RADIO TEST REPORT Report No.: STS2306018W03 Issued for SHEN ZHEN DX-SMART TECHNOLOGY CO., LTD Room 601, Block A1, HuafengZhigu, Hangkong Road, Baoan District, Shenzhen, China | Product Name: | Bluetooth Module | |------------------|------------------| | Brand: | N/A | | Model Number: | DX-BT04-E02 | | Series Model(s): | N/A | | FCC ID: | 2AKS8DX-BT04-E02 | | Test Standard: | FCC Part 15.247 | Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample. # **TEST RESULT CERTIFICATION** | 11 | EST RESULT CERTIFICATION | | | | | | |---|---|--|--|--|--|--| | Applicant's Name: | SHEN ZHEN DX-SMART TECHNOLOGY CO., LTD | | | | | | | Address: | Room 601, Block A1, HuafengZhigu, Hangkong Road, Baoan District, Shenzhen, China | | | | | | | Manufacturer's Name: | SHEN ZHEN DX-SMART TECHNOLOGY CO., LTD | | | | | | | Address: | Room 601, Block A1, HuafengZhigu, Hangkong Road, Baoan
District, Shenzhen, China | | | | | | | Product Description | | | | | | | | Product Name: | Bluetooth Module | | | | | | | Brand: | N/A | | | | | | | Model Number: | DX-BT04-E02 | | | | | | | Series Model(s): | N/A | | | | | | | Test Standards | FCC Part15.247 | | | | | | | Test Procedure: | ANSI C63.10-2013 | | | | | | | under test (EUT) is in compliance
sample identified in the report.
This report shall not be reproduce | been tested by STS, the test results show that the equipment with the FCC requirements. And it is applicable only to the tested ed except in full, without the written approval of STS, this document, personal only, and shall be noted in the revision of the document. | | | | | | | Date of Test | | | | | | | | Date of receipt of test item: | 05 June 2023 | | | | | | | Date (s) of performance of tests.: | 05 June 2023 ~ 14 June 2023 | | | | | | | Date of Issue | 14 June 2023 | | | | | | | Test Result: | Pass | | | | | | | Testing Engineer | Chins cher | | | | | | | | (Chris Chen) | | | | | | | Technical Manag | ger: Sean She | | | | | | | | (Sean she) | | | | | | | Authorized Signa | atory: honey funey | | | | | | (Bovey Yang) | Table of Contents | Page | |--|------| | 1. SUMMARY OF TEST RESULTS | 6 | | 1.1 TEST FACTORY | 7 | | 1.2 MEASUREMENT UNCERTAINTY | 7 | | 2. GENERAL INFORMATION | 8 | | 2.1 GENERAL DESCRIPTION OF THE EUT | 8 | | 2.2 DESCRIPTION OF THE TEST MODES | 10 | | 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS | 10 | | 2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING | 11 | | 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 12 | | 2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS | 13 | | 2.7 EQUIPMENTS LIST | 14 | | 3. EMC EMISSION TEST | 15 | | 3.1 CONDUCTED EMISSION MEASUREMENT | 15 | | 3.2 RADIATED EMISSION MEASUREMENT | 19 | | 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION | 31 | | 4.1 LIMIT | 31 | | 4.2 TEST PROCEDURE | 31 | | 4.3 TEST SETUP | 32 | | 4.4 EUT OPERATION CONDITIONS | 32 | | 4.5 TEST RESULTS | 32 | | 5. NUMBER OF HOPPING CHANNEL | 33 | | 5.1 LIMIT | 33 | | 5.2 TEST PROCEDURE | 33 | | 5.3 TEST SETUP | 33 | | 5.4 EUT OPERATION CONDITIONS | 33 | | 5.5 TEST RESULTS | 33 | | 6. AVERAGE TIME OF OCCUPANCY | 34 | | 6.1 LIMIT | 34 | | 6.2 TEST PROCEDURE | 34 | | 6.3 TEST SETUP | 34 | | 6.4 EUT OPERATION CONDITIONS | 34 | | 6.5 TEST RESULTS | 34 | | 7. HOPPING CHANNEL SEPARATION MEASUREMEN | 35 | | Table of Contents | Page | |---|----------| | 7.1 LIMIT | 35 | | 7.2 TEST PROCEDURE | 35 | | 7.3 TEST SETUP | 35 | | 7.4 EUT OPERATION CONDITIONS | 35 | | 7.5 TEST RESULTS | 35 | | 8. BANDWIDTH TEST | 36 | | 8.1 LIMIT | 36 | | 8.2 TEST PROCEDURE | 36 | | 8.3 TEST SETUP | 36 | | 8.4 EUT OPERATION CONDITIONS | 36 | | 8.5 TEST RESULTS | 36 | | 9. OUTPUT POWER TEST | 37 | | 9.1 LIMIT 9.2 TEST PROCEDURE | 37
37 | | 9.3 TEST SETUP | 37
37 | | 9.4 EUT OPERATION CONDITIONS | 37 | | 9.5 TEST RESULTS | 37 | | 10. ANTENNA REQUIREMENT | 38 | | 10.1 STANDARD REQUIREMENT | 38 | | 10.2 EUT ANTENNA | 38 | | APPENDIX 1-TEST DATA | 39 | | 1. DWELL TIME | 39 | | 2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER | 43 | | 3. MAXIMUM PEAK CONDUCTED OUTPUT POWER | 46 | | 420DB BANDWIDTH | 49 | | 5. CARRIER FREQUENCIES SEPARATION | 52 | | 6. NUMBER OF HOPPING CHANNEL | 55 | | 7. BAND EDGE | 57 | | 8. BAND EDGE(HOPPING) | 60 | | 9. CONDUCTED RF SPURIOUS EMISSION | 63 | | APPENDIX 2-PHOTOS OF TEST SETUP | 67 | Page 5 of 67 Report No.: STS2306018W03 # **Revision History** | Rev. | Issue Date Report NO. | | Effect Page | Contents | | |------|----------------------------|--|-------------------|----------|--| | 00 | 14 June 2023 STS2306018W03 | | ALL Initial Issue | | | | | | | | | | ## 1. SUMMARY OF TEST RESULTS Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02. | DB 336074 D01 13.247 Weas Guidance v03102. | | | | | | | | | |---|--|--------|--|--|--|--|--|--| | FCC Part 15.247,Subpart C | | | | | | | | | | Standard
Section | Judgment | Remark | | | | | | | | 15.207 | Conducted Emission | PASS | | | | | | | | 15.247(a)(1) | Hopping Channel Separation | PASS | | | | | | | | 15.247(a)(1)&(b)(1) | Output Power | PASS | | | | | | | | 15.209 | Radiated Spurious Emission | PASS | | | | | | | | 15.247(d) | Conducted Spurious & Band Edge
Emission | PASS | | | | | | | | 15.247(a)(1)(iii) | Number of Hopping Frequency | PASS | | | | | | | | 15.247(a)(1)(iii) | Dwell Time | PASS | | | | | | | | 15.247(a)(1) | Bandwidth | PASS | | | | | | | | 15.205 | Restricted bands of operation | PASS | | | | | | | | Part 15.247(d)/part
15.209(a) Band Edge Emission | | PASS | | | | | | | | 15.203 | Antenna Requirement | PASS | | | | | | | # NOTE: - (1) 'N/A' denotes test is not applicable in this Test Report. - (2) All tests are according to ANSI C63.10-2013. ## 1.1 TEST FACTORY SHENZHEN STS TEST SERVICES CO., LTD Add.: A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01 ## 1.2 MEASUREMENT UNCERTAINTY The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %. | No. | Item | Uncertainty | |-----|-----------------------------------|-------------| | 1 | RF output power, conducted | ±1.197dB | | 2 | Unwanted Emissions, conducted | ±2.896dB | | 3 | All emissions, radiated 9K-30MHz | ±3.84dB | | 4 | All emissions, radiated 30M-1GHz | ±3.94dB | | 5 | All emissions, radiated 1G-6GHz | ±4.59dB | | 6 | All emissions, radiated>6G | ±5.22dB | | 7 | Conducted Emission (9KHz-150KHz) | ±2.14dB | | 8 | Conducted Emission (150KHz-30MHz) | ±2.54dB | | 9 | Occupied Channel Bandwidth | ±3.5% | | 10 | Dwell time | ±3.2% | ## 2. GENERAL INFORMATION ## 2.1 GENERAL DESCRIPTION OF THE EUT | Product Name | Bluetooth Module | |-------------------------|--| | Brand | N/A | | Model Number | DX-BT04-E02 | | Series Model(s) | N/A | | Model Difference | N/A | | Channel List | Please refer to the Note 3. | | Bluetooth | Frequency:2402 – 2480 MHz
Modulation: GFSK(1Mbps) | | Bluetooth Configuration | BR | | Antenna Type | PCB | | Antenna Gain | 0.37 dBi | | Rating | Input: DC 3.3V | | Hardware version number | V 3.2.0 | | Software version number | V2.0.1 | | Connecting I/O Port(s) | Please refer to the Note 1. | ## Note: - 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual. - 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer. 3. | | Channel List | | | | | | | | | | |---------|--------------------|---------|--------------------|---------|--------------------|--|--|--|--|--| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | | | | | 00 | 2402 | 27 | 2429 | 54 | 2456 | | | | | | | 01 | 2403 | 28 | 2430 | 55 | 2457 | | | | | | | 02 | 2404 | 29 | 2431 | 56 | 2458 | | | | | | | 03 | 2405 | 30 | 2432 | 57 | 2459 | | | | | | | 04 | 2406 | 31 | 2433 | 58 | 2460 | | | | | | | 05 | 2407 | 32 | 2434 | 59 | 2461 | | | | | | | 06 | 2408 | 33 | 2435 | 60 | 2462 | | | | | | | 07 | 2409 | 34 | 2436 | 61 | 2463 | | | | | | | 08 | 2410 | 35 | 2437 | 62 | 2464 | | | | | | | 09 | 2411 | 36 | 2438 | 63 | 2465 | | | | | | | 10 | 10 2412 | | 2439 | 64 | 2466 | | | | | | | 11 | 2413 | 38 | 2440 | 65 | 2467 | | | | | | | 12 | 2414 | 39 | 2441 | 66 | 2468 | | | | | | | 13 | 2415 | 40 | 2442 | 67 | 2469 | | | | | | | 14 | 2416 4 | | 2443 | 68 | 2470 | | | | | | | 15 | 2417 | 42 | 2444 | 69 | 2471 | | | | | | | 16 | 2418 | 43 | 2445 | 70 | 2472 | | | | | | | 17 | 2419 | 44 | 2446 | 71 | 2473 | | | | | | | 18 | 2420 | 45 | 2447 | 72 | 2474 | | | | | | | 19 | 2421 | 46 | 2448 | 73 | 2475 | | | | | | | 20 | 2422 | 47 | 2449 | 74 | 2476 | | | | | | | 21 | 2423 | 48 | 2450 | 75 | 2477 | | | | | | | 22 | 2424 | 49 | 2451 | 76 | 2478 | | | | | | | 23 | 2425 | 50 | 2452 | 77 | 2479 | | | | | | | 24 | 2426 | 51 | 2453 | 78 |
2480 | | | | | | | 25 | 2427 | 52 | 2454 | | | | | | | | | 26 | 2428 | 53 | 2455 | | | | | | | | #### 2.2 DESCRIPTION OF THE TEST MODES To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. | | <u> </u> | <u> </u> | |------------|-------------|----------------------| | Worst Mode | Description | Data Rate/Modulation | | Mode 1 | TX CH00 | 1Mbps/GFSK | | Mode 2 | TX CH39 | 1Mbps/GFSK | | Mode 3 | TX CH78 | 1Mbps/GFSK | | Mode 4 | Hopping | GFSK | #### Note: - (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported. - (2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report. #### For AC Conducted Emission | ٠. | | | |----|-----------------------|------------------------| | | | Test Case | | | AC Conducted Emission | Mode 5 : Keeping BT TX | ## 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS ## (1)Standard and Limit According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. (2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones. Numver of shift register stages: Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal) Liner Feedback Shift Register for Generator of the PRBS sequence An example of Pseudorandom Frequency Hoppong Sequence as follow: | 0 | 2 | 4 | 6 | • | | | 1 |
73 | <u>75</u> | 77 | |---|---|---|---|---|--|--|---|--------|-----------|----| Each frequency used equally on th average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals. # (3)Frequency Hopping System This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used. This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule. ## 2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS. | (Control coffusions) | Test program: Bluetooth | | | | |--------------------------------------|-------------------------|--------------|--------------|--| | (Control software) Parameters(1Mbps) | Packet type: | Packet type: | Packet type: | | | | DH1:4:27 | DH3:11:183 | DH5:15:339 | | Page 12 of 67 Report No.: STS2306018W03 | RF Function | Туре | Mode Or
Modulation
type | ANT Gain(dBi) | Power Class | Software For
Testing | |-------------|------|-------------------------------|---------------|-------------|--------------------------| | BT(Only BR) | BR | GFSK | 0.37 | 3 | BK32xx RF
Test_V1.9.1 | # 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test # Conducted Emission Test # 2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. Necessary accessories | Item | Equipment | Mfr/Brand | Model/Type No. | Length | Note | |------|-----------|-----------|----------------|--------|------| | N/A | N/A | N/A | N/A | N/A | N/A | ## Support units | Item | Equipment | Mfr/Brand | Model/Type No. | Length | Note | |------|------------------|-----------|----------------|--------|------| | E-1 | Notebook | LENOVO | Think Pad E470 | N/A | N/A | | E-2 | Notebook Adapter | LENOVO | ADLX45DLC3A | N/A | N/A | | C-1 | USB Cable | N/A | N/A | 150cm | N/A | | | | | | | | ## Note: - (1) For detachable type I/O cable should be specified the length in cm in <code>FLength_</code> column. - (2) "YES" is means "with core"; "NO" is means "without core". # 2.7 EQUIPMENTS LIST | | | RF Radiation Tes | t Equipment | | | |------------------------------|---------------------|-------------------|-----------------|---------------------|---------------------| | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last
Calibration | Calibrated
Until | | Temperature & Humidity | SW-108 | SuWei | N/A | 2023.03.03 | 2024.03.02 | | Pre-Amplifier
(0.1M-3GHz) | EM | EM330 | 060665 | 2022.07.04 | 2023.07.03 | | Pre-Amplifier
(1G-18GHz) | SKET | LNPA-01018G-45 | SK2018080901 | 2022.09.29 | 2023.09.28 | | 18GHz-40GHz
Filter | XINGBO | XBLBQ-GTA44 | 22062003-1 | 2023.03.06 | 2024.03.05 | | Pre-mplifier
(18G-40G) | SKET | LNPA_1840-50 | SK2018101801 | 2023.03.06 | 2024.03.05 | | Positioning
Controller | MF | MF-7802 | MF-780208587 | N/A | N/A | | Signal Analyzer | R&S | FSV 40-N | 101823 | 2022.09.29 | 2023.09.28 | | Switch Control Box | N/A | N/A | N/A | N/A | N/A | | Filter Box | BALUN
Technology | SU319E | BL-SZ1530051 | N/A | N/A | | Active loop
Antenna | ZHINAN | ZN30900C | 16035 | 2023.02.28 | 2024.02.27 | | Bilog Antenna | TESEQ | CBL6111D | 34678 | 2022.09.30 | 2024.09.29 | | Horn Antenna | SCHWARZBE
CK | BBHA 9120D | 02014 | 2021.10.11 | 2023.10.10 | | Horn Antenna | A-INFOMW | LB-180400-KF | J211020657 | 2021.09.28 | 2023.09.27 | | Antenna Mast | MF | MFA-440H | N/A | N/A | N/A | | Turn Table | MF | SC100_1 | 60531 | N/A | N/A | | AC Power Source | APC | KDF-11010G | F214050035 | N/A | N/A | | DC Power Supply | Zhaoxin | RXN 605D | 20R605D11010081 | N/A | N/A | | Test SW | EZ-EMC | | Ver.STSLAB-03A | 1 RE | | | | | Conduction Test | equipment | | | | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until | | Test Receiver | R&S | ESCI | 101427 | 2022.09.29 | 2023.09.28 | | LISN | R&S | ENV216 | 101242 | 2022.09.28 | 2023.09.27 | | LISN | EMCO | 3810/2NM | 23625 | 2022.09.28 | 2023.09.27 | | Temperature & Humidity | HH660 | Mieo | N/A | 2022.09.30 | 2023.09.29 | | Test SW | EZ-EMC | | Ver.STSLAB-03A | A1 CE | | | RF Connected Test | | | | | | | Kind of Equipment |
Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until | | Signal Analyzer | Agilent | N9020A MY51510623 | | 2023.03.01 | 2024.02.28 | | Switch control box | MW | MW100-RFCB | N/A | N/A | N/A | | Temperature &
Humidity | HH660 | Mieo | N/A | 2022.09.30 | 2023.09.29 | | Test SW | MW | | MTS 8310_2.0 | .0.0 | | ## 3. EMC EMISSION TEST ## 3.1 CONDUCTED EMISSION MEASUREMENT ## 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table. | EDECHENCY (MH-) | Conducted Emissionlimit (dBuV) | | | | |-----------------|--------------------------------|-----------|--|--| | FREQUENCY (MHz) | Quasi-peak | Average | | | | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | | | | 0.50 -5.0 | 56.00 | 46.00 | | | | 5.0 -30.0 | 60.00 | 50.00 | | | ## Note: - (1) The tighter limit applies at the band edges. - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. The following table is the setting of the receiver | Receiver Parameters | Setting | |---------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | #### 3.1.2 TEST PROCEDURE - a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN is at least 80 cm from the nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item -EUT Test Photos. ## 3.1.3 TEST SETUP Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units. ## 3.1.4 EUT OPERATING CONDITIONS The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. ## 3.1.5 TEST RESULT | Temperature: | 25.6(C) | Relative Humidity: | 45%RH | |---------------|--------------|--------------------|-------| | Test Voltage: | AC 120V/60Hz | Phase: | L | | Test Mode: | Mode 4 | | | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|--------|--------|--------|--------| | | (MHz) | (dBuV) | Factor(dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.1620 | 46.88 | 10.33 | 57.21 | 65.36 | -8.15 | QP | | 2 | 0.1620 | 29.62 | 10.33 | 39.95 | 55.36 | -15.41 | AVG | | 3 | 1.6020 | 28.87 | 10.30 | 39.17 | 56.00 | -16.83 | QP | | 4 | 1.6020 | 21.26 | 10.30 | 31.56 | 46.00 | -14.44 | AVG | | 5 | 2.0660 | 29.93 | 10.30 | 40.23 | 56.00 | -15.77 | QP | | 6 | 2.0660 | 17.95 | 10.30 | 28.25 | 46.00 | -17.75 | AVG | | 7 | 4.9180 | 21.84 | 10.46 | 32.30 | 56.00 | -23.70 | QP | | 8 | 4.9180 | 9.84 | 10.46 | 20.30 | 46.00 | -25.70 | AVG | | 9 | 7.1500 | 14.87 | 10.62 | 25.49 | 60.00 | -34.51 | QP | | 10 | 7.1500 | 4.89 | 10.62 | 15.51 | 50.00 | -34.49 | AVG | | 11 | 21.8500 | 21.34 | 12.79 | 34.13 | 60.00 | -25.87 | QP | | 12 | 21.8500 | 8.15 | 12.79 | 20.94 | 50.00 | -29.06 | AVG | ## Remark: - 1. All readings are Quasi-Peak and Average values - 2. Margin = Result (Result = Reading + Factor)-Limit - 3. Factor=LISN factor+Cable loss+Limiter (10dB) Page 18 of 67 Report No.: STS2306018W03 | Temperature: | 25.6(C) | Relative Humidity: | 45%RH | |---------------|--------------|--------------------|-------| | Test Voltage: | AC 120V/60Hz | Phase: | N | | Test Mode: | Mode 4 | | | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|--------|--------|--------|--------| | | (MHz) | (dBuV) | Factor(dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.1580 | 47.78 | 10.33 | 58.11 | 65.57 | -7.46 | QP | | 2 | 0.1580 | 29.67 | 10.33 | 40.00 | 55.57 | -15.57 | AVG | | 3 | 0.5460 | 25.73 | 10.50 | 36.23 | 56.00 | -19.77 | QP | | 4 | 0.5460 | 17.24 | 10.50 | 27.74 | 46.00 | -18.26 | AVG | | 5 | 1.5620 | 28.87 | 10.30 | 39.17 | 56.00 | -16.83 | QP | | 6 | 1.5620 | 21.42 | 10.30 | 31.72 | 46.00 | -14.28 | AVG | | 7 | 2.0820 | 29.09 | 10.30 | 39.39 | 56.00 | -16.61 | QP | | 8 | 2.0820 | 17.74 | 10.30 | 28.04 | 46.00 | -17.96 | AVG | | 9 | 4.9860 | 21.38 | 10.46 | 31.84 | 56.00 | -24.16 | QP | | 10 | 4.9860 | 9.74 | 10.46 | 20.20 | 46.00 | -25.80 | AVG | | 11 | 21.9060 | 21.54 | 12.78 | 34.32 | 60.00 | -25.68 | QP | | 12 | 21.9060 | 8.33 | 12.78 | 21.11 | 50.00 | -28.89 | AVG | ## Remark: - 1. All readings are Quasi-Peak and Average values - 2. Margin = Result (Result = Reading + Factor)-Limit - 3. Factor=LISN factor+Cable loss+Limiter (10dB) ## 3.2 RADIATED EMISSION MEASUREMENT ## 3.2.1 RADIATED EMISSION LIMITS In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed. LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz) | Frequencies | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (micorvolts/meter) | (meters) | | 0.009~0.490 | 2400/F(KHz) | 300 | | 0.490~1.705 | 24000/F(KHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz) | FREQUENCY (MHz) | (dBuV/m) (at 3M) | | | |-----------------|------------------|---------|--| | | PEAK | AVERAGE | | | Above 1000 | 74 | 54 | | #### Notes: - (1) The limit for radiated test was performed according to FCC PART 15C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). ## LIMITS OF RESTRICTED FREQUENCY BANDS | FREQUENCY (MHz) | FREQUENCY (MHz) | FREQUENCY (MHz) | FREQUENCY (GHz) | |-------------------|---------------------|-----------------|-----------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | Above 38.6 | | 13.36-13.41 | | | | ## For Radiated Emission | Spectrum Parameter | Setting | |---------------------------------|-------------------------------| | Attenuation | Auto | | Detector | Peak/QP/AV | | Start Frequency | 9 KHz/150KHz(Peak/QP/AV) | | Stop Frequency | 150KHz/30MHz(Peak/QP/AV) | | | 200Hz (From 9kHz to 0.15MHz)/ | | RB / VB (emission in restricted | 9KHz (From 0.15MHz to 30MHz); | | band) | 200Hz (From 9kHz to 0.15MHz)/ | | | 9KHz (From 0.15MHz to 30MHz) | | Spectrum Parameter | Setting | | |---------------------------------|--------------------|--| | Attenuation | Auto | | | Detector | Peak/QP | | | Start Frequency | 30 MHz(Peak/QP) | | | Stop Frequency | 1000 MHz (Peak/QP) | | | RB / VB (emission in restricted | 120 KHz / 300 KHz | | | band) | 120 KH2 / 300 KH2 | | | Spectrum Parameter | Setting | | |---------------------------------|-------------------------------|--| | Attenuation | Auto | | | Detector | Peak/AV | | | Start Frequency | 1000 MHz(Peak/AV) | | | Stop Frequency | 10th carrier hamonic(Peak/AV) | | | RB / VB (emission in restricted | 1 MHz / 3 MHz(Peak) | | | band) | 1 MHz/1/T MHz(AVG) | | # For Restricted band | Spectrum Parameter | Setting | | |----------------------|-----------------------------------|--| | Detector | Peak/AV | | | Start/Stop Frequency | Lower Band Edge: 2310 to 2410 MHz | | | | Upper Band Edge: 2476 to 2500 MHz | | | DD /VD | 1 MHz / 3 MHz(Peak) | | | RB / VB | 1 MHz/1/T MHz(AVG) | | Page 21 of 67 Report No.: STS2306018W03 | Receiver Parameter | Setting | |------------------------|--------------------------------------| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV | | Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP | | Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV | | Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP | | Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP | #### 3.2.2 TEST PROCEDURE - a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz. - b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation. - c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test
antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement. - d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured. - e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed. - f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported. # 3.2.3 DEVIATION FROM TEST STANDARD No deviation. # 3.2.4 TESTSETUP ## (A) Radiated Emission Test-Up Frequency Below 30MHz ## (B) Radiated Emission Test-Up Frequency 30MHz~1GHz ## (C) Radiated Emission Test-Up Frequency Above 1GHz ## 3.2.5 EUT OPERATING CONDITIONS Please refer to section 3.1.4 of this report. ## 3.2.6 FIELD STRENGTH CALCULATION The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor For example | Frequency | FS | RA | AF | CL | AG | Factor | |-----------|----------|----------|------|------|------|--------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB) | | 300 | 40 | 58.1 | 12.2 | 1.6 | 31.9 | -18.1 | Factor=AF+CL-AG ## 3.2.7 TEST RESULTS ## (9KHz-30MHz) | Temperature: | 23.1(C) | Relative Humidity: | 60%RH | |---------------|---------|--------------------|---------| | Test Voltage: | DC 3.3V | Test Mode: | TX Mode | | Freq. | Reading | Limit | Margin | State | Toot Dooult | | |-------|----------|----------|--------|-------|-------------|--| | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | P/F | Test Result | | | | | | | | PASS | | | | | | | | PASS | | ## Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits (dBuv) + distance extrapolation factor. # (30MHz-1000MHz) | Temperature: | 23.1(C) | Relative Humidity: | 60%RH | | |---------------|--------------------------------|--------------------|------------|--| | Test Voltage: | DC 3.3V | Phase: | Horizontal | | | Test Mode: | Mode 1/2/3 (Mode 1 worst mode) | | | | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 107.6000 | 55.78 | -19.32 | 36.46 | 43.50 | -7.04 | peak | | 2 | 143.4900 | 53.18 | -18.23 | 34.95 | 43.50 | -8.55 | peak | | 3 | 240.4900 | 54.10 | -17.93 | 36.17 | 46.00 | -9.83 | peak | | 4 | 390.8400 | 47.68 | -11.54 | 36.14 | 46.00 | -9.86 | peak | | 5 | 498.5100 | 46.73 | -8.04 | 38.69 | 46.00 | -7.31 | peak | | 6 | 796.3000 | 40.36 | -2.02 | 38.34 | 46.00 | -7.66 | peak | ## Remark: - 1. Margin = Result (Result = Reading + Factor)-Limit - 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain Page 26 of 67 Report No.: STS2306018W03 | Temperature: | 23.1(C) | Relative Humidity: | 60%RH | | | | |---------------|-----------------------------|--------------------------------|----------|--|--|--| | Test Voltage: | DC 3.3V | Phase: | Vertical | | | | | Test Mode: | Mode 1/2/3 (Mode 1 worst mo | Mode 1/2/3 (Mode 1 worst mode) | | | | | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 35.8200 | 46.86 | -15.91 | 30.95 | 40.00 | -9.05 | peak | | 2 | 95.9600 | 54.92 | -20.67 | 34.25 | 43.50 | -9.25 | peak | | 3 | 193.9300 | 57.22 | -21.11 | 36.11 | 43.50 | -7.39 | peak | | 4 | 241.4600 | 51.94 | -17.73 | 34.21 | 46.00 | -11.79 | peak | | 5 | 399.5700 | 49.29 | -11.16 | 38.13 | 46.00 | -7.87 | peak | | 6 | 765.2600 | 41.01 | -2.25 | 38.76 | 46.00 | -7.24 | peak | ## Remark: - 1. Margin = Result (Result = Reading + Factor)-Limit - 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain # (1GHz~25GHz) Spurious emission Requirements | Frequency | Meter
Reading | Amplifier | Loss | Antenna
Factor | Corrected Factor | Emission
Level | Limits | Margin | Detector | Comment | |-----------|------------------|-----------|-------|-------------------|------------------|-------------------|----------|--------|----------|------------| | (MHz) | (dBµV) | (dB) | (dB) | (dB/m) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | Type | | | | | | | Low Ch | nannel (GFSK/ | 2402 MHz) | | | | | | 3264.87 | 60.96 | 44.70 | 6.70 | 28.20 | -9.80 | 51.16 | 74.00 | -22.84 | PK | Vertical | | 3264.87 | 50.44 | 44.70 | 6.70 | 28.20 | -9.80 | 40.64 | 54.00 | -13.36 | AV | Vertical | | 3264.85 | 61.02 | 44.70 | 6.70 | 28.20 | -9.80 | 51.22 | 74.00 | -22.78 | PK | Horizontal | | 3264.85 | 51.11 | 44.70 | 6.70 | 28.20 | -9.80 | 41.31 | 54.00 | -12.69 | AV | Horizontal | | 4804.33 | 58.88 | 44.20 | 9.04 | 31.60 | -3.56 | 55.32 | 74.00 | -18.68 | PK | Vertical | | 4804.33 | 49.90 | 44.20 | 9.04 | 31.60 | -3.56 | 46.34 | 54.00 | -7.66 | AV | Vertical | | 4804.42 | 58.26 | 44.20 | 9.04 | 31.60 | -3.56 | 54.70 | 74.00 | -19.30 | PK | Horizontal | | 4804.42 | 49.86 | 44.20 | 9.04 | 31.60 | -3.56 | 46.30 | 54.00 | -7.70 | AV | Horizontal | | 5359.83 | 48.65 | 44.20 | 9.86 | 32.00 | -2.34 | 46.31 | 74.00 | -27.69 | PK | Vertical | | 5359.83 | 39.98 | 44.20 | 9.86 | 32.00 | -2.34 | 37.63 | 54.00 | -16.37 | AV | Vertical | | 5359.86 | 47.18 | 44.20 | 9.86 | 32.00 | -2.34 | 44.84 | 74.00 | -29.16 | PK | Horizontal | | 5359.86 | 39.20 | 44.20 | 9.86 | 32.00 | -2.34 | 36.86 | 54.00 | -17.14 | AV | Horizontal | | 7205.83 | 54.02 | 43.50 | 11.40 | 35.50 | 3.40 | 57.42 | 74.00 | -16.58 | PK | Vertical | | 7205.83 | 43.89 | 43.50 | 11.40 | 35.50 | 3.40 | 47.29 | 54.00 | -6.71 | AV | Vertical | | 7205.81 | 54.11 | 43.50 | 11.40 | 35.50 | 3.40 | 57.51 | 74.00 | -16.49 | PK | Horizontal | | 7205.81 | 44.43 | 43.50 | 11.40 | 35.50 | 3.40 | 47.83 | 54.00 | -6.17 | AV | Horizontal | | | | | | Middle C | Channel (GFSK | (/2441 MHz) | | | | | | 3264.84 | 61.05 | 44.70 | 6.70 | 28.20 | -9.80 | 51.25 | 74.00 | -22.75 | PK | Vertical | | 3264.84 | 50.99 | 44.70 | 6.70 | 28.20 | -9.80 | 41.19 | 54.00 | -12.81 | AV | Vertical | | 3264.73 | 61.54 | 44.70 | 6.70 | 28.20 | -9.80 | 51.74 | 74.00 | -22.26 | PK | Horizontal | | 3264.73 | 50.96 | 44.70 | 6.70 | 28.20 | -9.80 | 41.16 | 54.00 | -12.84 | AV | Horizontal | | 4882.29 | 59.10 | 44.20 | 9.04 | 31.60 | -3.56 | 55.54 | 74.00 | -18.46 | PK | Vertical | | 4882.29 | 49.81 | 44.20 | 9.04 | 31.60 | -3.56 | 46.25 | 54.00 | -7.75 | AV | Vertical | | 4882.56 | 58.59 | 44.20 | 9.04 | 31.60 | -3.56 | 55.03 | 74.00 | -18.97 | PK | Horizontal | | 4882.56 | 49.53 | 44.20 | 9.04 | 31.60 | -3.56 | 45.97 | 54.00 | -8.03 | AV | Horizontal | | 5359.76 | 49.21 | 44.20 | 9.86 | 32.00 | -2.34 | 46.87 | 74.00 | -27.13 | PK | Vertical | | 5359.76 | 39.79 | 44.20 | 9.86 | 32.00 | -2.34 | 37.44 | 54.00 | -16.56 | AV | Vertical | | 5359.67 | 47.17 | 44.20 | 9.86 | 32.00 | -2.34 | 44.82 | 74.00 | -29.18 | PK | Horizontal | | 5359.67 | 39.51 | 44.20 | 9.86 | 32.00 | -2.34 | 37.17 | 54.00 | -16.83 | AV | Horizontal | | 7323.83 | 53.89 | 43.50 | 11.40 | 35.50 | 3.40 | 57.29 | 74.00 | -16.71 | PK | Vertical | | 7323.83 | 44.01 | 43.50 | 11.40 | 35.50 | 3.40 | 47.41 | 54.00 | -6.59 | AV | Vertical | | 7323.76 | 54.30 | 43.50 | 11.40 | 35.50 | 3.40 | 57.70 | 74.00 | -16.30 | PK | Horizontal | | 7323.76 | 44.24 | 43.50 | 11.40 | 35.50 | 3.40 | 47.64 | 54.00 | -6.36 | AV | Horizontal | | | | | | High Char | nnel (GFSK/ | 2480 MHz) | | | | | |---------|-------|-------|-------|-----------|-------------|-----------|-------|--------|----|------------| | 3264.61 | 62.01 | 44.70 | 6.70 | 28.20 | -9.80 | 52.21 | 74.00 | -21.79 | PK | Vertical | | 3264.61 | 50.07 | 44.70 | 6.70 | 28.20 | -9.80 | 40.27 | 54.00 | -13.73 | AV | Vertical | | 3264.82 | 61.17 | 44.70 | 6.70 | 28.20 | -9.80 | 51.37 | 74.00 | -22.63 | PK | Horizontal | | 3264.82 | 50.89 | 44.70 | 6.70 | 28.20 | -9.80 | 41.09 | 54.00 | -12.91 | AV | Horizontal | | 4960.50 | 58.28 | 44.20 | 9.04 | 31.60 | -3.56 | 54.72 | 74.00 | -19.28 | PK | Vertical | | 4960.50 | 49.34 | 44.20 | 9.04 | 31.60 | -3.56 | 45.78 | 54.00 | -8.22 | AV | Vertical | | 4960.46 | 59.25 | 44.20 | 9.04 | 31.60 | -3.56 | 55.69 | 74.00 | -18.31 | PK | Horizontal | | 4960.46 | 50.50 | 44.20 | 9.04 | 31.60 | -3.56 | 46.94 | 54.00 | -7.06 | AV | Horizontal | | 5359.70 | 48.93 | 44.20 | 9.86 | 32.00 | -2.34 | 46.59 | 74.00 | -27.41 | PK | Vertical | | 5359.70 | 39.78 | 44.20 | 9.86 | 32.00 | -2.34 | 37.44 | 54.00 | -16.56 | AV | Vertical | | 5359.66 | 47.55 | 44.20 | 9.86 | 32.00 | -2.34 | 45.20 | 74.00 | -28.80 | PK | Horizontal | | 5359.66 | 38.49 | 44.20 | 9.86 | 32.00 | -2.34 | 36.14 | 54.00 | -17.86 | AV | Horizontal | | 7439.90 | 54.79 | 43.50 | 11.40 | 35.50 | 3.40 | 58.19 | 74.00 | -15.81 | PK | Vertical | | 7439.90 | 44.19 | 43.50 | 11.40 | 35.50 | 3.40 | 47.59 | 54.00 | -6.41 | AV | Vertical | | 7439.73 | 53.67 | 43.50 | 11.40 | 35.50 | 3.40 | 57.07 | 74.00 | -16.93 | PK | Horizontal | | 7439.73 | 43.75 | 43.50 | 11.40 | 35.50 | 3.40 | 47.15 | 54.00 | -6.85 | AV | Horizontal | ## Note: - 1) Scan with GFSK, the worst case is GFSK Mode. - 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.Emission Level = Reading + Factor - 3) The frequency emission of peak
points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise. ## Restricted band Requirements ## GFSK-Low Horizontal | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2385.200 | 40.72 | 4.27 | 44.99 | 74.00 | -29.01 | peak | | 2 | 2390.000 | 38.23 | 4.34 | 42.57 | 74.00 | -31.43 | peak | ## Vertical | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2362.200 | 39.14 | 3.92 | 43.06 | 74.00 | -30.94 | peak | | 2 | 2390.000 | 36.95 | 4.34 | 41.29 | 74.00 | -32.71 | peak | ## GFSK-High Horizontal | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2483.500 | 37.54 | 4.60 | 42.14 | 74.00 | -31.86 | peak | | 2 | 2489.325 | 39.14 | 4.62 | 43.76 | 74.00 | -30.24 | peak | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|--------------|----------|----------|--------|--------| | | (MHz) | (dBuV) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2483.500 | 38.42 | 4.60 | 43.02 | 74.00 | -30.98 | peak | | 2 | 2487.475 | 40.46 | 4.62 | 45.08 | 74.00 | -28.92 | peak | Note: GFSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case. ## 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION ## 4.1 LIMIT According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. ## 4.2 TEST PROCEDURE | Spectrum Parameter | Setting | |---------------------------------------|---------------------------------| | Detector | Peak | | Start/Stop Frequency | 30 MHz to 10th carrier harmonic | | RB / VB (emission in restricted band) | 100 KHz/300 KHz | | Trace-Mode: | Max hold | For Band edge | Spectrum Parameter | Setting | |---------------------------------------|----------------------------------| | Detector | Peak | | Stort/Ston Fraguency | Lower Band Edge: 2300 – 2407 MHz | | Start/Stop Frequency | Upper Band Edge: 2475 – 2500 MHz | | RB / VB (emission in restricted band) | 100 KHz/300 KHz | | Trace-Mode: | Max hold | For Hopping Band edge | Spectrum Parameter | Setting | |---------------------------------------|----------------------------------| | Detector | Peak | | Stort/Stop Fraguency | Lower Band Edge: 2300– 2403 MHz | | Start/Stop Frequency | Upper Band Edge: 2479 – 2500 MHz | | RB / VB (emission in restricted band) | 100 KHz/300 KHz | | Trace-Mode: | Max hold | ## 4.3 TEST SETUP The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW. ## 4.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. ## 4.5 TEST RESULTS # 5. NUMBER OF HOPPING CHANNEL ## 5.1 LIMIT | FCC Part 15.247,Subpart C | | | | | | | | |---------------------------|------------------------------|-------|-------------------------|--------|--|--|--| | Section | Test Item | Limit | FrequencyRange
(MHz) | Result | | | | | 15.247
(a)(1)(iii) | Number of Hopping
Channel | ≥15 | 2400-2483.5 | PASS | | | | | Spectrum Parameters | Setting | |---------------------|----------------------------| | Attenuation | Auto | | Span Frequency | > Operating FrequencyRange | | RB | 300KHz | | VB | 300KHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | ## 5.2 TEST PROCEDURE - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto. ## 5.3 TEST SETUP ## 5.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. ## 5.5 TEST RESULTS ## 6. AVERAGE TIME OF OCCUPANCY #### 6.1 LIMIT | FCC Part 15.247,Subpart C | | | | | |---------------------------|---------------------------|--------|-------------------------|--------| | Section | Test Item | Limit | FrequencyRange
(MHz) | Result | | 15.247
(a)(1)(iii) | Average Time of Occupancy | 0.4sec | 2400-2483.5 | PASS | #### **6.2 TEST PROCEDURE** - a. The transmitter output (antenna port) was connected to the spectrum analyzer. - b. Set RBW =1MHz/VBW =3MHz. - c. Use a video trigger with the trigger level set to enable triggering only on full pulses. - d. Sweep Time is more than once pulse time. - Set the center frequency on any frequency would be measure and set the frequency span to e. zero span. - f. Measure the maximum time duration of one single pulse. - g. Set the EUT for DH5, DH3 and DH1 packet transmitting. - h. Measure the maximum time duration of one single pulse. - i. DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $3.37 \times 31.6 = 106.6$. - j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $5.06 \times 31.6 = 160$. - k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is $10.12 \times 31.6 = 320$. ## 6.3 TEST SETUP #### 6.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. #### 6.5 TEST RESULTS ## 7. HOPPING CHANNEL SEPARATION MEASUREMEN #### **7.1 LIMIT** Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. | Spectrum Parameter | Setting | |--------------------|---| | Attenuation | Auto | | Span Frequency | > 20 dB Bandwidth or Channel Separation | | RB | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation) | | VB | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | ## 7.2 TEST PROCEDURE - a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode. - b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement. - c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement. ## 7.3 TEST SETUP ## 7.4 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. ## 7.5 TEST RESULTS ## 8. BANDWIDTH TEST ## 8.1 LIMIT | FCC Part15 15.247,Subpart C | | | | | |-----------------------------|-----------|-------|-------------------------|--------| | Section | Test Item | Limit | FrequencyRange
(MHz) | Result | | 15.247 (a)(1) | Bandwidth | N/A | 2400-2483.5 | PASS | | Spectrum Parameter | Setting | |--------------------|---| | Attenuation | Auto | | Span Frequency | > Measurement Bandwidth or Channel Separation | | RB | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation) | | VB | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | ## 8.2 TEST PROCEDURE - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. - b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto. ## 8.3 TEST SETUP ## 8.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. ## 8.5 TEST RESULTS ## 9. OUTPUT POWER TEST #### 9.1 LIMIT | FCC Part 15.247,Subpart C | | | | | | | | |---------------------------|-----------------|--|-----------------------|--------|--|--|--| | Section | Test Item Limit | | Frequency Range (MHz) | Result | | | | | | | 1 W or 0.125W | | | | | | | 15.247
(a)(1)&(b)(1) | Output
Power | if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm) | 2400-2483.5 | PASS | | | | #### 9.2 TEST PROCEDURE This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: - a) Use the following spectrum analyzer settings: - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. - 2) RBW > 20 dB bandwidth of the emission being measured. - 3) VBW ≥ RBW. - 4) Sweep: Auto. - 5) Detector function: Peak. - 6) Trace: Max hold. - b) Allow trace to stabilize. - c) Use the
marker-to-peak function to set the marker to the peak of the emission. - d) The indicated level is the peak output power, after any corrections for external attenuators and cables. - e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. PKPM1 Peak power meter method: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector. ### 9.3 TEST SETUP ## 9.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. ## 9.5 TEST RESULTS Note: The test data please refer to APPENDIX 1. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com ## 10. ANTENNA REQUIREMENT ## 10.1 STANDARD REQUIREMENT 15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. ## **10.2 EUT ANTENNA** The EUT antenna is PCB Antenna. It comply with the standard requirement. ## **APPENDIX 1-TEST DATA** ## 1. Dwell Time | Condition | Mode | Frequency | Pulse | Total Dwell | Burst | Period | Limit | Verdict | |-----------|-------|-----------|-----------|-------------|-------|-----------|-------|---------| | | | (MHz) | Time (ms) | Time (ms) | Count | Time (ms) | (ms) | | | NVNT | 1-DH1 | 2441 | 0.378 | 119.448 | 316 | 31600 | <=400 | Pass | | NVNT | 1-DH3 | 2441 | 1.634 | 258.172 | 158 | 31600 | <=400 | Pass | | NVNT | 1-DH5 | 2441 | 2.882 | 293.964 | 102 | 31600 | <=400 | Pass | 2. Maximum Average Conducted Output Power | Condition | Mode | Frequency (MHz) | Conducted Power (dBm) | Limit (dBm) | Verdict | |-----------|-------|-----------------|-----------------------|-------------|---------| | NVNT | 1-DH5 | 2402 | 2.42 | <=30 | Pass | | NVNT | 1-DH5 | 2441 | 2.33 | <=30 | Pass | | NVNT | 1-DH5 | 2480 | 2.57 | <=30 | Pass | Page 46 of 67 Report No.: STS2306018W03 3. Maximum Peak Conducted Output Power | Condition | Mode | Frequency (MHz) | Conducted Power (dBm) | Limit (dBm) | Verdict | |-----------|-------|-----------------|-----------------------|-------------|---------| | NVNT | 1-DH5 | 2402 | 3.39 | <=21 | Pass | | NVNT | 1-DH5 | 2441 | 3.06 | <=21 | Pass | | NVNT | 1-DH5 | 2480 | 3.37 | <=21 | Pass | Page 49 of 67 Report No.: STS2306018W03 # 4. -20dB Bandwidth | Condition | Mode | Frequency (MHz) | -20 dB Bandwidth (MHz) | Verdict | |-----------|-------|-----------------|------------------------|---------| | NVNT | 1-DH5 | 2402 | 1.1256 | Pass | | NVNT | 1-DH5 | 2441 | 1.0449 | Pass | | NVNT | 1-DH5 | 2480 | 1.1071 | Pass | ### -20dB Bandwidth NVNT 1-DH5 2441MHz Page 52 of 67 Report No.: STS2306018W03 5. Carrier Frequencies Separation | Condition | Mode | Hopping Freq1 (MHz) | Hopping Freq2 (MHz) | HFS (MHz) | Limit (MHz) | Verdict | |-----------|-------|---------------------|---------------------|-----------|-------------|---------| | NVNT | 1-DH5 | 2401.992 | 2402.978 | 0.986 | >=0.75 | Pass | | NVNT | 1-DH5 | 2440.982 | 2441.986 | 1.004 | >=0.697 | Pass | | NVNT | 1-DH5 | 2479.06 | 2480.064 | 1.004 | >=0.738 | Pass | Page 55 of 67 Report No.: STS2306018W03 6. Number of Hopping Channel | Condition | Mode | Hopping Number | Limit | Verdict | |-----------|-------|----------------|-------|---------| | NVNT | 1-DH5 | 79 | >=15 | Pass | STATUS Page 56 of 67 Page 57 of 67 Report No.: STS2306018W03 7. Band Edge | Condition | Mode | Frequency (MHz) | Hopping Mode | Max Value (dBc) | Limit (dBc) | Verdict | |-----------|-------|-----------------|--------------|-----------------|-------------|---------| | NVNT | 1-DH5 | 2402 | No-Hopping | -42.4 | <=-20 | Pass | | NVNT | 1-DH5 | 2480 | No-Hopping | -58.44 | <=-20 | Pass | Page 60 of 67 Report No.: STS2306018W03 8. Band Edge(Hopping) | Condition | Mode | Frequency (MHz) | Hopping Mode | Max Value (dBc) | Limit (dBc) | Verdict | |-----------|-------|-----------------|--------------|-----------------|-------------|---------| | NVNT | 1-DH5 | 2402 | Hopping | -59.21 | <=-20 | Pass | | NVNT | 1-DH5 | 2480 | Hopping | -59.6 | <=-20 | Pass | Page 63 of 67 Report No.: STS2306018W03 9. Conducted RF Spurious Emission | Condition | Mode | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict | |-----------|-------|-----------------|-----------------|-------------|---------| | NVNT | 1-DH5 | 2402 | -37.54 | <=-20 | Pass | | NVNT | 1-DH5 | 2441 | -31.62 | <=-20 | Pass | | NVNT | 1-DH5 | 2480 | -30.76 | <=-20 | Pass | ## **APPENDIX 2-PHOTOS OF TEST SETUP** Note: See test photos in setup photo document for the actual connections between Product and support equipment. * * * * * END OF THE REPORT * * * * *