

Report No. E-F1707013 - Page 1 of 57 -

Jank Yn
Jerry You
(on 1.4

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

FCC ID.....: 2AKVT-MW101

Compiled by

(position+printed name+signature)..: File administrators Jack Yu

Supervised by

(position+printed name+signature)..: Technique principal Jerry You

Approved by

(position+printed name+signature)..: Manager Can Liu

Representative Laboratory Name .: Dongguan Yaxu (AiT) Technology Limited

Guangdong, China

Applicant's name...... Music Wave Limited

Kwai Cheong Road, Kwai Chung, Hong Kong

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... Dongguan Yaxu (AiT) Technology Limited

Dongguan Yaxu (AiT) Technology LimitedAll rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Dongguan Yaxu (AiT) Technology Limitedas copyright owner and source of the material. Dongguan Yaxu (AiT) Technology Limited takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Car Audio

Trade Mark: N/A

Manufacturer Music Wave Limited

Model/Type reference...... MW101

MW202, MW203, SCT 9411BMR

Modulation Type GFSK,8DPSK,π/4DQPSK

Operation Frequency...... From 2402MHz to 2480MHz

Report No. E-F1707013 - Page 2 of 57 -

Contents

<u>1</u>	TEST STANDARDS	<u> 3</u>
<u>2</u>	SUMMARY	<u> 4</u>
2.1	General Remarks	4
2.2	Product Description	4
2.3	Equipment Under Test	4
2.4	EUT operation mode	4
2.5	Internal Identification of AE used during the test	5
2.6	Related Submittal(s) / Grant (s)	5
2.7	Modifications	5
<u>3</u>	TEST ENVIRONMENT	6
<u> </u>	TEGT ENVIRONMENT	<u></u>
3.1	Address of the test laboratory	6
3.2	Test Facility	6
3.3	Environmental conditions	6
3.4	Test Conditions	6
3.5	Summary of measurement results	7
3.6	Equipments Used during the Test	8
<u>4</u>	TEST CONDITIONS AND RESULTS	10
_	<u>. 20. 00 ND 1110 NO XND N 2002 10111111111111111111111111111111</u>	<u></u>
4.1	AC Power Conducted Emission	10
4.2	Radiated Emission	12
4.3	Maximum Peak Output Power	23
4.4	20dB Bandwidth	24
4.5	Band Edge	28
4.6	Frequency Separation	33
4.7	Number of hopping frequency	35
4.8	Time of Occupancy (Dwell Time)	37
4.9	Spurious RF Conducted Emission	41
4.10	Pseudorandom Frequency Hopping Sequence	55
4.11	Antenna Requirement	56

Report No. E-F1707013 - Page 3 of 57 -

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

Report No. E-F1707013 - Page 4 of 57 -

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	• •	Jul. 02, 2017
Testing commenced on	:	Jul. 05, 2017
Testing concluded on	• •	Jul. 12, 2017

2.2 Product Description

The **Music Wave Limited** 's Model: MW101 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Car Audio
Model Number	MW101
Listed Models	RAD-1700BT,RAD-1750GB,MW038,MW100,MW103,MW201, MW202, MW203, SCT 9411BMR
Model differences	All models are the same circuit and RF module, except model name.
Antenna Type	PCB
Antenna Gain	1.21dBi(Calculated)
BT FCC Operation frequency	2402MHz-2480MHz
BT Modulation Type	GFSK,8DPSK,π/4DQPSK(BT 2.1+EDR)
Hardware version	V1.1
Software version	V4.0
Bluetooth	Supported BT 2.1+EDR
Extreme temp. Tolerance	-10°C to +40°C
Extreme vol. Limits	10.8VDC to 13.2VDC (nominal: 12VDC)
adapter	N/A

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz	
		•	12 V DC	0	24 V DC	
		0	Other (specified in blank below)			

2.4 EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel. all test performed use fully-charged battery.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448

Report No. E-F1707013 - Page 5 of 57 -

		- rage 3	0. 0.
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Notebook(M/N:B50)
AE2	adapter

AE2

Model: HS05001000ES

INPUT: AC100-240V 50/60Hz 0.3A Max

OUTPUT: DC 5.0V 1.0A

*AE ID: is used to identify the test sample in the lab internally.

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AKVT-MW101** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

Report No. E-F1707013 - Page 6 of 57 -

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Dongguan Yaxu (AiT) Technology Limited
No.22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 248337

Dongguan Yaxu (AiT) Technology Limited. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter fr om the FCC is maintained in our files.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4 Test Conditions

Tool Coop	Test Conditions						
Test Case	Configuration	Description					
	Meas. Method	ANSI C63.10:2013					
20dB Emission	Test Environment	NTNV					
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,					
Carrier Francisco	Meas. Method	ANSI C63.10:2013					
Carrier Frequency	Test Environment	NTNV					
Separation	EUT Conf.	TM1_DH5_Hop, TM3_3DH5_Hop,					
Number of Henning	Meas. Method	ANSI C63.10:2013					
Number of Hopping Channel	Test Environment	NTNV					
Charmer	EUT Conf.	TM1_DH5_Hop,TM3_3DH5_Hop,					
Time of Occupancy	Meas. Method	ANSI C63.10:2013					
Time of Occupancy (Dwell Time)	Test Environment	NTNV					
(Dwell Tille)	EUT Conf.	TM1_DH5_Ch39 ,TM3_3DH5_Ch39.					
	Meas. Method	ANSI C63.10:2013					
Maximum Peak	Test Environment	NTNV					
Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3 _3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,					
Bandedge spurious	Meas. Method	ANSI C63.10:2013					
emission	Test Environment	NTNV					
(Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78, TM3_3DH3_Ch00,TM3_3DH3_Ch78,					
	Meas. Method	ANSI C63.10:2013					
Conducted RF Spurious	Test Environment	NTNV					
Emission	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch78.					

Report No. E-F1707013 - Page 7 of 57 -

Radiated Emissions in the Restricted Bands	Meas. Method	ANSI C63.10:2013 30 MHz to 1 GHz: Pre: RBW=100kHz; VBW=300kHz; Det. = Peak. Final: RBW=120kHz; Det. = CISPR Quasi-Peak. 1 GHz to 26.5GHz: Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak; Sweep-time= Auto; Trace = Single. Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep-time= Auto; Trace≥ MaxHold * 100.
	Test Environment	NTNV
		30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
	EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,
		TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions				
Test Case	Configuration	Description			
AC Dower Line Conducted	Measurement Method	AC mains conducted.			
AC Power Line Conducted Emissions	Test Environment	NTNV			
EIIIISSIOIIS	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).			

Note:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	 Lowest Middle Highest	GFSK	 Lowest Middle Highest	\boxtimes				complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-			\boxtimes		Not applicable for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK		$\boxtimes\boxtimes$				complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance	GFSK 8DPSK		GFSK		\boxtimes				complies

Report No. E-F1707013 - Page 8 of 57 -

	radiated							
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes		complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes		complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report

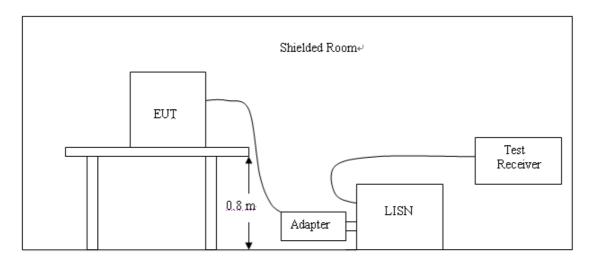
3.6 Equipments Used during the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	ADVANTEST	R3182	150900201	2017.06.29	2018.06.28
2	EMI Measuring Receiver	R&S	ESR	101660	2016.12.12	2017.12.11
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01- 27	1205323	2017.06.29	2018.06.28
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2017.12.02	2017.12.01
5	TRILOG Super Broadband test Antenna	SCHWARZBEC K	VULB9160	9160-3206	2016.12.03	2017.12.02
6	Broadband Horn Antenna	SCHWARZBEC K	BBHA9120D	452	2016.12.03	2017.12.02
7	SHF-EHF Horn	SCHWARZBEC K	BBHA9170	BBHA917036 7	2016.12.03	2017.12.02
8	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.09.26	2017.09.25
9	EMI Test Receiver	R&S	ESCI	100124	2017.06.29	2018.06.28
10	LISN	LISN Kyoritsu		8-837-4	2017.06.29	2018.06.28
11	LISN	Kyoritsu	KNW-407	8-1789-3	2017.06.29	2018.06.28

Report No. E-F1707013 - Page 9 of 57 -

12	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.09.25	2017.09.24
13	Loop Antenna	ARA	PLA-1030/B	1029	2017.03.20	2018.03.19
14	Radiated Cable 1# (30MHz-1GHz)	FUJIKURA	5D-2W	01	2017.01.04	2018.01.03
15	Radiated Cable 2# (1GHz -25GHz)	FILIKTIRA 10020		02	2016.12.25	2017.12.24
16	Conducted Cable 1#(9KHz-30MHz)	FUJIKURA	1D-2W	01	2017.01.04	2018.01.03
17	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	N/A
18	Power Meter	R&S	NRVS	100696	2017.07.06	2018.07.05
19	Power Sensor	R&S	URV5-Z4	0395.1619.05	2017.07.06	2018.07.05

Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list.



Report No. E-F1707013 - Page 10 of 57 -

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013
- 4. All support equipments received AC power from a second LISN, if any.
- 5. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 6. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 7. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

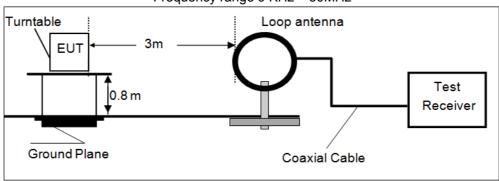
Frequency (MHz)	Maximum RF Line Voltage (dBμV)				
(IVITIZ)	Q.P.	Ave.			
0.15 - 0.50	66-56*	56-46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

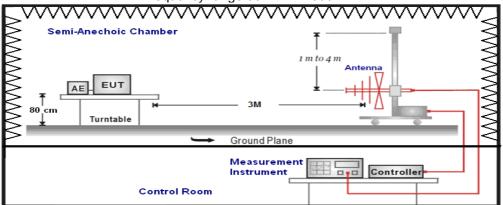
Report No. E-F1707013 - Page 11 of 57 -

TEST RESULTS

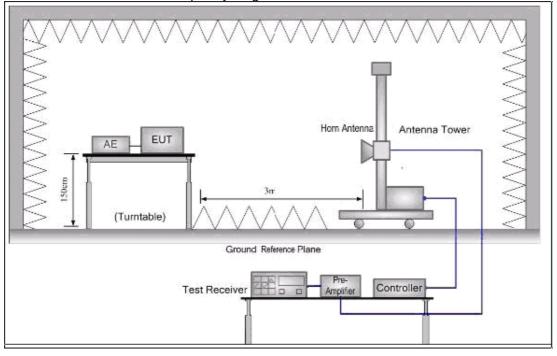
Due to this device is powered by battery only, this test is not required.



Report No. E-F1707013 - Page 12 of 57 -


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

Report No. E-F1707013 - Page 13 of 57 -

- 1. The EUT was placed on a turn table which is 0.8m(1.5m above 1G) above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0℃ to 360℃ to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.
- 6. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

7. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

8. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
1GHz-40GHz	Sweep time=Auto	(Receiver)
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=3MHz,	Average
	Sweep time=Auto	(Receiver)

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

Report No. E-F1707013 - Page 14 of 57 -

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

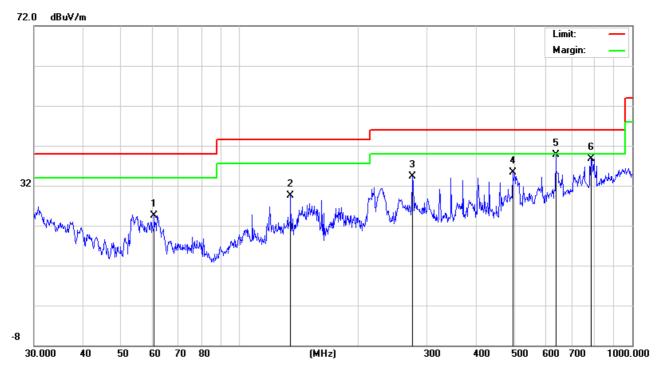
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78) for above 1G.
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. "---" means not recorded as emission levels lower than limit.
- 5. Margin= Limit Level

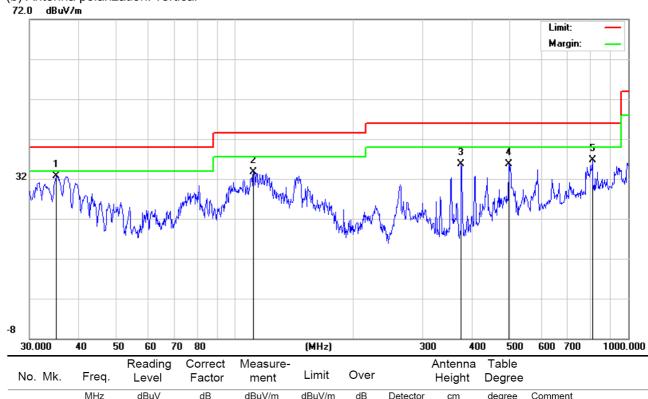
For 9KHz to 30MHz


Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result	
12.45	43.14	69.54	26.40	QP	PASS	
24.41	42.68	69.54	26.86	QP	PASS	

Report No. E-F1707013 - Page 15 of 57 -

For 30MHz to 1000MHz

(a) Antenna polarization: Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		60.7043	19.20	5.30	24.50	40.00	-15.50	peak			
2		135.0319	17.27	12.25	29.52	43.50	-13.98	QP			
3		275.1569	20.14	14.07	34.21	46.00	-11.79	QP			
4		495.9343	14.71	20.59	35.30	46.00	-10.70	QP			
5	*	638.3686	16.31	23.47	39.78	46.00	-6.22	QP			
6		785.0934	12.65	26.10	38.75	46.00	-7.25	QP			

Report No. E-F1707013 - Page 16 of 57 -

(b) Antenna polarization: vertical

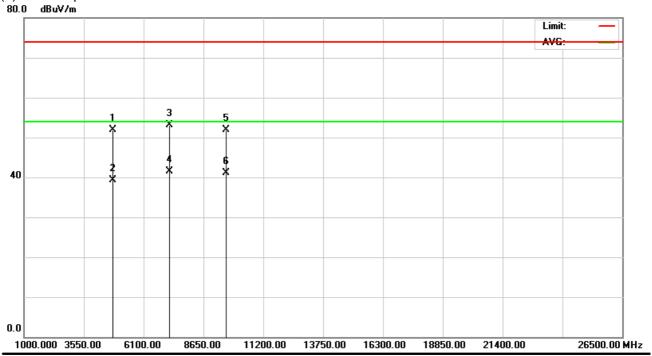
No	o. N	Λlk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
•	*	k	35.1278	16.80	15.81	32.61	40.00	-7.39	QP			
- 2	2	1	111.3468	21.94	11.72	33.66	43.50	-9.84	QP			
- (3	3	375.9384	18.74	16.96	35.70	46.00	-10.30	QP			
	1	4	195.9343	15.16	20.59	35.75	46.00	-10.25	QP			
	5	8	310.2653	10.43	26.25	36.68	46.00	-9.32	QP			

Note:

Measurement Level = Reading Level + Factor

Pemark: Factor = Antenna Factor + Cable Loss = Press

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

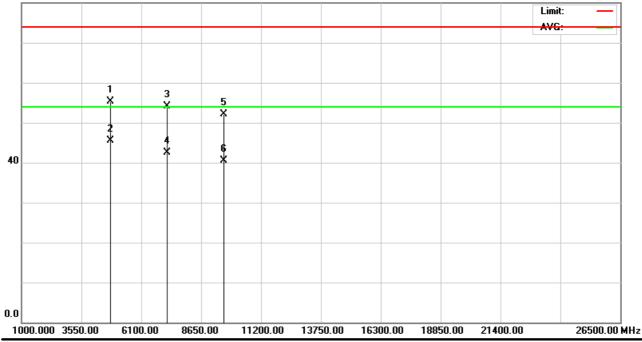


Report No. E-F1707013 - Page 17 of 57 -

For 1GHz to 25GHz

Note:We tested GFSK Mode and 8DPSK, rcorded the worst case at the GFSK (DH5) Mode.

(a) Antenna polarization: Horizontal



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4	804.000	56.72	-4.86	51.86	74.00	-22.14	peak
2	4	804.000	44.15	-4.86	39.29	54.00	-14.71	AVG
3	7	206.000	53.69	-0.58	53.11	74.00	-20.89	peak
4	* 7	206.000	42.08	-0.58	41.50	54.00	-12.50	AVG
5	9	608.000	47.14	4.81	51.95	74.00	-22.05	peak
6	9	608.000	36.22	4.81	41.03	54.00	-12.97	AVG

Report No. E-F1707013 - Page 18 of 57 -

(b) Antenna polarization: Vertical 80.0 dBuV/m

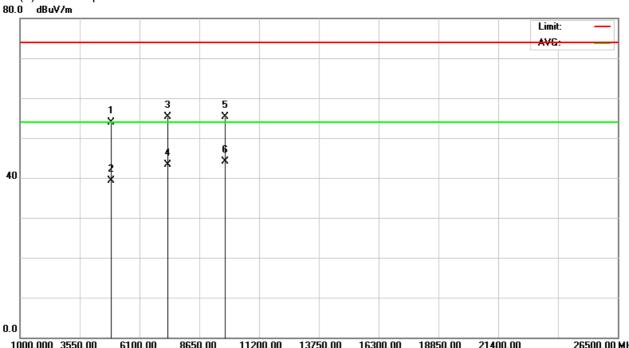
No. N	Лk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4804.000	60.12	-4.86	55.26	74.00	-18.74	peak
2 *	4804.000	50.37	-4.86	45.51	54.00	-8.49	AVG
3	7206.000	54.78	-0.58	54.20	74.00	-19.80	peak
4	7206.000	43.16	-0.58	42.58	54.00	-11.42	AVG
5	9608.000	47.22	4.81	52.03	74.00	-21.97	peak
6	9608.000	35.78	4.81	40.59	54.00	-13.41	AVG

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

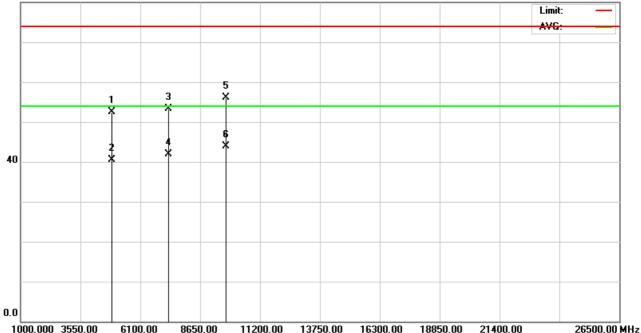
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier


Lowest channel: 2402 MHz

Data rate: 1Mbps

Report No. E-F1707013 - Page 19 of 57 -

(a) Antenna polarization: Horizontal


100	0.000	3550.00	6100.00	8650.00	11200.00	13750.	00 163	00.00	18850.00	21400.00		26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	4	4882.000	58.71	-4.73	53.98	74.00	-20.02	peak				
2	4	4882.000	44.12	-4.73	39.39	54.00	-14.61	AVG				
3	-	7323.000	55.63	-0.30	55.33	74.00	-18.67	peak				
4	•	7323.000	43.62	-0.30	43.32	54.00	-10.68	AVG				
5	(9764.000	50.12	5.26	55.38	74.00	-18.62	peak				
6	* (9764.000	38.75	5.26	44.01	54.00	-9.99	AVG				

Report No. E-F1707013 - Page 20 of 57 -

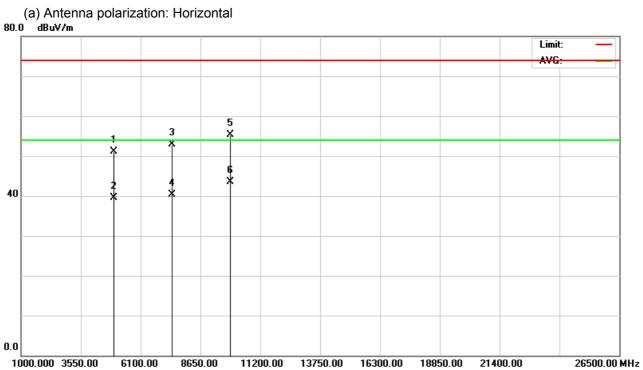
(b) Antenna polarization: Vertical 80.0 dBuV/m

	100	0.00	5 5550.00	0100.00	0030.00	11200.00	13130.	00 10.	,00.00	10030.00	21400.00		20300.00 14112
-	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
	1		4882.000	57.14	-4.73	52.41	74.00	-21.59	peak		0		
	2		4882.000	45.25	-4.73	40.52	54.00	-13.48	AVG		0		
-	3		7323.000	53.68	-0.30	53.38	74.00	-20.62	peak		0		
	4		7323.000	42.14	-0.30	41.84	54.00	-12.16	AVG		0		
-	5		9764.000	50.88	5.26	56.14	74.00	-17.86	peak		0		
	6	*	9764.000	38.71	5.26	43.97	54.00	-10.03	AVG		0		

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

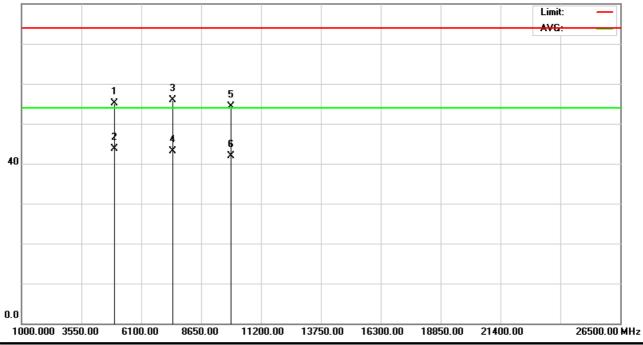
Measurement Level = Reading Level + Factor


Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Middle Channel: 2441 MHz

Data rate: 1Mbps

Report No. E-F1707013 - Page 21 of 57 -


No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	55.72	-4.60	51.12	74.00	-22.88	peak
2		4960.000	44.11	-4.60	39.51	54.00	-14.49	AVG
3		7440.000	52.93	-0.02	52.91	74.00	-21.09	peak
4		7440.000	40.38	-0.02	40.36	54.00	-13.64	AVG
5		9920.000	49.72	5.66	55.38	74.00	-18.62	peak
6	*	9920.000	37.82	5.66	43.48	54.00	-10.52	AVG

Report No. E-F1707013 - Page 22 of 57 -

(b) Antenna polarization: Vertical

No. N	Лk. Fr	Readir eq. Level	•		e- Limit	Over	
	MI	Hz dBuV	dB	dBuV/m	dBuV/n	n dB	Detector
1	4960.0	000 59.72	-4.60	55.12	74.00	-18.88	peak
2 *	4960.0	000 48.37	-4.60	43.77	54.00	-10.23	AVG
3	7440.0	000 55.97	-0.02	55.95	74.00	-18.05	peak
4	7440.0	000 43.12	-0.02	43.10	54.00	-10.90	AVG
5	9920.0	000 48.67	5.66	54.33	74.00	-19.67	peak
6	9920.0	000 36.25	5.66	41.91	54.00	-12.09	AVG

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Highest Channel: 2480 MHz

Data rate: 1Mbps

Report No. E-F1707013 - Page 23 of 57 -

4.3 Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power: Connent antenna port into power meter and reading Peak values.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	2.34	21	PASS
39	2441	2.48	21	PASS
78	2480	2.67	21	PASS

Note:

4.3.2 π/4 DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	2.55	21	PASS
39	2441	2.17	21	PASS
78	2480	2.23	21	PASS

Note:

4.3.3 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	1.89	21	PASS
39	2441	1.76	21	PASS
78	2480	1.88	21	PASS

Note:

1. The test results including the cable lose.

^{1.} The test results including the cable lose.

^{1.} The test results including the cable lose.

Report No. E-F1707013 - Page 24 of 57 -

4.4 20dB Bandwidth

TEST CONFIGURATION

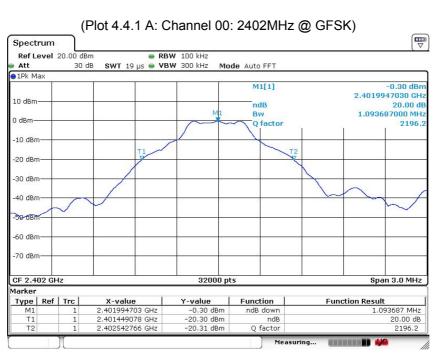
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

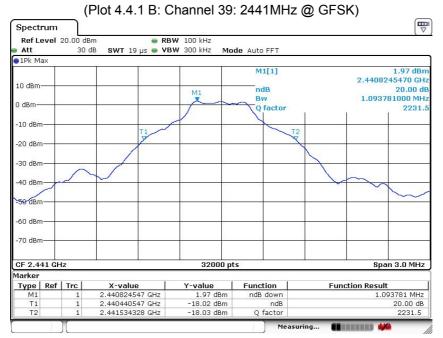
TEST RESULTS


4.4.1 GFSK Test Mode

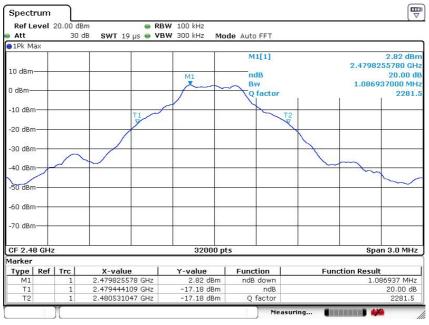
A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.0937	Plot 4.4.1 A	/	PASS
39	2441	1.0938	Plot 4.4.1 B	/	PASS
78	2480	1.0869	Plot 4.4.1 C	/	PASS

Note: 1. The test results including the cable lose.


B. Test Plots

Date:5JUL.2017 15:43:33

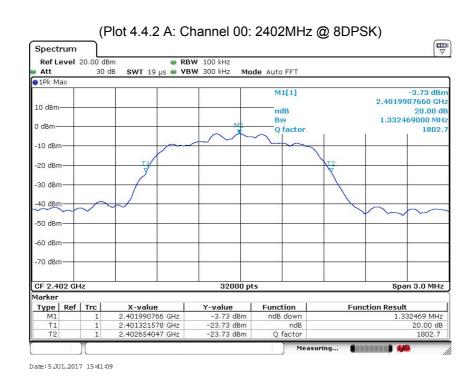


Report No. E-F1707013 - Page 25 of 57 -

Date: 5.JUL.2017 15:43:16

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

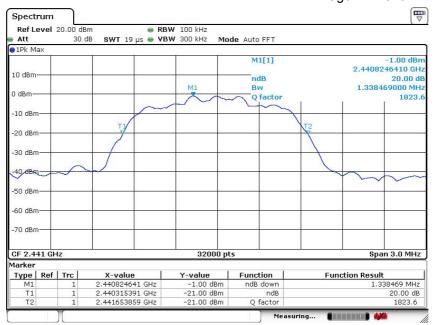
Date: 5 JUL 2017 15:42:55

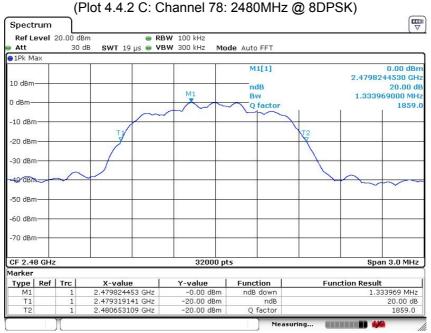

Report No. E-F1707013 - Page 26 of 57 -

4.4.2 8DPSKTest Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.3325	Plot 4.4.2 A	/	PASS
39	2441	1.3385	Plot 4.4.2 B	/	PASS
78	2480	1.3340	Plot 4.4.2 C	/	PASS


Note: 1.The test results including the cable lose.


(Plot 4.4.2 B: Channel 39: 2441MHz @ 8DPSK)

Report No. E-F1707013 - Page 27 of 57 -

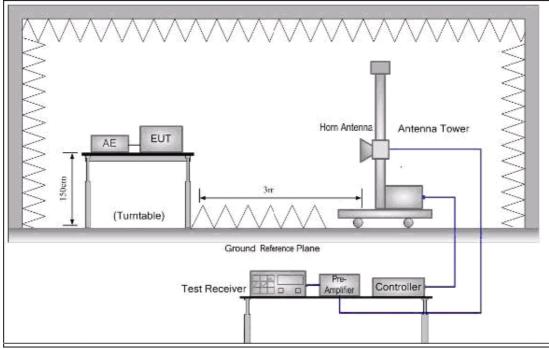
Date:5.JUL.2017 15:40:40

Date: 5_JUL_2017 15:40:57

Report No. E-F1707013 - Page 28 of 57 -

4.5 Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Radiated

For Conducted

Report No. E-F1707013 - Page 29 of 57 -

EUT	SPECTRUM	
	ANALYZER	

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m(1.5m above 1G) above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
IGHZ-40GHZ	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark:

- 1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2. "---" means not recorded as emission levels lower than limit.

4.5.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at no-hopping mode

4.5.1.1 Test data

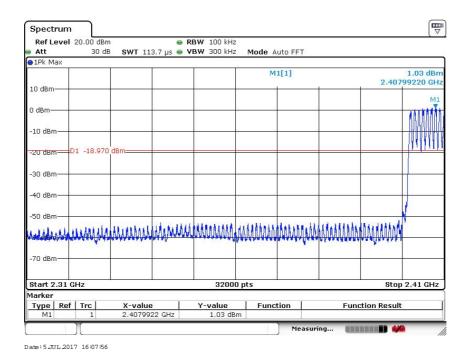
		Ant.P		Reading			Act		Limit	
Data	Test	ol.	Freq.	Peak	AV	Ant/CF	Peak	AV	Peak	AV
rate	channel	H/V	(MHz)	(dBuv)	(dBuv)	CF(dB)	(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/ m)
1Mbps	CH00	V	2390	38.47	29.64	-5.79	32.68	23.85	74	54
	CH00	Н	2390	40.22	30.25	-5.79	34.43	24.46	74	54
	CH78	V	2483.5	43.69	32.89	-4.98	38.71	27.91	74	54
	CH78	Н	2483.5	40.14	29.48	-4.98	35.16	24.5	74	54
3Mbps	CH00	V	2390	38.62	26.55	-5.79	32.83	20.76	74	54
	CH00	Н	2390	40.11	30.67	-5.79	34.32	24.88	74	54
	CH78	V	2483.5	38.39	28.41	-4.98	33.41	23.43	74	54

Report No. E-F1707013 - Page 30 of 57 -

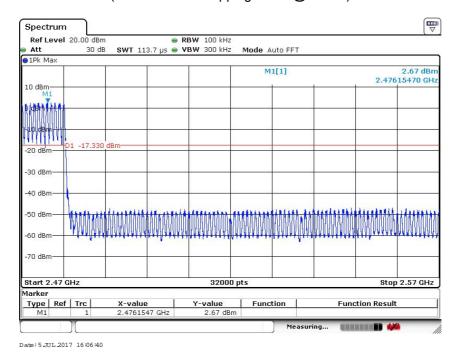
	<u> </u>								
CH78	Н	2483.5	41.16	30.55	-4.98	36.18	25.57	74	54

Remark:

- (1) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode.
- During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (3) Corr.Factor = Antenna Factor + Cable Loss Pre-amplifier.



Report No. E-F1707013 - Page 31 of 57 -

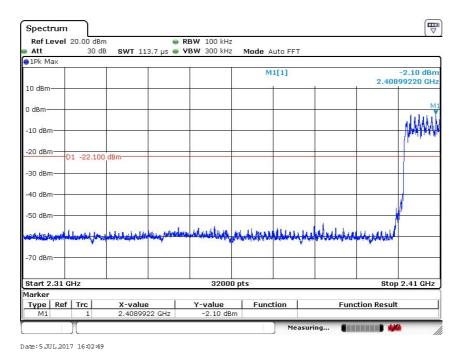

4.5.2 For Conducted Bandedge Measurement

4.5.2.1 GFSK Test Mode

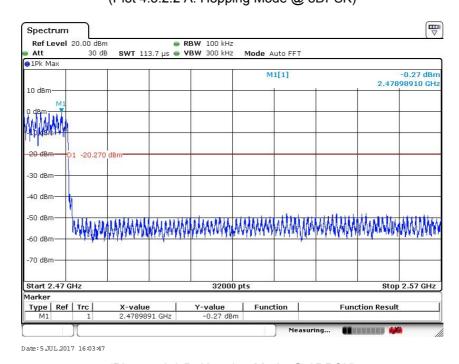
We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

(Plot 4.5.2.1 A: Hopping Mode @ GFSK)

(Plot 4.5.2.1 B: Hopping Mode @ GFSK)



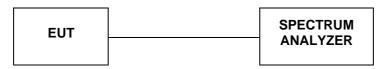
Report No. E-F1707013 - Page 32 of 57 -


4.5.2.2 8DPSK Test Mode

We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

(Plot 4.5.2.2 A: Hopping Mode @ 8DPSK)


(Plot 4.5.2.2 B: Hopping Mode @ 8DPSK)

Report No. E-F1707013 - Page 33 of 57 -

4.6 Frequency Separation

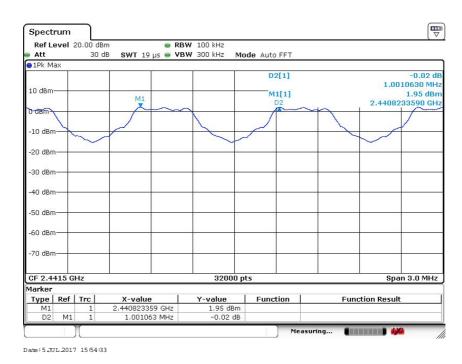
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.


TEST RESULTS

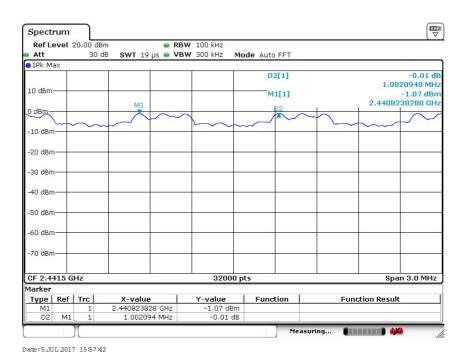
Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1.0011	Plot 4.6.1 A	0.8702	PASS
39	2441	1.0011			PASS

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)



Report No. E-F1707013 - Page 34 of 57 -

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1 0002	Diot 4.6.2.A	0.04036	DASS
39	2441	1.0002	Plot 4.6.2 A	0.84936	PASS

(Plot 4.6.2 A: Channel 39: 2441MHz @ 8DPSK)

Report No. E-F1707013 - Page 35 of 57 -

4.7 Number of hopping frequency

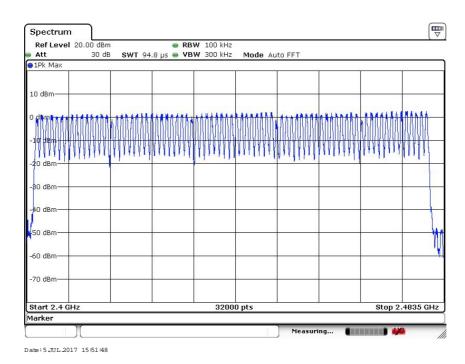
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300 KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


TEST RESULTS

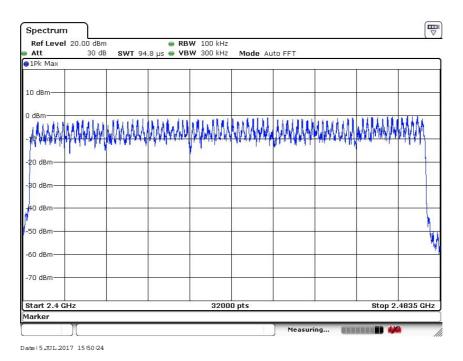
Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

(Plot 4.7.1 A1: @ GFSK)


Report No. E-F1707013 - Page 36 of 57 -

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

B. Test Plots

(Plot 4.7.2 A1: @ 8DPSK)

Report No. E-F1707013 - Page 37 of 57 -

4.8 Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=1MHz, Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

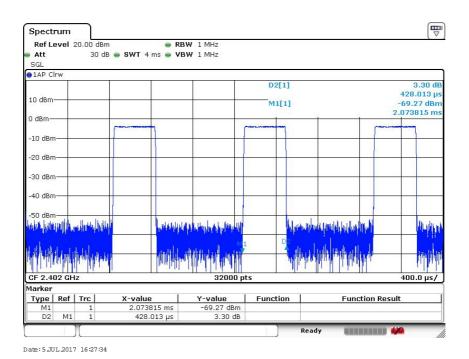
The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

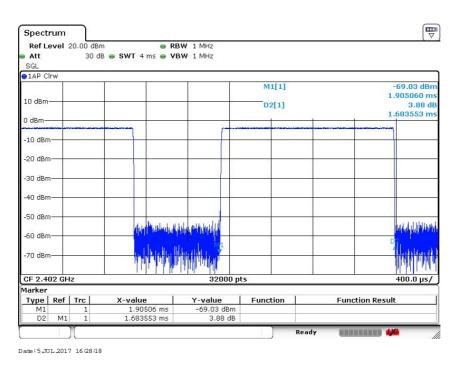
A. Test Verdict

4.8.1 GFSK Test Mode

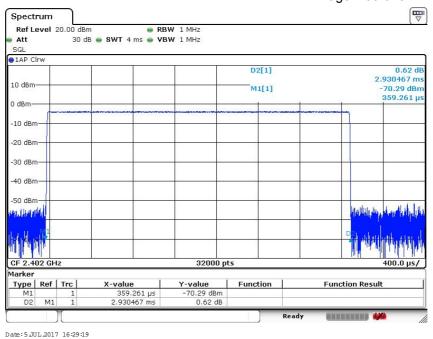
Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2402	0.428	0.154	0.4	Plot 4.8.1 A	PASS
υпі	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second					
DUO	2402	1.684	0.280	0.4	Plot 4.8.1 B	PASS
рпз	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second					
DH5	2402	2.930	0.312	0.4	Plot 4.8.1 C	PASS
טחט	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second					

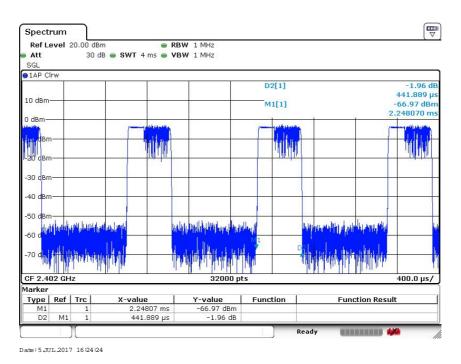

4.8.2 8DPSK Test Mode

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict	
DH1	2402	0.442	0.139	0.4	Plot 4.8.2 A	PASS	
υпі	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second						
DH3	2402	1.691	0.281	0.4	Plot 4.8.2 B	PASS	
рпз	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second						
DH5	2402	2.944	0.314	0.4	Plot 4.8.2 C	PASS	
טחט	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second						


B. Test Plots

Report No. E-F1707013 - Page 38 of 57 -


(Plot 4.8.1.A: Channel 00: 2402MHz @ GFSK @ DH1)


(Plot 4.8.1.B: Channel 00: 2402MHz @ GFSK @ DH3)

Report No. E-F1707013 - Page 39 of 57 -

(Plot 4.8.1.C: Channel 00: 2402MHz @ GFSK @ DH5)

(Plot 4.8.2.A: Channel 00: 2402MHz @ 8DPSK @ DH1)

Report No. E-F1707013 - Page 40 of 57 -

(Plot 4.8.2.B: Channel 00: 2402MHz @ 8DPSK @ DH3)

(Plot 4.8.2.C: Channel 00: 2402MHz @ 8DPSK @ DH5)

Report No. E-F1707013 - Page 41 of 57 -

4.9 Spurious RF Conducted Emission

TEST CONFIGURATION

EUT	SPECTRUM ANALYZER
-----	----------------------

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10:2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measurement frequency range from 9KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

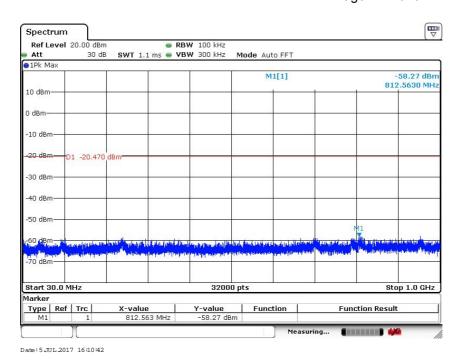
TEST RESULTS

Remark:

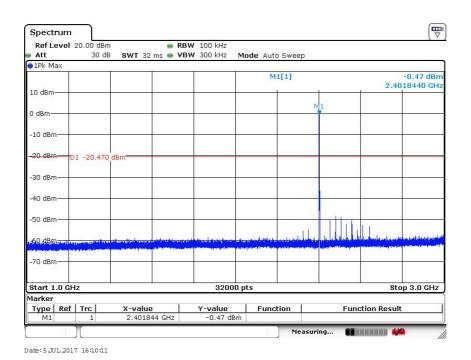
- 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2.For 9KHz -30MHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.9.1 GFSK Test Mode

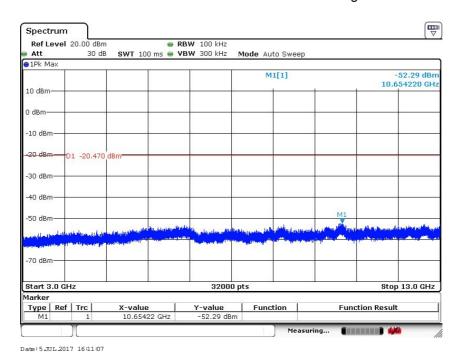
A. Test Verdict

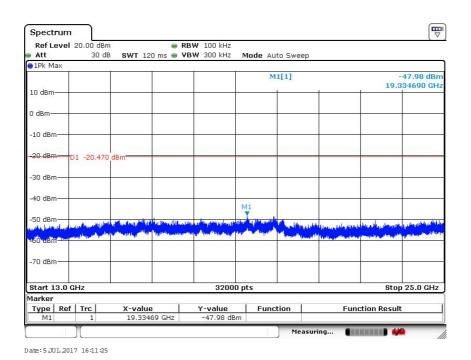

Channel	Frequency (MHz)	Frequency Range	Sweep Points	Refer to Plot	Limit (dBc)	Verdict
00		30MHz-1GHz	9700	Plot 4.9.1 A1	-20	PASS
	2402	1MHz-3GHz	20000	Plot 4.9.1 A2	-20	PASS
	2402	3GHz-13GHz	100000	Plot 4.9.1 A3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 A4	-20	PASS
39	2441	30MHz-1GHz	9700	Plot 4.9.1 B1	-20	PASS
		1MHz-3GHz	20000	Plot 4.9.1 B2	-20	PASS
		3GHz-13GHz	100000	Plot 4.9.1 B3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 B4	-20	PASS
78	2480	30MHz-1GHz	9700	Plot 4.9.1 C1	-20	PASS
		1MHz-3GHz	20000	Plot 4.9.1 C2	-20	PASS
		3GHz-13GHz	100000	Plot 4.9.1 C3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 C4	-20	PASS

Note:

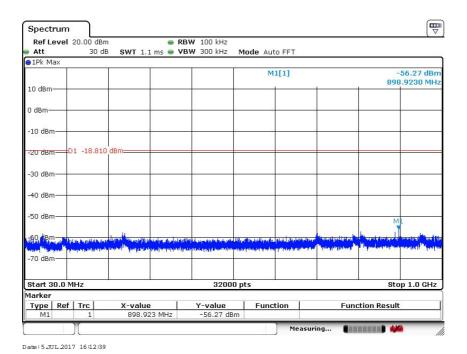

- 1. The test results including the cable lose.
- B. Test Plots

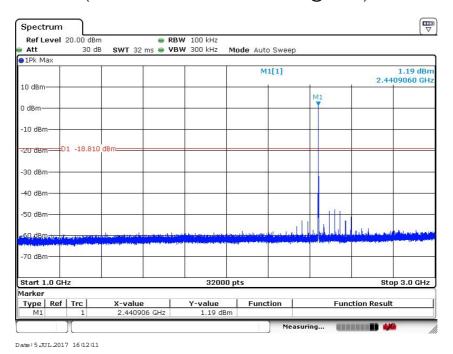
Report No. E-F1707013 - Page 42 of 57 -


(Plot 4.9.1 A1: Channel 00: 2402MHz @ GFSK)

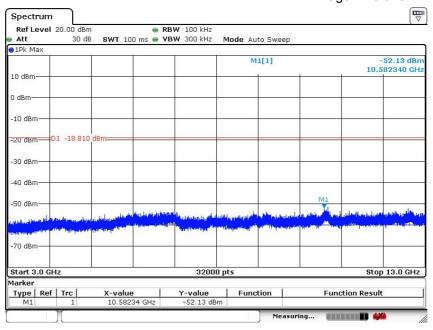

(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

Report No. E-F1707013 - Page 43 of 57 -

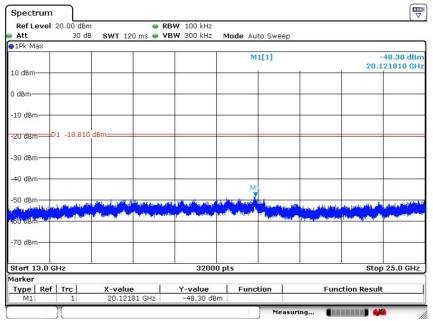

(Plot 4.9.1 A3: Channel 00: 2402MHz @ GFSK)


(Plot 4.9.1 A4: Channel 00: 2402MHz @ GFSK)

Report No. E-F1707013 - Page 44 of 57 -


(Plot 4.9.1 B1: Channel 39: 2441MHz @ GFSK)

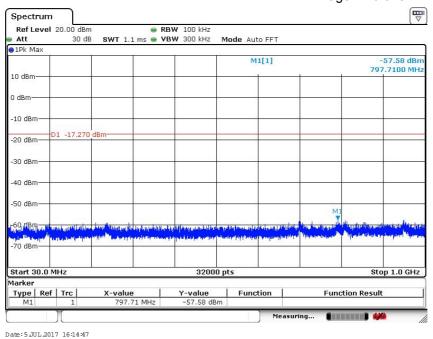
(Plot 4.9.1 B2: Channel 39: 2441MHz @ GFSK)



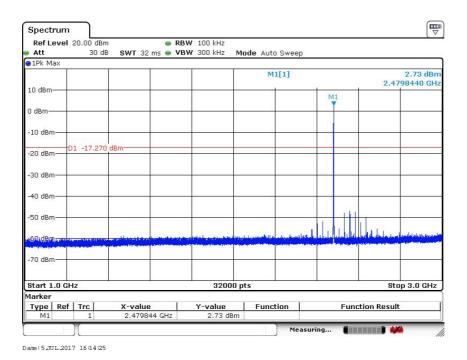
Report No. E-F1707013 - Page 45 of 57 -

Date: 5 JUL 2017 16:13:09

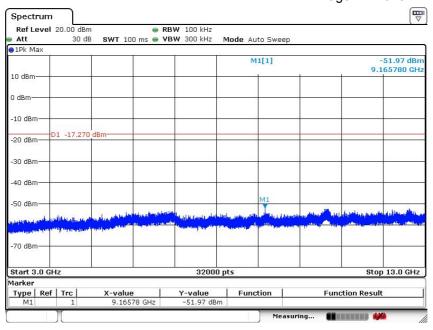
(Plot 4.9.1 B3: Channel 39: 2441MHz @ GFSK)



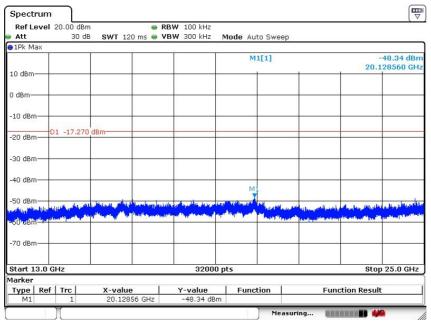
Date: 5_JUL_2017 16:13:23


(Plot 4.9.1 B4: Channel 39: 2441MHz @ GFSK)

Report No. E-F1707013 - Page 46 of 57 -


(Plot 4.9.1 C1: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)



Report No. E-F1707013 - Page 47 of 57 -

Date:5.JUL.2017 16:15:08

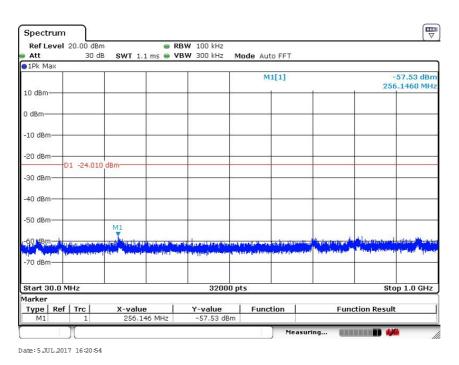
(Plot 4.9.1 C3: Channel 78: 2480MHz @ GFSK)

Date: 5_JUL_2017 16:15:30

(Plot 4.9.1 C4: Channel 78: 2480MHz @ GFSK)

Report No. E-F1707013 - Page 48 of 57 -

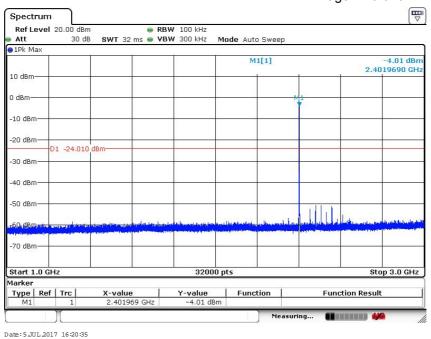
4.9.2 8DPSK Test Mode

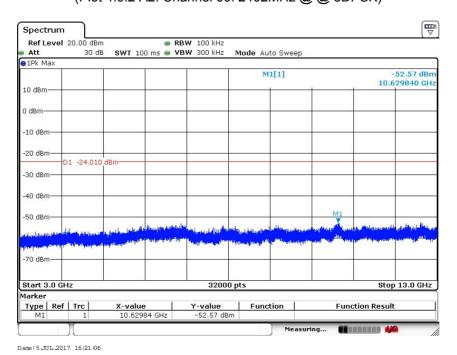

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Sweep Points	Refer to Plot	Limit (dBc)	Verdict
		30MHz-1GHz	9700	Plot 4.9.2 A1	-20	PASS
00	2402	1MHz-3GHz	20000	Plot 4.9.2 A2	-20	PASS
00	2402	3GHz-13GHz	100000	Plot 4.9.2 A3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.2 A4	-20	PASS
	2441	30MHz-1GHz	9700	Plot 4.9.2 B1	-20	PASS
39		1MHz-3GHz	20000	Plot 4.9.2 B2	-20	PASS
39		3GHz-13GHz	100000	Plot 4.9.2 B3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.2 B4	-20	PASS
78	2480	30MHz-1GHz	9700	Plot 4.9.2 C1	-20	PASS
		1MHz-3GHz	20000	Plot 4.9.2 C2	-20	PASS
		3GHz-13GHz	100000	Plot 4.9.2 C3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.2 C4	-20	PASS

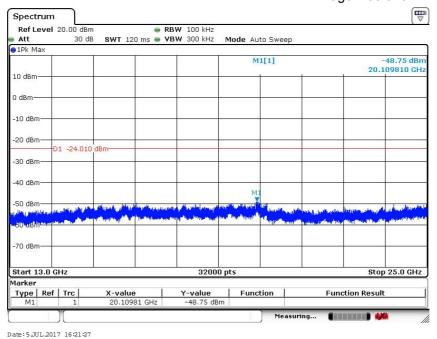
Note

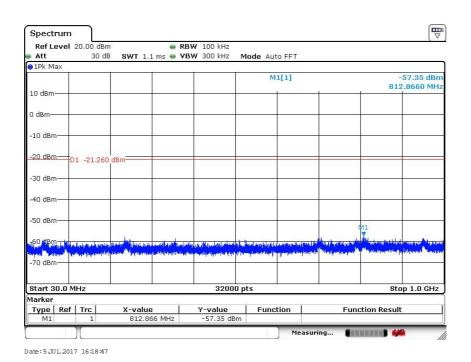
1. The test results including the cable lose.


B. Test Plots

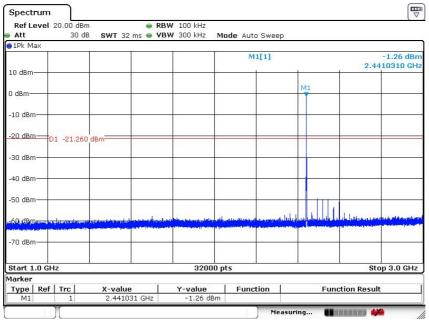

(Plot 4.9.2 A1: Channel 00: 2402MHz @ 8DPSK)

Report No. E-F1707013 - Page 49 of 57 -

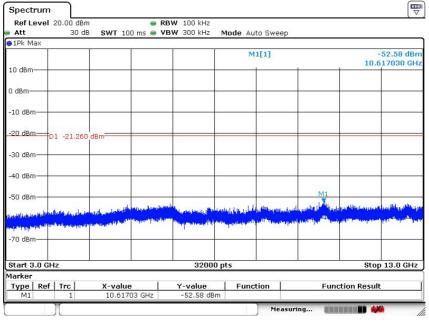

(Plot 4.9.2 A2: Channel 00: 2402MHz @ @ 8DPSK)


(Plot 4.9.2 A3: Channel 00: 2402MHz @ @ 8DPSK)

Report No. E-F1707013 - Page 50 of 57 -


(Plot 4.9.2 A4: Channel 00: 2402MHz @ @ 8DPSK)

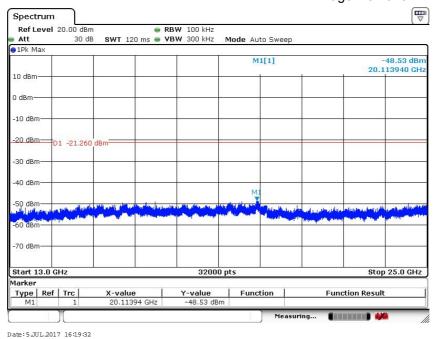
(Plot 4.9.2 B1: Channel 39: 2441MHz @ @ 8DPSK)



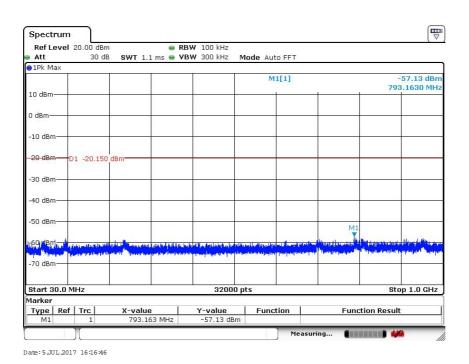
Report No. E-F1707013 - Page 51 of 57 -

Date: 5 JUL 2017 16:18:26

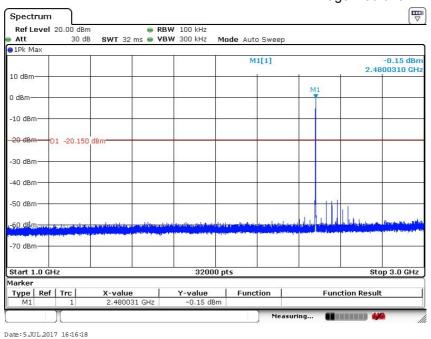
(Plot 4.9.2 B2: Channel 39: 2441MHz @ @ 8DPSK)

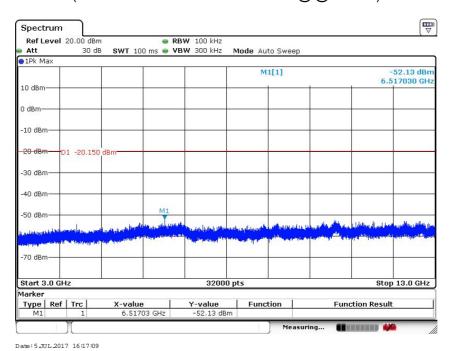


Date:5JUL.2017 16:19:08

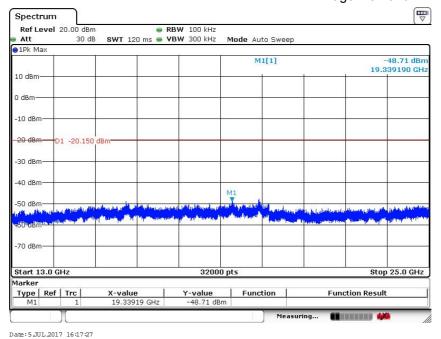

(Plot 4.9.2 B3: Channel 39: 2441MHz @ @ 8DPSK)

Report No. E-F1707013 - Page 52 of 57 -


(Plot 4.9.2 B4: Channel 39: 2441MHz @ @ 8DPSK)


(Plot 4.9.2 C1: Channel 78: 2480MHz @ @ 8DPSK)

Report No. E-F1707013 - Page 53 of 57 -


(Plot 4.9.2 C2: Channel 78: 2480MHz @ @ 8DPSK)

(Plot 4.9.2 C3: Channel 78: 2480MHz @ @ 8DPSK)

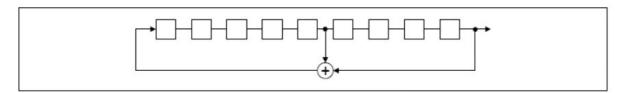
Report No. E-F1707013 - Page 54 of 57 -

(Plot 4.9.2 C4: Channel 78: 2480MHz @ @ 8DPSK)

Report No. E-F1707013 - Page 55 of 57 -

4.10 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No. E-F1707013 - Page 56 of 57 -

4.11 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal BT devices, the GFSK mode is used.

Measurement parameters

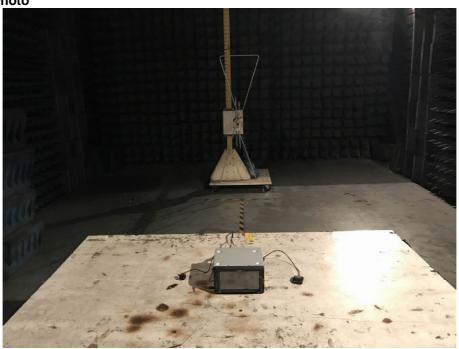
Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1MHz			
Video bandwidth:	3MHz			
Trace-Mode:	Max hold			

Limits

antena type:PCB antena

FCC	IC				
Antenna Gain					
6 dBi					

Results


Antenna type:PCB antenna

T _{nom}	V_{nom}	Lowest Channel 2402 MHz	Middle Channel 2441 MHz	Highest Channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		2.34	2.48	2.67
Radiated power [dBm] Measured with GFSK modulation		3.55	3.37	3.28
Gain [dBi] Calculated		1.21	0.89	0.61
Measurement uncertainty		± 0.6 dB (cond.) / ± 2.56 dB (rad.)		

Report No. E-F1707013 - Page 57 of 57 -

Setup photo

.....End of Report.....