

N°: 12497-FCC-IC-1

Page 1 / 41

FCC Test Firm Designation Number: FR0014

Industry Canada Test Firm Number: Site# 9545A-1 / 9545A-2

Matériel testé : JOY / OCTOPUS WATCH (O2R2) Equipment under test.

(Trademark / Marketing name or product reference)

Constructeur: JOY

Manufacturer: 5 Allée du Belvédère

74940 Annecy-le-Vieux - France

Rapport délivré à : JOY

Issued to: M. Jean-Yves Bitterlich

5 Allée du Belvédère

74940 Annecy-le-Vieux - France

Référence de la proposition :

Proposal number:

042018-23011

Date de l'essai : Du 5 au 6 Juillet 2018 / 4 septembre 2018 Date of test: July 5th to 6th, 2018 / September 4th, 2018

Objectif des essais: EMC qualification accordingly to following standards:

Test purpose: - CFR 47, FCC Part 15, Subpart B & C

(Chapter 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz)

- Industry Canada ICES-003 Issue 6 & RSS-247, Issue 2

(Digital Transmission Systems Operating in the Bands 2400-2483.5 MHz)

Lieu du test: SMEE, Rue de Taille 38500 VOIRON - France Test location:

Laurent CHAPUS Test réalisé par :

Test realized by:

Conclusion: L'équipement satisfait aux prescriptions des normes citées en référence. Conclusion: The appliance complies with requirements of above mentioned standards.

Ed.	Date	Modifications / Pages	Written by : Visa	Approved by: Visa
1 2	July 30 th , 2018 September 4, 2018	Initial Edition TCB review (ATCB023002)	Laurent CHAPUS	Régis ANCEL

La copie de ce document n'est permise que sous sa forme intégrale. Ce document est le résultat d'essais effectués sur un échantillon. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé.

This document shall not be reproduced, except in full. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested.

Accréditation N° 1-6356 Portée disponible sur : Scope available on :

TEL: 04 76 65 76 50

FAX: 04 76 66 18 30

N°: 12497-FCC-IC-1

Contents

1.	NORMATIVES REFERENCES	3
2.	TEST SYNTHESIS	4
3.	EQUIPMENT UNDER TEST (EUT)	5
4.	TEST CONDITIONS	5
5.	MODIFICATIONS OF THE EUT	5
6.	SPECIAL ACCESSORY	5
7.	CONDUCTED EMISSION MEASUREMENT (150KHZ-30MHZ)	6
8.	RADIATED EMISSION MEASUREMENT (30MHZ-1GHZ)	9
9.	6DB BANDWIDTH	13
10.	MAXIMUM PEAK OUTPUT POWER	17
11.	MAXIMUM POWER SPECTRAL DENSITY LEVEL IN THE FUNDAMENTAL EMISSION	20
12.	UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	21
13.	UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS	26
14	OCCUPIED BANDWIDTH (99%)	40

N°: 12497-FCC-IC-1

Normatives References

FCC qualification according to:						
Standards	Applied	Title				
ANSI C63.4 (2014)	х	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.				
ANSI C63.10 (2013)	х	American National Standard for Testing Unlicensed Wireless Devices				
CFR47, Part 15	х	Telecommunication – Federal Communication Commission – Radio frequency devices, Sections 15.107 / 15.109 / 15.207 / 15.209 / 15.247				

Industry Canada qualification according to:						
Standards Applied Title						
ICES-003 (Issue 6/2016)	Х	Information Technology Equipment (ITE) – Limits and methods of measurement				
RSS-Gen (Issue 5/2018)	Х	General Requirements and Information for the Certification of Radio Apparatus				
RSS-247 (Issue2/2017)	x	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices				

Note: Following guidance are used
- DTS Measurement Guidance 558074 D01 v04
- Determining ERP and EIRP Guidance 412172 D01 v01r01

N°: 12497-FCC-IC-1

2. Test synthesis

TEST	Paragraph number FCC Part 15 / IC RSS-247 / RSS-GEN	Spec. FCC Part 15 / IC RSS-247 / RSS-GEN	RESULTS (comments)
Conducted emissions test	15.207 (a) RSS-Gen § 8.8	Table 15.107 (a) Table 4 / RSS-Gen	PASS [1]
Radiated emission test	15.209 (a) ICES-003	Table 15.209 (a) Table 5 , § 6.2	PASS [1]
6dB Bandwidth	15.247 (a) (2) RSS-247 § 5.2 (a)	At least 500kHz	PASS
Maximum Peak Output Power	15.247 (b) (3) RSS-247 § 5.4 (d)	1W max / 30dBm (Conducted) 4W max / 36dBm (EIRP)	PASS
Maximum Power Spectral Density	15.247 (e) RSS-247 § 5.2 (b)	8dBm in a 3kHz band segment	PASS
Unwanted emissions into Non Restricted Frequency Bands	15.247 (d) / RSS-247 § 5.5	-20dBc in any 100kHz outside frequency band.	PASS
Unwanted emissions into Restricted Frequency Bands	15.209 (a) / 15.247 (d) / 15.205 (a) RSS-GEN § 7.1, §8.9, § 8.10 / RSS-247 § 5.5	Measure at 300m 9-490kHz: 2400μV/m/F(kHz) Measure at 30m 0.490-1.705: 24000μV/m/F(kHz) 1.705-30MHz: 30μV/m Measure at 3m 30MHz-88MHz: 40 dBμV/m 88MHz-216MHz: 43.5 dBμV/m 216MHz-960MHz: 46.0 dBμV/m Above 960MHz: 54.0 dBμV/m	PASS
Occupied Bandwidwth	RSS-GEN § 6.7	BW at 99%	PASS

N/A: Not Applicable

[1]: For battery charging mode only

• General conclusion:

Measures and tests performed on the sample of the product *OCTOPUS O2R2 watch*, in configuration and description presented in this test report, show compliance with standards FCC CFR 47, PART 15, Subpart B & C and Industry Canada ICES-003, RSS-Gen & RSS-247.

N°: 12497-FCC-IC-1

3. Equipment Under Test (EUT)

Nom / Identification

OCTOPUS WATCH (O2R2)

Sn: N.C

 FCC ID:
 2AKSXO2R2

 IC ID:
 22301-O2R2

 Model:
 O2R2

Auxiliaires / For battery charging mode:

Auxiliaries - Companion device (JOY equipment)

- Standard power adapter Dong Guan AoHai Power Technology Co. Ldt,

model A18A-050100U-US2 (AC Mains to USB output)

Entrées-Sorties / Input / Output

	Câbles pour essai /	Blindé /	Prévu pour >3m /
	Cables for test	Shielded	Intended for >3m
USB cable (Companion) *	USB 2.0, 1.8m	Yes	No

Note: Cable for battery charging only (no data transfer possible)

Version programme / Firmware version

N.C

Mode de fonctionnement / Running mode

The tested sample is able to:

- Transmit a carrier frequency on low, middle and high channels (Bluetooth Low Energy) without battery charging mode
- Transmit a carrier frequency on low, middle and high channels (Bluetooth Low Energy) with battery charging mode on the Companion nightlight station
- Be in Receiver mode (no transmission)
- Be in standby mode (no transmission)

Programme de test / Test program / N.C

• Equipment information:

- ISM Frequency band: 2400 to 2483.5 MHz (Tx & Rx, Wideband Data Transmission systems)
- Power Setting: Power is set at is maximum (+4dBm)
- Modulation: Bluetooth Low Energy
- Data rate: 250kb/s, 1Mb/s
- Antenna type: Integral (SMD ceramic, 0dBi peak gain)
- Powered by 3.7V DC from internal battery
- Equipment intended for use as a portable station
- Equipment designed for continuous operation

4. Test conditions

Power supply voltage:

Equipment under test: 3.7V DC from Li-battery (Fully charged)

5V DC from standard power adapter (Charging stand)

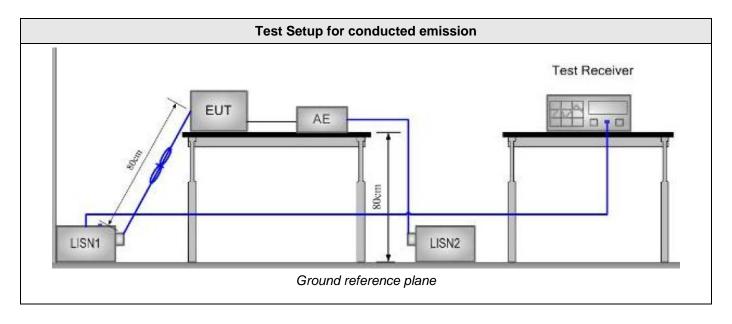
5. Modifications of the EUT

None

6. Special accessory

None

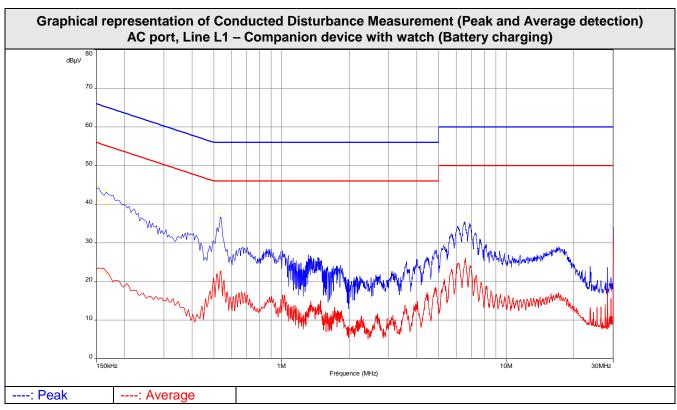
N°: 12497-FCC-IC-1

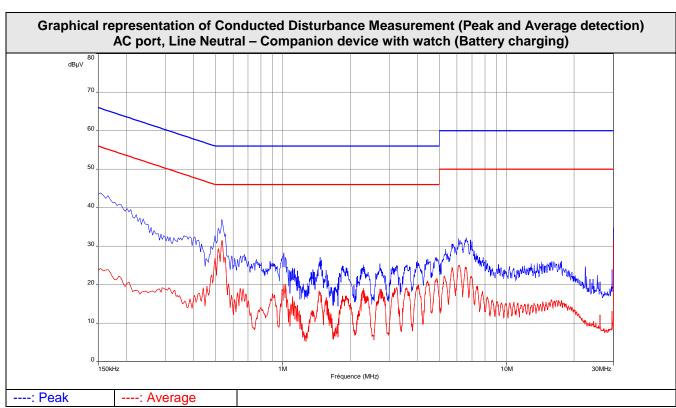

7. Conducted Emission Measurement (150kHz-30MHz)

TEST: Limits for conducted disturbance 150kHz – 30MHz							
Method: The LISN is placed plane. This distance was be associated equipment were Artificial Mains Network (ANThe EUT is 80cm above the The AC power cable is 1m	etween the closest p at least 0,8 m from MN). Conducted volta ground reference p	oints c the All age me	of the AMN and the EU ⁻ MN. All power was con easurements on lines w	T. All other units nected to the sy vere made at the	of the EUT and stem through output of the LISN.	Pass	
Laboratory Par	ameters:		Required prior to t	he test	During the	test	
Ambient Temp	perature		10 to 40 °C		23°C ±	2	
Relative Hur	midity		10 to 90 %		58% ±	5	
Fully configured sample scanned over the following frequency range			uency range on each	Measurement Point			
			150kHz to 30MHz		AC input p (110V on stand adapte	ard power	
Running m	ode	Battery Charging mode (On Companion device)	
			Limits				
			Limit	dB (μV)			
Frequency (MHz)	Quasi-Peak		Result	Avera	ge F	Result	
0.15 – 0.50	66 \ 56		Pass	56 \ 4	·6	Pass	
0.50 – 5	56		Pass	46		Pass	
	60		Pass				

Test location: SMEE
Test date: July 6th, 2018. Tested by L. CHAPUS
Power supply voltage: 110V/60Hz to power adapter

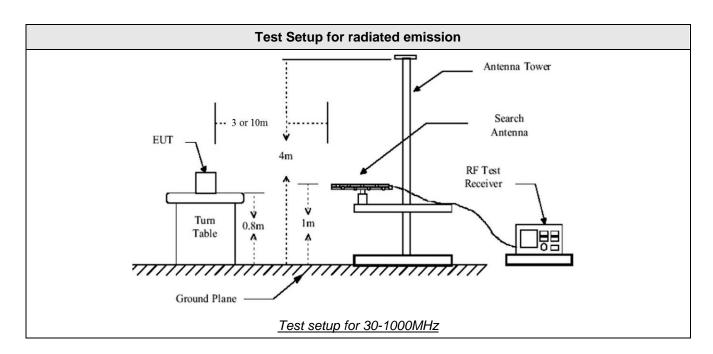
Test Equipment Used									
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due				
Attenuator / limiter	SMEE	ATT#2	ATT-171-010	2017/6	2018/6				
Cable RF	Div	1m	CAB-101-021	2017/4	2018/4				
LISN (50Ω / 50μH) (Meas.)	AFJ	LS16C	RSI-101-001	2017/6	2019/6				
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-002	2017/3	2019/3				
EMC Software	NEXIO	BAT EMC V3.8	SOF-101-001	-	-				
AC power supply	PACIFIC POWER	AMX-125	101-002	-	-				





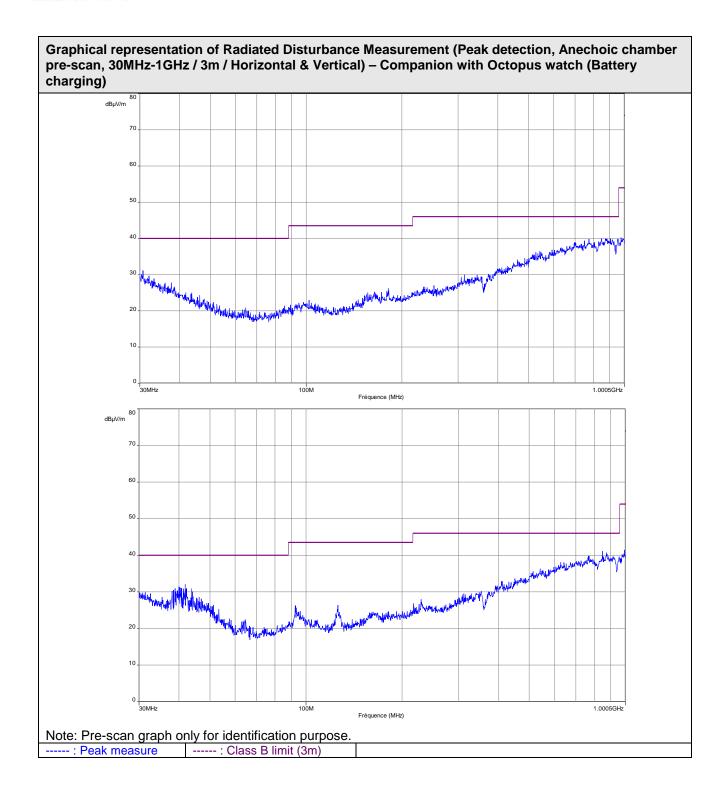
	Tabulated Results for Mains Terminal Disturbance Voltage on AC port												
FREQ	Meas. PK	Mes. 0	QΡ	LIMIT QP	QP Margin QP Mes. AV LIMIT AV M				Lina				
(MHz)	(dBµV)	(dBµ\	/)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Line				
		Leve	els a	re at least 20	dB below lim	its			Line L1				
		Leve	els a	re at least 20	dB below lim	its			Neutral				
Frequency band	investigated	i:	150	kHz-30MHz									
RBW:			9kH	lz									
Voltage:			110	V / 60Hz									
Limit:			FC	C Part 15.10	7 / 15.207 / IC	ES-003							
Final measureme	ent detector:		Quasi-Peak and Average										
Wide Measurem	ent Uncertai	nty:	± 3.5dB (k=2)										
RESULT:			PASS										
RESULT: Measured value calculation:				The measured value (level) is calculated by adding the Cable Factor, the Transient suppressor attenuation and LISN attenuation from the receiver amplitude reading. The basic equation is as follow: Meas. = RA + CF + ATT _{TRAN} + ATT _{LISN} Where Meas. = Level (dBµV) RA = Receiver Amplitude CF = Cable Factor ATT _{TRAN} = Transient suppressor attenuation ATT _{LISN} = LISN attenuation Margin value = Emission level – Limit value									

N°: 12497-FCC-IC-1


8. Radiated Emission Measurement (30MHz-1GHz)

TEST: Limits for radiated disturbar	nce 30 MHz – 1 GHz			Verdict			
Method: Final measurements were made in a 3-meter Open Area Test Site (OATS). Measurements were performed at an antenna to EUT separation distance of 3 meters. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in horizontal and vertical polarities. Final measurements (Peak, Quasi-peak) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4 m. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable. A pre-scan frequency identification of the EUT has been performed in a full anechoic chamber. The measured radiated field of the EUT is realised at 3-meters of distance. Antenna is 1.25-meters high. The pre-characterization graphs are obtained in PEAK detection with 360° continuous rotation of the device under test.							
Laboratory Parameters:	Required prior to the t	test	During	the test			
Ambient Temperature	20 to 30 °C		23°C	C ± 2			
Relative Humidity	25 to 70 %		58% ± 5				
Fully configured sample scanned	Frequency range on each side of line		Measurement Point				
over the following frequency range	30MHz – 1GHz	3 m measurement distance					
Running mode	Battery Charging	tery Charging mode (On Companion dev					
	Limits						
	Limi	it at 3m (dB	μV/m)				
Frequency (MHz)	Level / Detector		Results				
30 to 88	40.0 (QP)		Pass				
88 to 216	43.5 (QP)		Pass				
216 to 960	46.0 (QP)		Pass				
960 to 1000	960 to 1000 54.0 (QP) Pass						
Above 1GHz	54.0 (AV) 74.0 (PK)	Pass					
Supplementary information: Test location: SMEE. Test date: July 5 th 2018, Tested by L. CHA	, ,						

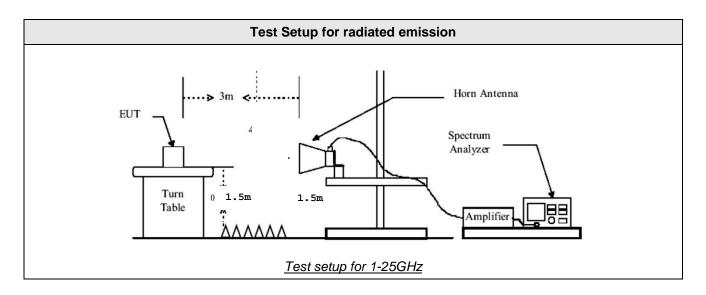
Test date: July 5th, 2018. Tested by L. CHAPUS


	Test Equipment Used										
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due						
Log-periodic antenna	TDK	PLP3003	ANT-101-001	2017/5	2019/5						
Biconnic antenna	COM-POWER	AB- 900	ANT-101-003	2017/5	2019/5						
BiConiLog antenna	EMCO	3142B	ANT-101-010	2017/7	2019/7						
RF cable	Div	OATS/25m	CAB-101-017	2018/4	2019/4						
RF cable	HUBER+SUHNER	RG214U	CAB-141-026	2018/4	2019/4						
RF cable	HUBER+SUHNER	RG214U	CAB-141-029	2018/4	2019/4						
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6						
Antenna mast	Innco- Systems	MA4000EP	MAT-101-001	-	-						
Turntable	Innco- Systems	DS1200S	PLA-101-001	-	-						
Turntable	Innco- Systems	CT0800	PLA-141-001								
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3						
OATS	Div	10m	SIT-101-001	2017/7	2020/7						
EMC Software	NEXIO	BAT EMC V3.8	SOF-101-001	-	-						

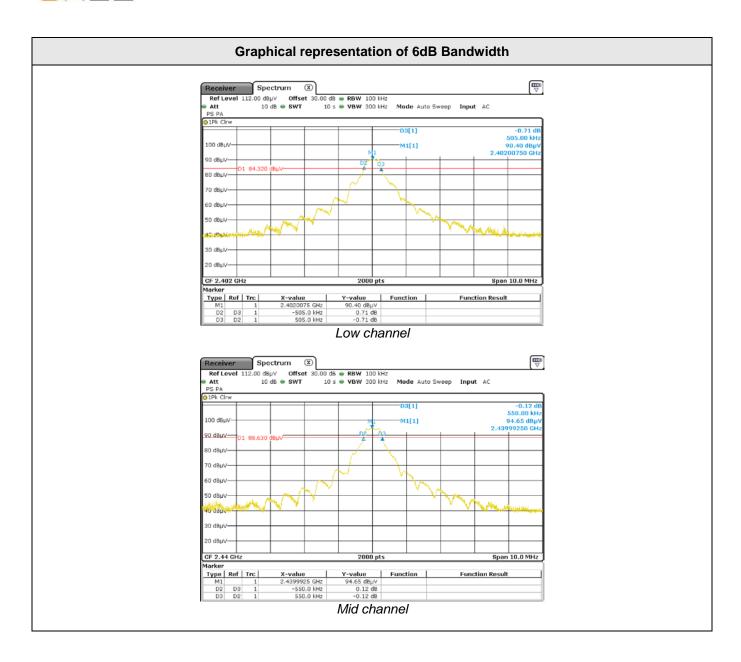
	Tabulated Results for Radiated Disturbance (3m measurement on Open Area Test Site, 30MHz-1GHz)										
	With Companion device										
FREQ	Meter reading	Meter reading	Pol I imit N							Margin	
MHz	(QP) dBµV	(Pk) dBµV	dB	(QP) dBµV/m	(Pk) dBµV/m		cm	Degré	(QP) dBµV/m	dB	
			Leve	ls are at leas	st 10dB bel	ow lim	its				
	tary information list measured		n Area Test	Site is create	d with pre-so	can res	sults.				
Frequenc	y band inve	estigated:		30MHz-1G	Hz						
RBW:				120kHz							
Measuren	nent distan	ce:		3m							
Limit:				FCC Part 15.109 / 15.209 / ICES-003							
Final mea	surement d	letector:		Quasi-Peak							
Wide Mea	surement l	Jncertainty	:	± 5.6dB (k=2)							
RESULT:				PASS							
Field Stre	ngth Calcu	The field strength (level) is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation is as follow: FS = RA + AF + CF - AG Where FS = Field Strength (Level) RA = Receiver Amplitude (Meter reading) AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain Total factor (dB) is AF + CF - AG Margin value = Emission level - Limit value									

N°: 12497-FCC-IC-1

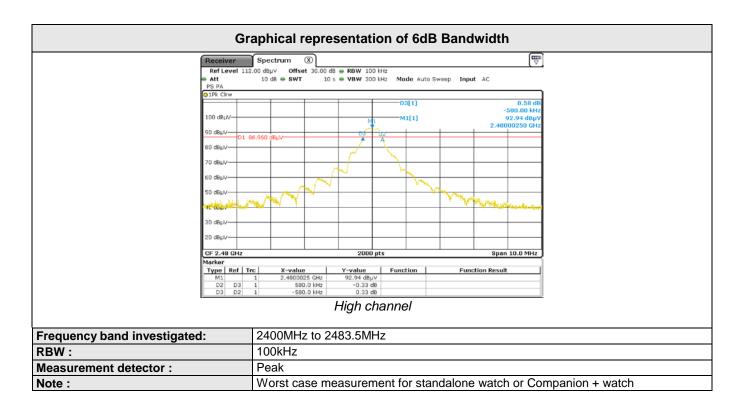
9. 6dB Bandwidth


TEST: 6dB Bandwidth		Verdict					
Method: The setup is in an anechoic of antenna. A radiated measurement is per The RBW is 100kHz, with VBW ≥ 3 x RE The SPAN is wide enough to capture all A MaxHold Peak detector is used. The tested equipment is set to transmit of	Pass						
Laboratory Parameters: Required prior to the test During							
Ambient Temperature 10 to 40 °C 23°			C ± 2				
Relative Humidity 10 to 90 % 58%							
Limit	Limits – FCC Part 15.247 (a) / RSS-247 §5.2 (a)						
Frequency (MHz)	Level for Bandwidth	Li	mit				
2402.0							
2440.0	6dB below the maximum output power	At least 500kHz					
2480.0							
Supplementary information: Test location: SMEE. Test date: July 5 th , 2018. Tested by L. CHAPUS							

Test Equipment Used								
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due			
Horn antenna	ETS-LINDGREN	3115	ANT-141-013	2014/3	2019/3			
RF cable	Pasternack RF	PE302-120	CAB-131-024	2018/4	2019/4			
RF cable	HUBER+SUHNER	SF104	CAB-141-030	2018/4	2019/4			
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6			
Turntable	Innco- Systems	CT0800	PLA-141-001					
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3			

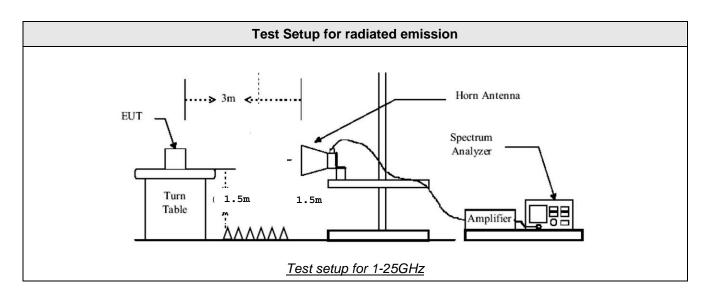

SMEE

Rapport d'essai / Test Report



	Tabulated Results for Occupied Bandwidth					
Frequency (MHz)	6dB Bandwidth (kHz)	Result				
2402.0	505	Pass				
2440.0	550	Pass				
2480.0	580	Pass				

N°: 12497-FCC-IC-1


10. Maximum Peak Output power

TEST: Maximum peak conducted output power					
Method: A radiated measurement is performed. The RBW is wide enough to capture the maximum amplitude level (1MHz). The SPAN is wide enough to capture all products of the modulation process. A MaxHold Peak detector is used. Radiated field strength of RF Output Power is measured at 3m in a Full Anechoic Chamber (FAC) that complies with ANSI C63.10. Maximum field strength (Peak) is performed by rotating the EUT 360°. All frequencies were investigated in both horizontal and vertical antenna polarity. Three orthogonal axis measurements on EUT are performed to obtain the maximum peak field strength, with a 60° rotation on each axis. (Clause 6.6.5 of ANSI C63.10). The tested equipment is set to transmit operation with modulation on low, mid and high channels.					
Laboratory Parameters:	Required prior to the test During the test				
Ambient Temperature	10 to 40 °C 23°C ± 2			C ± 2	
Relative Humidity	10 to 90 %		58%	% ± 5	
Limits	s - FCC Part 15.247 (b) / RSS-247 §5	i.4 (d)			
	Limits (c	lBμV/m)		
Frequency (MHz)	Level / Detector		Results	S	
2400 to 2483.5	36 dBm / Pk / 3m (Radiated) Pass				
2400 to 2483.5	30 dBm / Pk (Conducted) Pass				
Supplementary information: Test location: SMEE. Test date: July 5 th , 2018. Tested by L. CHAPUS					

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Horn antenna	ETS-LINDGREN	3115	ANT-141-013	2014/3	2019/3		
RF cable	Pasternack RF	PE302-120	CAB-131-024	2018/4	2019/4		
RF cable	HUBER+SUHNER	SF104	CAB-141-030	2018/4	2019/4		
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6		
Turntable	Innco- Systems	CT0800	PLA-141-001				
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3		

Tabula	ated Resu	Its for Maxim	num peak output po	wer (Radiated m	neasurement)	
		Normal n	node (Standalone)			
FREQ	trength 3m	Calculed EIRP	Limit	Result		
(MHz)	(dE	βμV/m)	(dBm)	(dBm)		
2402		91.6	-3.7	36.0	Pass	
2440		96.2	0.9	36.0	Pass	
2480		94.4	-0.9	36.0	Pass	
		Charge m	node (Companion)			
FREQ	Field S	trength 3m	Calculed EIRP	Limit	Result	
(MHz)		βμV/m)	(dBm)	(dBm)		
2402		90.8	-4.5	36.0	Pass	
2440		96.0	0.7	36.0	Pass	
2480		94.5	-0.8	36.0	Pass	
RBW:	1MHz					
Measurement distance:		3m				
Limit:		FCC Part 15.247 / RSS-247				
Final measurement detec	tor:	Peak				
Wide Measurement Uncer	rtainty:	± 5.6dB (k=2)				
RESULT:		PASS				
Note:		PASS (1): The field strength (level) is calculated by adding the Antenna Factor Cable Factor, and subtracting the Amplifier Gain (if any) from the measureading. The basic equation is as follow: FS = RA + AF + CF - AG Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain Total factor (dB) is AF + CF - AG Margin value = Emission level - Limit value (2): EIRP is calculated using the following equation: EIRP = E + 20xlog (D) - 104.8 - GR Where EIRP = Equivalent Isotropic Radiated Power in dBm E = Electric field strength in dBμV/m D = Measuring distance in meter GR = Ground reflection in dB (0dB above 1GHz)			any) from the measured	

Tabulated Results for Maximum peak output power (Conducted)					
FREQ	Conduct	ed power	Limit	Result	
(MHz)	(dE	Bm)	(dBm)		
2402	-3	.7	30.0	Pass	
2440	0	.9	30.0	Pass	
2480	-0	.8	30.0	Pass	
RBW:		1MHz			
Limit:	FC	FCC Part 15.247 / IC RSS-247			
Final measurement detect	tor: Pe	Peak			
RESULT:	PA	PASS			
Note:		(1): Maximum conducted Peak output power is calculated as follow: Pc = EIRP - G Where Pc = Conducted power dBm EIRP = Equivalent Isotropic Radiated Power in dBm G = Antenna gain in dBi (0dBi, as declared by the manufacturer)			
	(2): Worst case measurement for standalone watch and Companion + wat				

N°: 12497-FCC-IC-1

11. Maximum Power Spectral Density Level in the fundamental emission

TEST: Maximum Peak Power Spectral Density				
Method: The PSD is derived from maximum peak output power (Conducted). See chapter 10 for results.				
Laboratory Parameters: Required prior to the test During				
Ambient Temperature	10 to 40 °C	23°C ± 2		
Relative Humidity	10 to 90 %	58% ± 5		
Limits	- FCC Part 15.247 (e) / RSS-247 §5.2 (b)			
Frequency (MHz)	Level (Detector)	Li	mit	
2441.75	2441.75 8 dBm/3kHz (Pk) Pass			
Supplementary information: Test location: SMEE. Test date: July 5 th , 2018. Tested by L. CHA	PUS	1		

Tabulated Results for Maximum Power Spectral Density					
Frequency (MHz)	PSD (dBm/3kHz)	Limit	Result		
2402	-3.7 [1]	8dBm/3kHz	Pass		
2440	0.9 [1]	8dBm/3kHz	Pass		
2480	-0.8 [1]	8dBm/3kHz	Pass		
RBW:	100kHz				
Limit:	FCC Part 15.247 /	FCC Part 15.247 / RSS-247			
Final measurement detec	tor: Peak	Peak			
RESULT:	PASS	PASS			
Note:					

^{[1]:} Measured output power reported. Maximum Peak Output power complies with the PSD limit. See Clause 11.10.1 of ANSI C63.10 (2013).

Test date: July 5th, 2018. Tested by L. CHAPUS

BiConiLog antenna

Horn antenna
Horn antenna

RF cable

Rapport d'essai / Test Report

N°: 12497-FCC-IC-1

12. Unwanted emissions in Non-Restricted Frequency bands

TEST: Unwanted emissions in Non-Restricted Frequency Bands						
Method: Measurements were performed on a 3-meter Open Area Test Site (OATS) for frequency below 1GHz. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in horizontal and vertical polarities. Final measurements (Peak) were then performed by rotating the EUT on 360° and adjusting the receive antenna height from 1 to 4 m For frequency above 1GHz, final measurements were made at 3m in a Full Anechoic Chamber (FAC) that complies with ANSI C63.10. Measurements were performed at an antenna to EUT separation distance of 3 meter. The EUT was rotated 360° about its azimuth with the receive antenna in horizontal and vertical polarities. Three orthogonal axis measurements on EUT are performed to obtain the maximum peak field strength, with 60° rotation on each axis. (Clause 6.6.5 of ANSI C63.10). A pre-scan frequency identification of the EUT has been performed in full anechoic chamber. The measured radiated field of the EUT is performed (or corrected) at 3-meters of distance. Antenna is 1.25-meters high. The pre-characterization graphs are obtained in PEAK detection with 360° continuous rotation of the device under test.						
Laboratory Parameters:	Required	d prior to the test	During the test			
Ambient Temperature	10	0 to 40 °C	23°C ±	: 2		
Relative Humidity	10	0 to 90 %	58% ± 5			
Fully configured sample scanned	Frequency ran	Measurement Point				
over the following frequency range	30MHz – 25GHz		3 m measurement dista			
Limi	ts – FCC Part 15.2	247 (d) / RSS-247 § 5.5				
		Limits (dBµV/n	n)			
Frequency (MHz)	Detector / Analyser RBW	Limit	Resul	ts		
30 to 25000 Pk / 100kHz		20dB below the maximum Peak level	Pass	3		
Supplementary information: Test location: SMEE.						

		Test Equipment Us	sed		
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Log-periodic antenna	TDK	PLP3003	ANT-101-001	2017/5	2019/5
Biconnic antenna	COM-POWER	AB- 900	ANT-101-003	2017/5	2019/5
Loop antenna	EMCO	6502	ANT-101-009	2017/8	2019/8

3142B

3115

3116

RG214U

ANT-101-010

ANT-141-013

ANT-161-014

CAB-141-029

2017/7

2014/3

2017/12

2018/4

EMCO

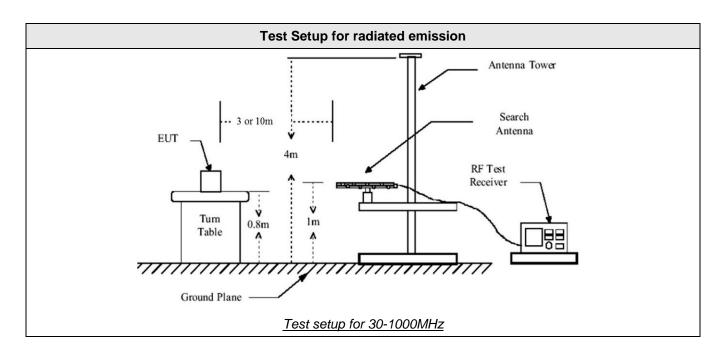
ETS-LINDGREN

ETS-LINDGREN

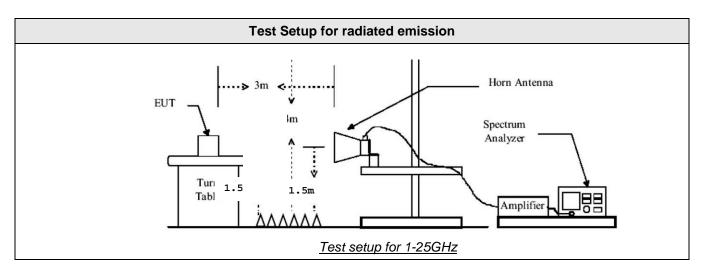
HUBER+SUHNER

Spectrum analyzer Rohde&Schwarz FSV40 ASP-171-004 2017/5 2019/5 RF cable OATS/25m CAB-101-017 2018/4 2019/4 Div 2018/4 2019/4 RF cable Pasternack RF PE302-120 CAB-131-024 RF cable **HUBER+SUHNER** RG214U CAB-141-026 2018/4 2019/4

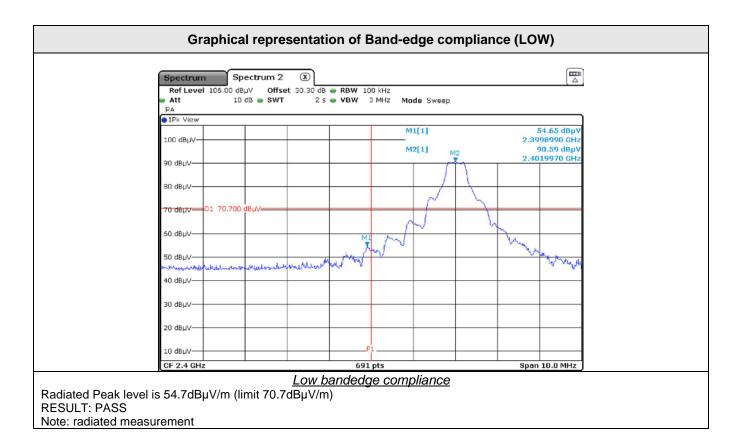
2019/7


2019/3

2022/12


2019/4

	Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due			
RF cable	HUBER+SUHNER	SF104	CAB-141-030	2018/4	2019/4			
RF cable	HUBER+SUHNER	SF102 (K/2m)	CAB-171-034	2017/5	2019/5			
RF cable	HUBER+SUHNER	SF102 (K/3m)	CAB-171-034	2017/5	2019/5			
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6			
Antenna mast	Innco- Systems	MA4000EP	MAT-101-001	-	-			
Turntable	Innco- Systems	DS1200S	PLA-101-001	-	-			
Turntable	Innco- Systems	CT0800	PLA-141-001					
Pre-amplifier	PE	1524	PRE-101-002	2017/6	2018/6			
Pre-amplifier	SMEE	18-40GHz	PRE-171-004	2017/12	2018/12			
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3			
OATS	Div	10m	SIT-101-001	2017/7	2020/7			
EMC Software	NEXIO	BAT EMC V3.8	SOF-101-001	-	-			

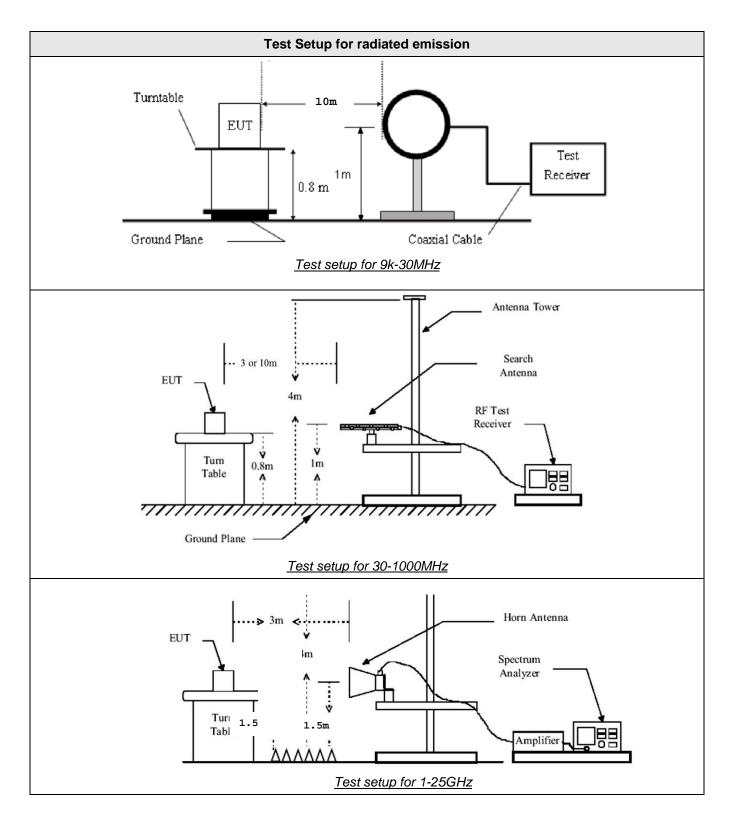


Tabulated R	Tabulated Results for Peak Output Power Reference level					
Normal mode (Standalone)						
FREQ		Field Strength 3m				
(MHz)		(dBµV/m)				
2402.0		90.7				
2440.0		95.3				
2480.0		93.5				
Charge mode (Companion)						
FREQ		Field Strength 3m				
(MHz)		(dBµV/m)				
2402.0		90.9				
2440.0		95.1				
2480.0		93.6				
RBW:	100kHz					
Measurement distance:	3m					
Limit:	Ref. level only –	For 15.247 (d) / RSS-247 § 5.5				
Final measurement detector:	Peak					
Wide Measurement Uncertainty:	± 5.6dB (k=2)					
Note:	Limit is 70.7 dB	(1): Only for identification of limit in non-restricted band Limit is 70.7 dBµV/m Peak for out-of-band frequencies in Non- Restricted bands (with a 100kHz RBW on the spectrum analyser)				

	Tabulated Re	esults	for Unwanted emiss	ions in Non-Restric	ted bands
FREQ	Field Strength	3m	Limit	Margin	Result
(MHz)	(dBµV/m)		(dBµV/m)	(dBµV/m)	(dBµV/m)
2399.899	54.7		70.7	-16.0	Pass
4804.0	57.3		70.7	-13.4	Pass
4880.5	57.1		70.7	-13.6	Pass
4960.5	57.9		70.7	-12.8	Pass
7206.6	55.8		70.7	-14.9	Pass
7320.0	56.3		70.7	-14.4	Pass
9607.2	59.9		70.7	-10.8	Pass
9921.0	60.0		70.7	-10.7	Pass
12010.8	60.8		70.7	-9.9	Pass
RBW:		100k	Hz		
Measurement distan	ce:	3m			
Limit: 15.247 / RSS-247					
Final measurement of	detector:	Peak	, •		
Wide Measurement U	Jncertainty:	± 5.6	dB (k=2)		
RESULT:		PAS	3		
Note:		(1): The field strength (level) is calculated by adding the Anter Factor and Cable Factor, and subtracting the Amplifier Gain (if a from the measured reading. The basic equation is as follow: FS = RA + AF + CF - AG Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain Total factor (dB) is AF + CF - AG Margin value = Emission level - Limit value (2): Peak pre-scans not performed at 3-meters distance are corrected as follow: M@3m = M@Dm + 20 x log (Dm / 3m) Where D is the measurement distance in meter (3): All frequencies not specified have margin < -10dB (4): Worst case between charge mode and normal used mode			Amplifier Gain (if any) is as follow: distance are corrected

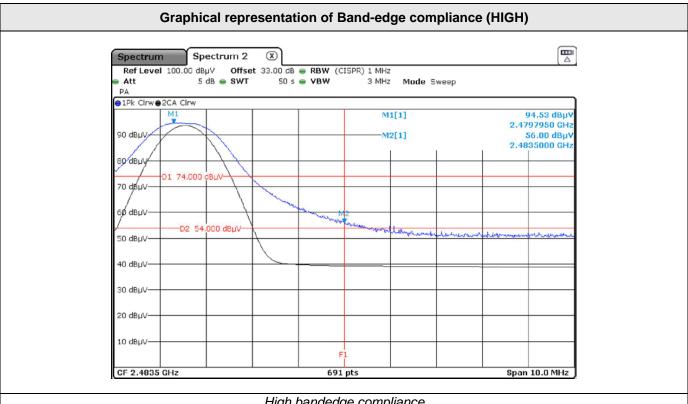
N°: 12497-FCC-IC-1

13. Unwanted emissions in Restricted Frequency bands


TEST: Unwanted emissions into Re	estricted Frequency Bands			Verdict
Method: Measurements were performed on a 3-meter Open Area Test Site (OATS) for frequency below 1GHz. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in horizontal and vertical polarities. Final measurements (Peak) were then performed by rotating the EUT on 360° and adjusting the receive antenna height from 1 to 4 m For frequency above 1GHz, final measurements were made at 3m in a Full Anechoic Chamber (FAC) that complies with ANSI C63.10. Measurements were performed at an antenna to EUT separation distance of 3 meter. The EUT was rotated 360° about its azimuth with the receive antenna in horizontal and vertical polarities. Three orthogonal axis measurements on EUT are performed to obtain the maximum peak field strength, with 60° rotation on each axis. (Clause 6.6.5 of ANSI C63.10). A pre-scan frequency identification of the EUT has been performed in full anechoic chamber. The measured radiated field of the EUT is performed (or corrected) at 3-meters of distance. Antenna is 1.25-meters high. The pre-characterization graphs are obtained in PEAK detection with 360° continuous rotation of the device under test.				
Laboratory Parameters:	Required prior to the test		During th	e test
Ambient Temperature	10 to 40 °C		23°C :	± 2
Relative Humidity	10 to 90 %		58% ±	: 5
	Frequency range on each side of	line	Measureme	ent Point
Fully configured sample scanned over the following frequency range	9kHz – 30MHz 10 m mea		10 m measurement distance	
	30MHz – 25GHz	3 m measurement distance		
Limits – FCC Part 15.205	, 15.209 (a), 15.247 (d) / RSS-GEN §	8.9, §8	.10, RSS-247 §5.	5
Fragues av. (MIII-)	Limits (d	lΒμV/m)	
Frequency (MHz)	Level / Detector / Distance		Results	
0.009 to 0.090	107.6 – 87.6 / AV / 10m 127.6 – 107.6 / PK / 10m		Pass	
0.090 to 0.110	87.6 – 85.9 / QP / 10m		Pass	
0.110 to 0.490	85.7 – 72.9 / AV / 10m 105.7 – 92.9 / PK / 10m		Pass	
0.490 to 1.705	52.9 – 42.1 / QP / 10m		Pass	
1.705 to 30	48.6 / QP / 10m		Pass	
30 to 88	40.0 / QP / 3m		Pass	
88 to 216	43.5 / QP / 3m	Pass		
216 to 960	46.0 / QP / 3m		Pass	
960-1000	54.0 / QP / 3m	Pass		
Above 1GHz	54.0 / AV / 3m 74.0 / PK / 3m		Pass	
Supplementary information: Test location: SMEE. Test date: July 5 th , 2018. Tested by L. CHA	APUS			

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Log-periodic antenna	TDK	PLP3003	ANT-101-001	2017/5	2019/5		
Biconnic antenna	COM-POWER	AB- 900	ANT-101-003	2017/5	2019/5		
Loop antenna	EMCO	6502	ANT-101-009	2017/8	2019/8		
BiConiLog antenna	EMCO	3142B	ANT-101-010	2017/7	2019/7		
Horn antenna	ETS-LINDGREN	3115	ANT-141-013	2014/3	2019/3		
Horn antenna	ETS-LINDGREN	3116	ANT-161-014	2017/12	2022/12		
Spectrum analyzer	Rohde&Schwarz	FSV40	ASP-171-004	2017/5	2019/5		
RF cable	Div	OATS/25m	CAB-101-017	2018/4	2019/4		
RF cable	Pasternack RF	PE302-120	CAB-131-024	2018/4	2019/4		
RF cable	HUBER+SUHNER	RG214U	CAB-141-026	2018/4	2019/4		
RF cable	HUBER+SUHNER	RG214U	CAB-141-029	2018/4	2019/4		
RF cable	HUBER+SUHNER	SF104	CAB-141-030	2018/4	2019/4		
RF cable	HUBER+SUHNER	SF102 (K/2m)	CAB-171-034	2017/5	2019/5		
RF cable	HUBER+SUHNER	SF102 (K/3m)	CAB-171-034	2017/5	2019/5		
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6		
Antenna mast	Innco- Systems	MA4000EP	MAT-101-001	-	-		
Turntable	Innco- Systems	DS1200S	PLA-101-001	-	-		
Turntable	Innco- Systems	CT0800	PLA-141-001				
Pre-amplifier	PE	1524	PRE-101-002	2017/6	2018/6		
Pre-amplifier	SMEE	18-40GHz	PRE-171-004	2017/12	2018/12		
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3		
OATS	Div	10m	SIT-101-001	2017/7	2020/7		
EMC Software	NEXIO	BAT EMC V3.8	SOF-101-001	-	-		

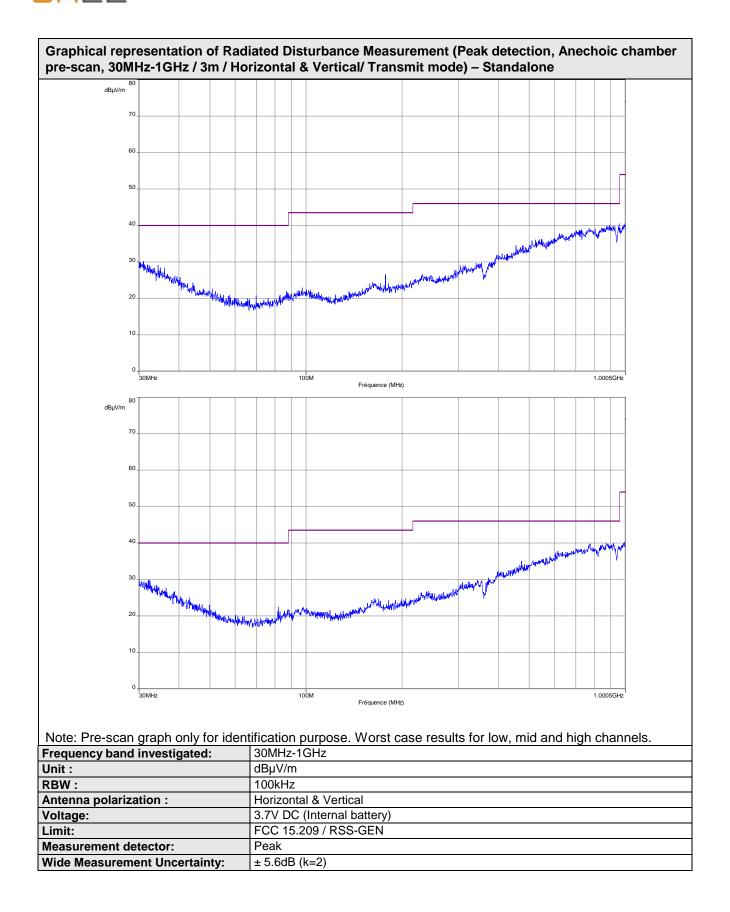
Tabulated Results for Unwanted emissions (9kHz-30MHz)								
FREQ	RF field @ 30m	Limit @ 30m)	Margin	Antenna angle	Table angle	Correc. Fact. (CF)	
MHz	(QP) dBµV/m	(QP) dBµV/m	l	dB	Degree	Degree	dB	
				Margin < -10dB				
	Supplementary information: Frequency list measured on the Open Area Test Site has been created with pre-scan results.							
Frequency ban	d investigated:		9kHz-30MHz					
RBW:	RBW:			200Hz (9kHz-150kHz)				
			9kHz (150kHz-30MHz)					
Measurement of	distance:		10r	n				
Limit:			FCC Part 15.205 - 15.209 / RSS-GEN					
Final measurer	ment detector:		Pea	ak / Quasi-Peak /	Average			
Wide Measurer	ment Uncertaint	y:	± 3.5 dB (k=2)					
Note:			*1: acc	: Correction facto Measure have cording to require @30m = M@10m	been done at ments of 15.209.	10m distance	and corrected	


Tabulated Results for Unwanted emissions (30MHz-1GHz)										
FREQ	Meter reading	Meter reading	Total factor	Field level	Field level	Pol	Antenna height	Table angle	Limit	Margin
MHz	(QP) dBµV	(Pk) dBµV	dB	(QP) dBµV/m	(Pk) dBµV/m		cm	Degré	(QP) dBµV/m	dB
Margin < -10dB Supplementary information:										
			Area Test	Site has been	n created wi	th pre-s	scan results			
Frequency list measured on the Open Area Test Site has been created with pre-scan results. Frequency band investigated: 30MHz-1GHz										
RBW: 120kHz										
Measurement distance: 3m										
Limit: FCC Part 15.205 - 15.209 / RSS-GEN										
Final mea	surement d	letector:		Quasi-Peal	k					
Wide Mea	surement l	Jncertainty		± 5.2dB (k=	=2)					
RESULT:				PASS						
Field Stre	ngth Calcu	lation:		AF CF	Factor, and reading. The AF + CF - Field Strace = Antenna = Cable Factor (dB) is AF	d subtrate basing AG ength r Amp Factor r Gain + CF	acting the Acceptantial control of the Acceptantial contro	Amplifier (is as follo	Gain (if an	

Tabulated Results for Unwanted emissions (1GHz-26GHz)						
Field Strength 3m	Detector	Limit	Margin (dBµV/m)	Result		
56.0	Pk	74	-18.0	Pass		
39.3	Avg	54	-14.7	Pass		
57.3	Pk	74	-16.7	Pass		
44.2	Avg	54	-9.8	Pass		
57.3	Pk	74	-16.7	Pass		
43.3	Avg	54	-10.7	Pass		
58.0	Pk	74	-16.0	Pass		
44.7	Avg	54	-9.3	Pass		
58.9	Pk	74	-5.1	Pass		
46.3	Avg	54	-7.7	Pass		
58.2	Pk	74	-5.8	Pass		
44.6	Avg	54	-9.4	Pass		
59.5	Pk	74	-14.5	Pass		
46.2	Avg	54	-7.8	Pass		
	1MHz / 10Hz (AV)					
tance:						
	·	15.209, 15.247 / F	J9, 15.247 / RSS-Gen, RSS-247			
nt Uncertainty:	. ,					
	 (1): The field strength (level) is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation is as follow: FS = RA + AF + CF - AG Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain Total factor (dB) is AF + CF - AG Margin value = Emission level - Limit value (2): Peak pre-scans not performed at 3-meters distance are corrected as follow: M@3m = M@Dm + 20 x log (Dm / 3m) Where D is the measurement distance in meter (3): All frequencies not specified have margin < -10dB (for peak and average detector) (4): Worst case between charge mode and normal used mode 					
	(dBµV/m) 56.0 39.3 57.3 44.2 57.3 43.3 58.0 44.7 58.9 46.3 58.2 44.6 59.5	Field Strength 3m (dBμV/m) Detector 56.0	Title Company Compa	Clay Clay		

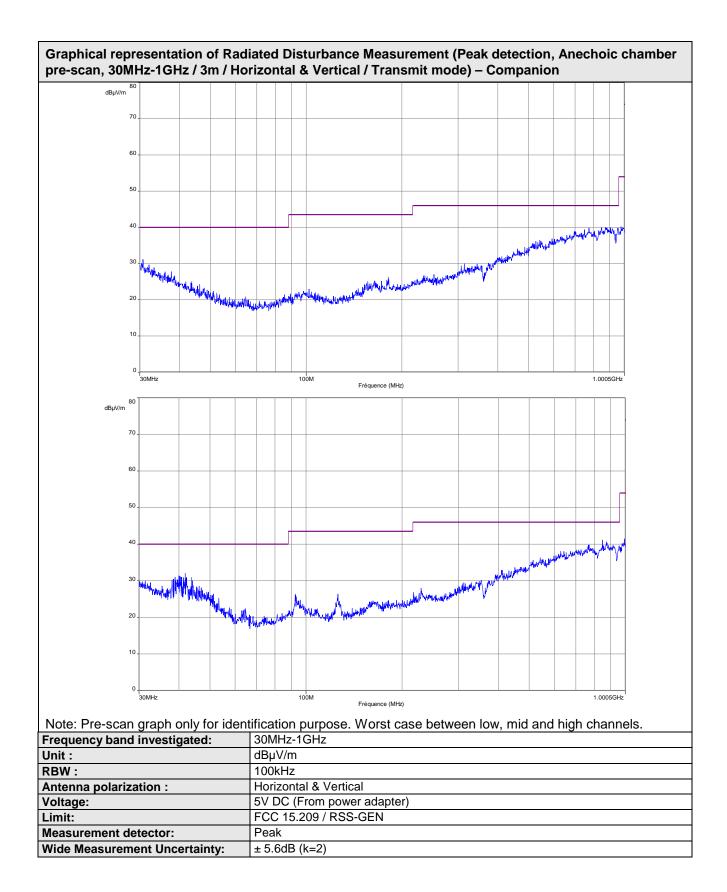
N°: 12497-FCC-IC-1

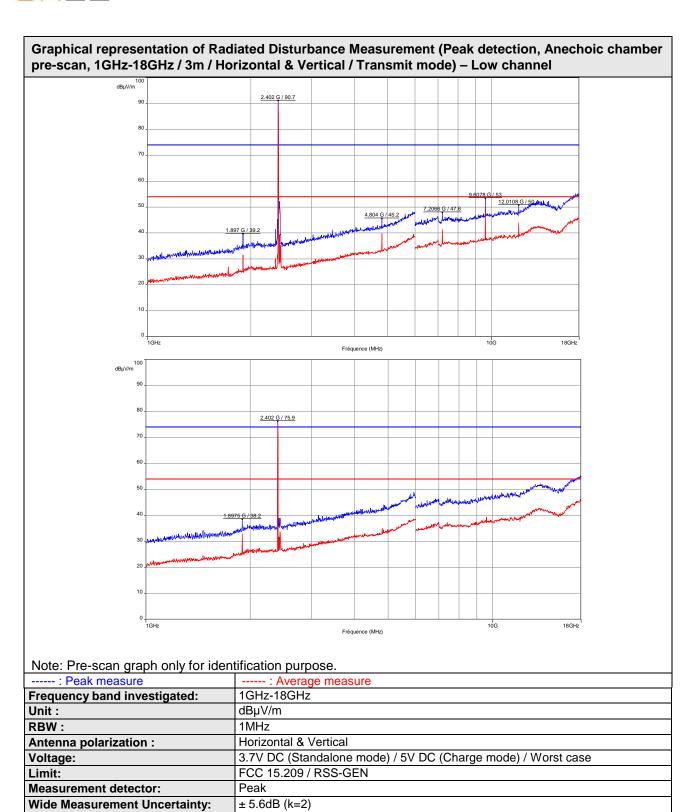
High bandedge compliance


Radiated Peak level is 56.0dBµV/m (limit 74dBµV/m)

Radiated Average level is 39.3dBµV/m (limit 54dBµV/m, CISPR Average detector measurement)

RESULT: PASS


Note: radiated measurement



Voltage:

Measurement detector:

Wide Measurement Uncertainty:

Limit:

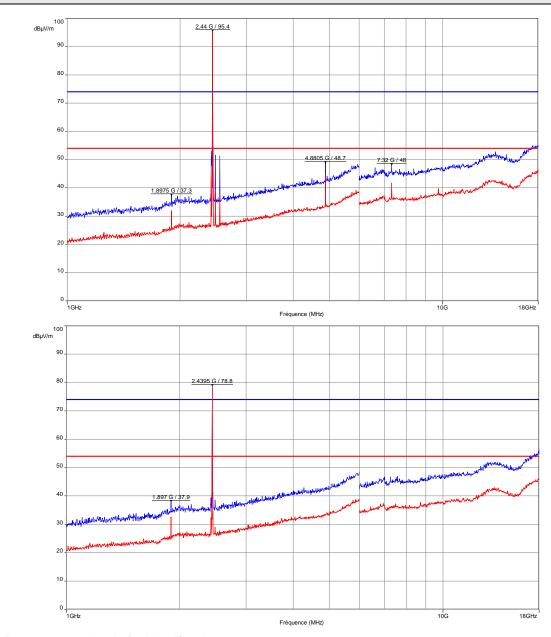
N°: 12497-FCC-IC-1

Graphical representation of Radiated Disturbance Measurement (Peak detection, Anechoic chamber pre-scan, 18GHz-26GHz / 3m / Horizontal & Vertical / Transmit mode) - Low channel dBμV/m 26GHz Fréquence (MHz) Note: Pre-scan graph only for identification purpose. -----: Peak measure -----: Average measure Frequency band investigated: 18GHz-26GHz Unit: dBµV/m RBW: 1MHz Antenna polarization : Horizontal & Vertical

3.7V DC (Standalone mode) / 5V DC (Charge mode) / Worst case

FCC 15.209 / RSS-GEN

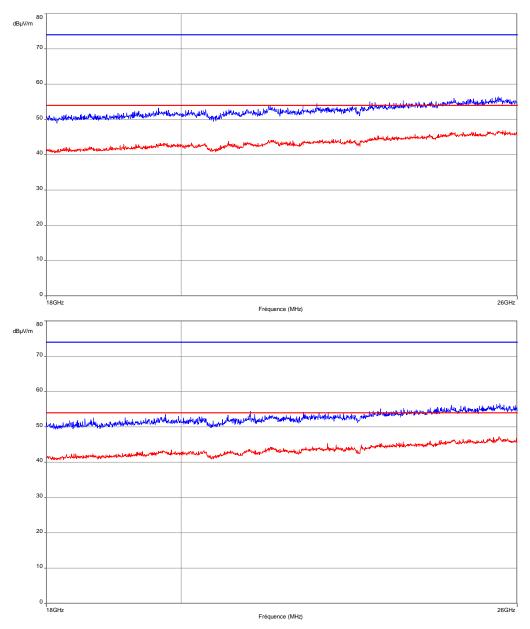
Peak


± 5.6dB (k=2)

N°: 12497-FCC-IC-1

Graphical representation of Radiated Disturbance Measurement (Peak detection, Anechoic chamber pre-scan, 1GHz-18 GHz / 3m / Horizontal & Vertical / Transmit mode) – Mid channel

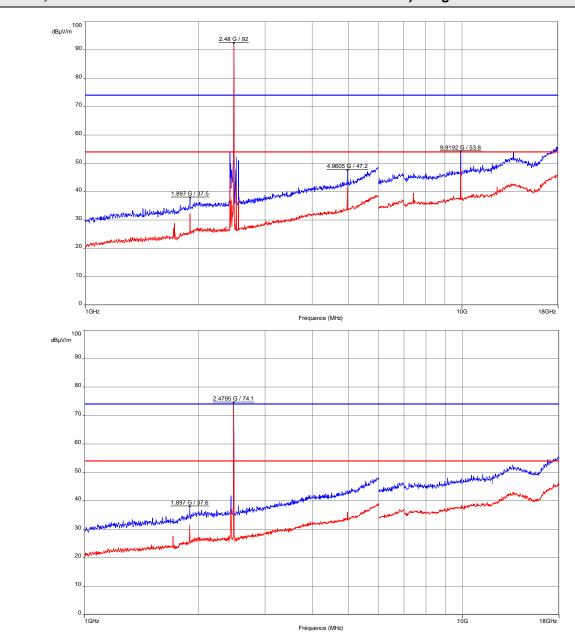
Note: Pre-scan graph only for identification purpose.


: Peak measure	: Average measure
Frequency band investigated:	1GHz-18GHz
Unit:	dBµV/m
RBW:	1MHz
Antenna polarization :	Horizontal & Vertical
Voltage:	3.7V DC (Standalone mode) / 5V DC (Charge mode) / Worst case
Limit:	FCC 15.209 / RSS-GEN
Measurement detector:	Peak
Wide Measurement Uncertainty:	± 5.6dB (k=2)

SMEE

N°: 12497-FCC-IC-1

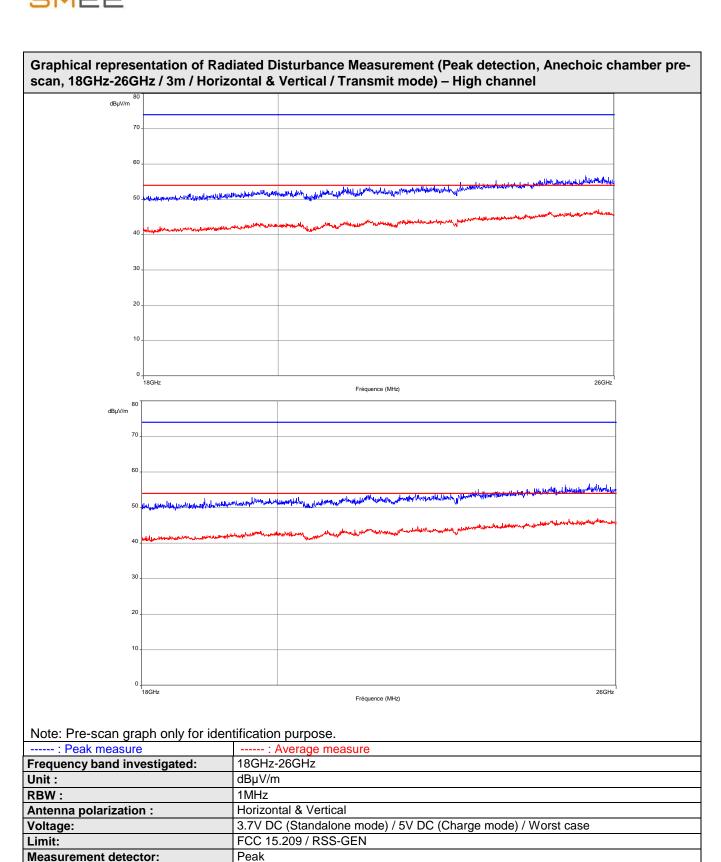
Note: Pre-scan graph only for identification purpose.


: Peak measure	: Average measure
Frequency band investigated:	18GHz-26GHz
Unit:	dBµV/m
RBW:	1MHz
Antenna polarization :	Horizontal & Vertical
Voltage:	3.7V DC (Standalone mode) / 5V DC (Charge mode) / Worst case
Limit:	FCC 15.209 / RSS-GEN
Measurement detector:	Peak
Wide Measurement Uncertainty:	± 5.6dB (k=2)

N°: 12497-FCC-IC-1

Graphical representation of Radiated Disturbance Measurement (Peak detection, Anechoic chamber pre-scan, 1GHz-18GHz / 3m / Horizontal & Vertical / Transmit mode) – High channel

Note: Pre-scan graph only for identification purpose.


: Peak measure	: Average measure
Frequency band investigated:	1GHz-18GHz
Unit:	dBµV/m
RBW:	1MHz
Antenna polarization :	Horizontal & Vertical
Voltage:	3.7V DC (Standalone mode) / 5V DC (Charge mode) / Worst case
Limit:	FCC 15.209 / RSS-GEN
Measurement detector:	Peak
Wide Measurement Uncertainty:	± 5.6dB (k=2)

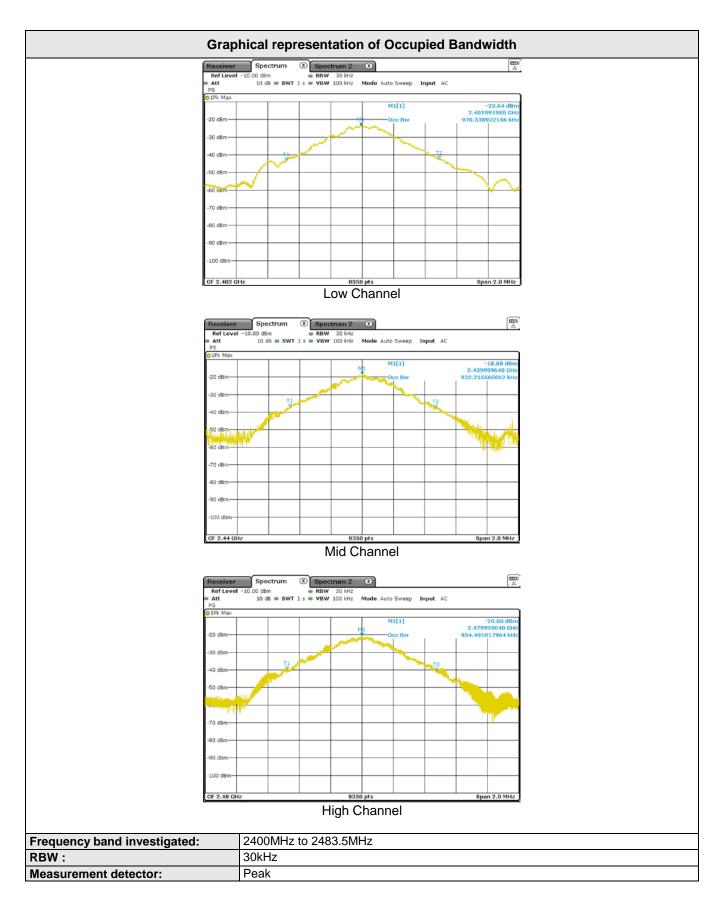
Wide Measurement Uncertainty:

± 5.6dB (k=2)

Rapport d'essai / Test Report

N°: 12497-FCC-IC-1

14. Occupied bandwidth (99%)


TEST: Occupied bandwidth (99%) / RSS-GEN					
Method: The setup is in an anechoic chamber. The spectrum analyzer is connected to the measuring antenna. A radiated measurement is performed. The RBW is set in the range of 1% to 5% of the occupied bandwidth, with VBW ≥ 3 x RBW. The SPAN is wide enough to capture all products of the modulation process. A MaxHold Peak detector is used. Measure is performed with OBW 99% function of the spectrum analyser. The tested equipment is set to transmit operation with modulation on low, mid and high channels.					
Laboratory Parameters: Required prior to the test During the test					
Ambient Temperature 10 to 40 °C 23°C ± 2					
Relative Humidity 10 to 90 % $54\% \pm 5$					
Supplementary information: Test location: SMEE. Test date: September 4 th , 2018. Tested by	y L. CHAPUS				

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Horn antenna	ETS-LINDGREN	3115	ANT-141-013	2014/3	2019/3		
RF cable	Pasternack RF	PE302-120	CAB-131-024	2018/4	2019/4		
RF cable	HUBER+SUHNER	SF104	CAB-141-030	2018/4	2019/4		
Anechoic chamber	COMTEST	214263	CAG-141-001	2017/6	2020/6		
Turntable	Innco- Systems	CT0800	PLA-141-001				
Measuring receiver	Rohde&Schwarz	ESRP	REC-151-003	2017/3	2019/3		

Tabulated Results for Occupied Bandwidth	
Frequency (MHz)	99% Occupied Bandwidth (kHz)
2402.0	970.539
2440.0	932.216
2480.0	954.491

