.00

672.84 15.17 20.10 35.27 46.00 -10.73 Peak

Above 1GHz							
Test mode:		Transmitti	ng	Test chann	nel:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390	62.39	-9.2	53.19	74	-20.81	Peak	Н
2390	46.22	-9.2	37.02	54	-16.98	AVG	Н
2400	44.39	-9.39	35.00	74	-39.00	Peak	Н
2400	43.94	-9.39	34.55	54	-19.45	AVG	Н
2410.875	100.76	-9.33	91.43	114	-22.57	peak	Н
2410.875	95.67	-9.33	86.34	94	-7.66	AVG	Н
4821.75	56.69	-4.28	52.41	74	-21.59	peak	Н
4821.75	41.38	-4.28	37.10	54	-16.90	AVG	Н
7232.625	52.44	1.13	53.57	74	-20.43	peak	Н
7232.625	38.18	1.13	39.31	54	-14.69	AVG	Н
2390	59.99	-9.2	50.79	74	-23.21	peak	V
2390	44.23	-9.2	35.03	54	-18.97	AVG	V
2400	60.86	-9.39	51.47	74	-22.53	peak	V
2400	44.06	-9.39	34.67	54	-19.33	AVG	V
2410.875	94.97	-9.33	85.64	114	-28.36	peak	V
2410.875	92.94	-9.33	83.61	94	-10.39	AVG	V
4821.75	57.64	-4.28	53.36	74	-20.64	peak	V
4821.75	42.27	-4.28	37.99	54	-16.01	AVG	V
7232.625	52.71	1.13	53.84	74	-20.16	peak	V
7232.625	37.15	1.13	38.28	54	-15.72	AVG	V

Test mode:		Transmitti	ng	Test chann	nel:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2441.25	97.67	-9.37	88.30	114	-25.70	peak	Н
2441.25	98.31	-9.37	88.94	94	-5.06	AVG	Н
4882.5	56.04	-4.14	51.90	74	-22.10	peak	Н
4882.5	40.84	-4.14	36.70	54	-17.30	AVG	Н
7323.75	50.94	0.56	51.50	74	-22.50	peak	Н
7323.75	36.55	0.56	37.11	54	-16.89	AVG	Н
2441.25	95.74	-9.36	86.38	114	-27.62	peak	V
2441.25	94.27	-9.36	84.91	94	-9.09	AVG	V
4882.5	55.11	-4.14	50.97	74	-23.03	peak	V
4882.5	42.31	-4.14	38.17	54	-15.83	AVG	V
7323.75	53.24	0.56	53.80	74	-20.20	peak	V
7323.75	38.47	0.56	39.03	54	-14.97	AVG	V


Report No.:CQASZ20220100129E

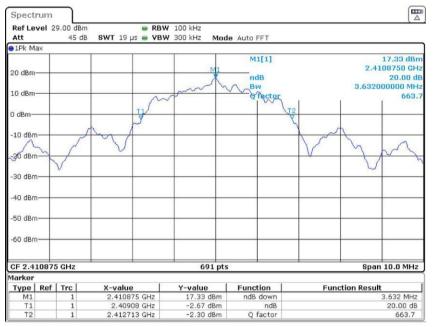
Test mode:		Transmitti	ng	Test chann	nel:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2471.625	98.81	-9.23	89.58	114	-24.42	peak	Н
2471.625	98.09	-9.23	88.86	94	-5.14	AVG	Н
2483.5	62.30	-9.29	53.01	74	-20.99	Peak	Н
2483.5	44.07	-9.29	34.78	54	-19.22	AVG	Н
4943.25	54.73	-4.03	50.70	74	-23.30	peak	Н
4943.25	42.29	-4.03	38.26	54	-15.74	AVG	Н
7414.875	53.38	1.68	55.06	74	-18.94	peak	Н
7414.875	38.57	1.68	40.25	54	-13.75	AVG	Н
2471.625	97.33	-9.23	88.10	114	-25.90	peak	V
2471.625	92.70	-9.23	83.47	94	-10.53	AVG	V
2483.5	62.18	-9.29	52.89	74	-21.11	peak	V
2483.5	44.36	-9.29	35.07	54	-18.93	AVG	V
4943.25	57.17	-4.03	53.14	74	-20.86	peak	V
4943.25	42.68	-4.03	38.65	54	-15.35	AVG	V
7414.875	52.60	1.68	54.28	74	-19.72	peak	V
7414.875	38.11	1.68	39.79	54	-14.21	AVG	V

Remark:

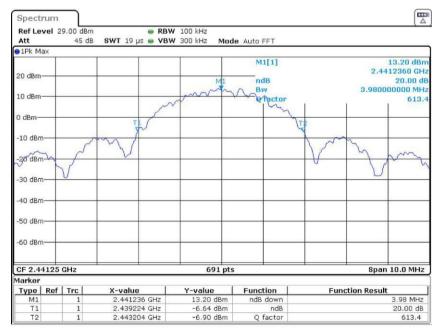
- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

5.4 20dB Bandwidth

Measurement Data


Test channel	20dB bandwidth (MHz)	Results
Lowest	3.632	Pass
Middle	3.98	Pass
Highest	3.661	Pass

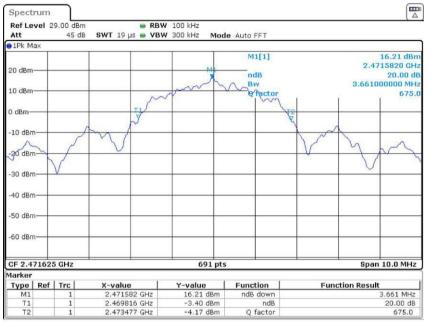
Report No.:CQASZ20220100129E


Test plot as follows:

Test channel: Lowest

Date: 10.FEB.2022 07:38:49

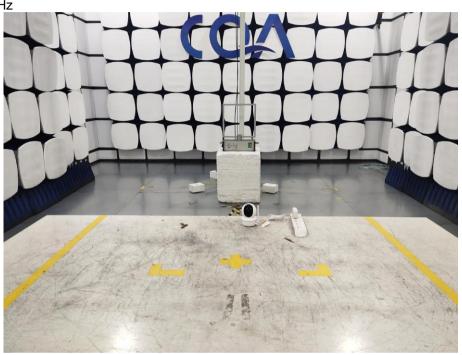
Test channel: Middle



Date: 10.FEB.2022 07:39:36

Report No.:CQASZ20220100129E

Test channel: Highest


Date: 10.FEB.2022 07:40:42

6 Photographs

6.1 Radiated Emission Test Setup

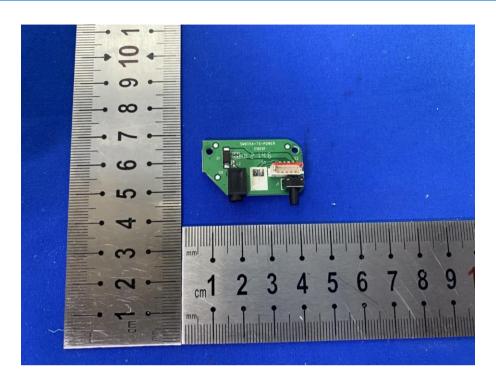
9kHz~30MHz

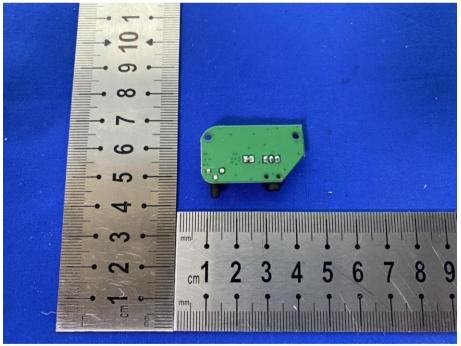
30MHz~1GHz:

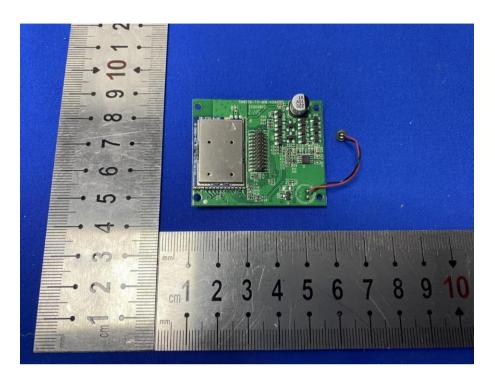
Above 1GHz:

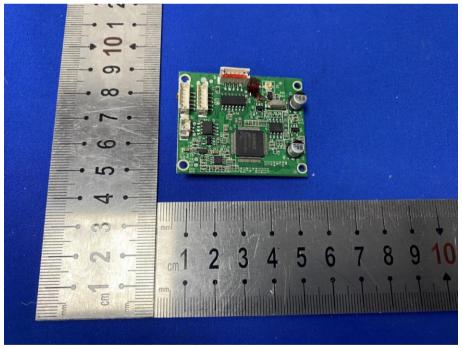
6.2 Conducted Emission Test Setup

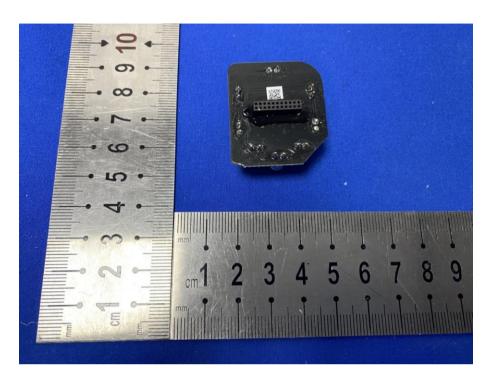
6.3 EUT Constructional Details

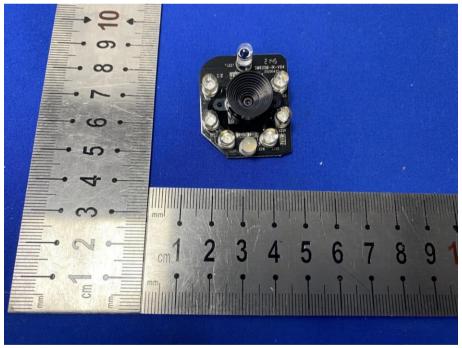


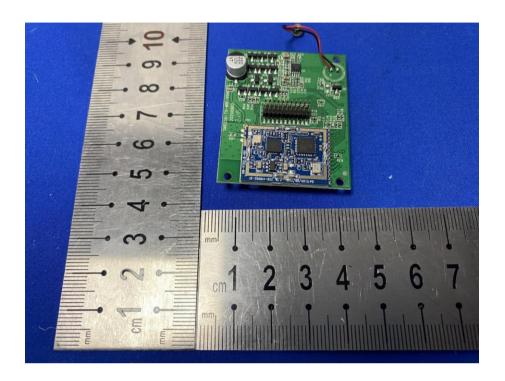












*** END OF REPORT ***