

FCC RF Test Report

Product Name: LTE Module

Model Number: ME909u-523

Report No: SYBH(Z-RF)010032014-2002 FCC ID: QISME909U-523

Reliability Laboratory of Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

1. The laboratory has Passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.

2. The laboratory has Passed the accreditation by The American Association for Laboratory

Accreditation (A2LA). The accreditation number is 2174.01.

3. The laboratory has been listed by the US Federal Communications Commission to perform

electromagnetic emission measurements. The site recognition number is 97456.

4. The laboratory has been listed by Industry Canada to perform electromagnetic emission

measurements. The recognition numbers of test site are 6369A-2.

5. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.

6. The test report is invalid if there is any evidence of erasure and/or falsification.

7. The test report is only valid for the test samples.

8. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Applicant:	Huawei Technologies Co., Ltd.
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,
	Bantian, Longgang District, Shenzhen, 518129, P.R.C

Date of Receipt Sample:	2014-05-20
Start Date of Test:	2014-05-20
End Date of Test:	2014-05-28

Test Result: Pass

Approved by Senior	2014-05-28	Liu Chunlin	Lin Chundin
Engineer:	Date	Name	Signature
Prepared by:	2014-05-28	Hexiaolin	H exiaolin
	Date	Name	Signature

Modification Record

No.	Last Report No.	Modification Description
1		First report.

CONTENT

1	Genera	al Information	6
	1.1	Applied Standard	6
	1.2	Test Location	6
	1.3	Test Environment Condition	6
2	Test St	Summary	7
	2.1	Band (814-824 MHz paired with 859-869MHz)	7
	2.2	Band (824-849 MHz paired with 869-894 MHz)	8
3	Descrip	ption of the Equipment under Test (EUT)	9
	3.1	General Description	9
	3.2	EUT Identity	9
	3.3	Technical Specification	10
4	Genera	al Test Conditions / Configurations	11
	4.1	Test Modes	11
	4.2	Test Environment	11
	4.3	Test Frequency	12
	4.4	DESCRIPTION OF TESTS	14
	4.5	Test Setups	17
	4.6	Test Conditions	19
5	Main T	Fest Instruments	21
6	Measu	rement Uncertainty	22

1 General Information

1.1 Applied Standard	
Applied Rules:	47 CFR FCC Part 02:2013
	47 CFR FCC Part 90: 2013
	47 CFR FCC Part 22: 2013
Test Method:	FCC KDB 971168 D01 Power Meas License Digital Systems v02r01
1.2 Test Location	
Test Location 1:	Reliability Laboratory of Huawei Technologies Co., Ltd.
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,
	Bantian, Longgang District, Shenzhen, 518129, P.R.C
1.3 Test Environment C	ondition
Ambient Temperature:	19.5 to 25 °C
Ambient Relative Humidity:	40 to 55 %
Atmospheric Pressure:	Not applicable

2 Test Summary

2.1 Band (814-824 MHz paired with 859-869MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict
Transmitter Conducted	§2.1046,	< 100 W.	Appondix	PASS
Power Output	§90.635	< 100 W.	Appendix A	PASS
Modulation	82 1047	Digital madulation	Appondix P	PASS
Characteristics	§2.1047	Digital modulation	Appendix B	
Dondwidth	\$2,1040	OBW: No limit.	Annondiv	PASS
Bandwidth	§2.1049	EBW: No limit.	Appendix C	
		< 50 + 10Log10(P[Watts]]) at		PASS
Band Edges	§2.1051,	Band Edge and for all	Appandix D	
Compliance	§90.691	out-of-band emissions wtin	Appendix D	
		37.5kHz of Block Edge		
Spurious Emission at	§2.1051,	< 43 + 10Log10(P[Watts]) for	Appondix E	PASS
Antenna Terminals	§90.691	all out-of-band emissions	Appendix E	
Field Strength of	§2.1053,	< 43 + 10Log10(P[Watts]) for	Appondix E	PASS
Spurious Radiation	§90.691	all out-of-band emissions	Appendix F	
Fraguanay Stability	§2.1055,	4 12 Ennm	Appandix C	PASS
Frequency Stability	§90.213	< ±2.5ppm.	Appendix G	
NOTE 1: For the verdic	t, the "N/A" den	otes "not applicable", the "N/T" der	notes "not tested".	

2.2	Band (824-849 MHz paired with 869-894 MHz)
-----	--

Test Item	FCC Rule No.	Requirements	Test Result	Verdict
Effective (Isotropic) Radiated Power Output Data	§2.1046, §22.913	FCC: ERP ≤ 7 W.	Appendix A	PASS
Modulation Characteristics	§2.1047	Digital modulation	Appendix B	PASS
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Appendix C	PASS
Band Edges Compliance	§2.1051, §22.917	 ≤ -13 dBm/1%*EBW, in 1 MHz bands immediately outside and adjacent to the frequency block. 	Appendix D	PASS
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤ -13 dBm/100 kHz, from 9 kHz to 10 th harmonics but outside authorized operating frequency ranges.	Appendix E	PASS
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13 dBm/100 kHz.	Appendix F	PASS
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Appendix G	PASS
NOTE 1: For the ver	dict, the "N/A" der	notes "not applicable", the "N/T" der	notes "not tested".	

3 Description of the Equipment under Test (EUT)

3.1 General Description

ME909u-523 LTE/HSPA+/HSUPA/HSDPA/WCDMA(UMTS) mode Wireless Module is subscriber equipment in the LTE/UMTS system. ME909u-523 implement such functions as RF signal receiving/transmitting, LTE/HSPA+/HSUPA /HSDPA /WCDMA protocol processing, data service etc.

3.2 EUT Identity

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

3.2.1 Board

Bc	ard
Hardware Version	Description
ML2ME909UM	Main Board

3.3 Technical Specification

Characteristics	Description	
Radio System Type	🖾 LTE	
Supported Frequency Range		Transmission (TX): 814 to 849 MHz
	LTE band 26(814 to 824 MHz)	Receiving (RX): 859 to 894 MHz
		Transmission (TX): 814 to 849 MHz
	LTE band 26(814 to 824 MHz)	Receiving (RX): 859 to 894 MHz
TX and RX Antenna Ports	TX & RX port:	1
	TX-only port:	0
	RX-only port:	1
Target TX Output Power	LTE system: 23dBm	
Supported Channel Bandwidth	LTE band 26(814 to 824 MHz)	🖾 1.4 MHz, 🖾 3 MHz, 🖾 5 MHz, 🖾 10
		MHz
	LTE band 26(824 to 849 MHz)	🖾 1.4 MHz, 🖾 3 MHz,🖾 5 MHz, 🖾 10
		MHz, 🛛 15 MHz,
Designation of Emissions	LTE band 26(814 to 824 MHz)	1M09G7D (1.4 MHz QPSK modulation),
(Note: the necessary bandwidth of		1M09W7D (1.4 MHz 16QAM modulation)
which is the worst value from the		2M70G7D (3 MHz QPSK modulation),
measured occupied bandwidths for		2M71W7D (3 MHz 16QAM modulation)
each type of channel bandwidth		4M51G7D (5 MHz QPSK modulation),
configuration.)		4M51W7D (5 MHz 16QAM modulation)
		8M99G7D (10 MHz QPSK modulation),
		9M97W7D (10 MHz 16QAM modulation)
	LTE band 26(824 to 849 MHz)	1M09G7D (1.4 MHz QPSK modulation),
		1M09W7D (1.4 MHz 16QAM modulation)
		2M70G7D (3 MHz QPSK modulation),
		2M71W7D (3 MHz 16QAM modulation)
		4M51G7D (5 MHz QPSK modulation),
		4M51W7D (5 MHz 16QAM modulation)
		9M01G7D (10 MHz QPSK modulation),
		8M99W7D (10 MHz 16QAM modulation)
		13M5G7D (15 MHz QPSK modulation),
		13M5W7D (15 MHz 16QAM modulation)

4 General Test Conditions / Configurations

4.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
LTE/TM1	LTE system, QPSK modulation
LTE/TM2	LTE system, 16QAM modulation

4.2 Test Environment

Environment Parameter	Selected Values During Tests			
Relative Humidity	Ambient			
Temperature	TN Ambient			
Voltage	VL	3.3V		
	VN	3.8V		
	VH	4.2V		

NOTE: VL= lower extreme test voltage

VN= nominal voltage

VH= upper extreme test voltage

TN= normal temperature

4.3 Test Frequency

TaskMada	TY / DY	RF Channel			
Test Mode	TX / RX	Low (L)	Middle (M)	High (H)	
	TX (1.4M)	Channel 26697	Channel 26740	Channel 26783	
		814.7 MHz	819 MHz	823.3 MHz	
	TX (3M)	Channel 26705	Channel 26740	Channel 26775	
		815.5 MHz	819 MHz	822.5 MHz	
		Channel 26715	Channel 26740	Channel 26765	
	TX (5M)	816.5 MHz	819 MHz	821.5 MHz	
	TX (10M)	Channel 26740	Channel 26740	Channel 26740	
LTE Band 26 (814 to 824		819 MHz	819 MHz	819 MHz	
(814 to 824 MHz)	RX (1.4M)	Channel 8697	Channel 8740	Channel 8783	
		859.7 MHz	864 MHz	868.3 MHz	
	RX (3M)	Channel 8705	Channel 8740	Channel 8765	
_		860.5 MHz	864 MHz	867.5 MHz	
	RX (5M) -	Channel 8715	Channel 8740	Channel 8765	
		861.5 MHz	864 MHz	866.5 MHz	
	RX (10M)	Channel 8740	Channel 8740	Channel 8740	
		864 MHz	864 MHz	864 MHz	

TaskMada	TX/RX	RF Channel				
Test Mode		Low (L)	Middle (M)	High (H)		
	TX (1.4M)	Channel 26797	Channel 26915	Channel 27033		
		824.7 MHz	836.5 MHz	848.3 MHz		
		Channel 26805	Channel 26740	Channel 27025		
	TX (3M)	825.5 MHz	836.5 MHz	847.5 MHz		
	TX (5M)	Channel 26815	Channel 26740	Channel 27015		
	TX (3W)	826.5 MHz	836.5 MHz	846.5 MHz		
	TX (10M)	Channel 26840	Channel 26740	Channel 26990		
		829 MHz	836.5 MHz	844 MHz		
	TX (15M)	Channel 26865	Channel 26740	Channel 26965		
LTE Band 26 (824 to 849		831.5 MHz	836.5 MHz	841.5 MHz		
(024 to 043 MHz)	RX (1.4M)	Channel 8697	Channel 8915	Channel 9033		
		859.7 MHz	881.5 MHz	893.3 MHz		
	RX (3M)	Channel 8805	Channel 8915	Channel 9025		
		860.5 MHz	881.5 MHz	892.5 MHz		
	RX (5M)	Channel 8815	Channel 8915	Channel 9015		
		871.5 MHz	881.5 MHz	891.5 MHz		
	RX (10M)	Channel 8840	Channel 8915	Channel 8990		
		874 MHz	881.5 MHz	889 MHz		
	RX (15M)	Channel 8865	Channel 8915	Channel 8965		
		876.5 MHz	881.5 MHz	886.5 MHz		

4.4 DESCRIPTION OF TESTS

4.4.1 Radiated Power and Radiated Spurious Emissions

Radiated spurious emissions are investigated indoors in a semi-anechoic chamber to determine the frequencies producing the worst case emissions. Final measurements for radiated power and radiated spurious emissions are performed on the 3 meter OATS per the guidelines of ANSI/TIA-603-C-2004. The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Emissions are also investigated with the receive antenna horizontally and vertically polarized.

A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other non-metallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z) axis positions such that emissions from the EUT are maximized. Measure the EUT maximum RF power and record the result.

A half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] – cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log10(Power [Watts]).

Note: Reference test setup 3

4.4.2 Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth. Note: Reference test setup 1.

4.4.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Note: Reference test setup 1.

4.4.4 Frequency Stability / Temperature Variation

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

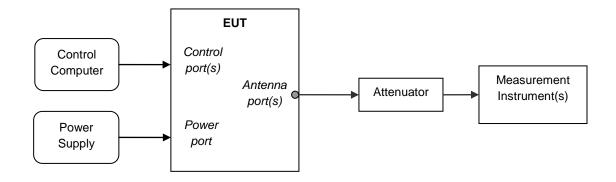
b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within

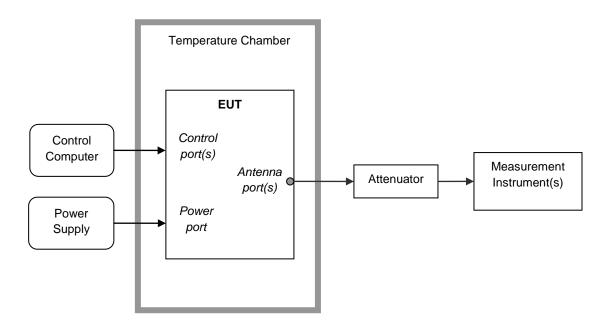
±0.00025% (±2.5 ppm) of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

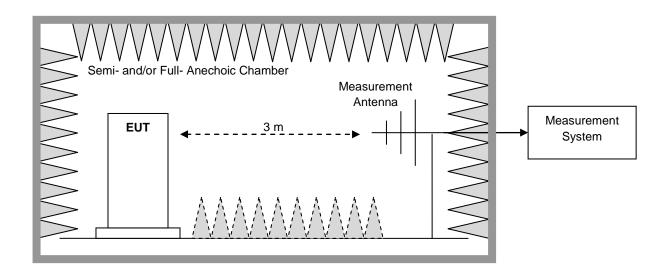

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

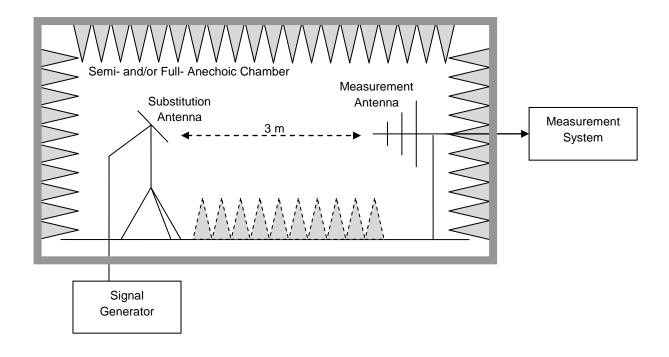
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.


Note: Reference test setup 2.

4.5 Test Setups

4.5.1 Test Setup 1


4.5.2 Test Setup 2


4.5.3 Test Setup 3

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

4.5.3.1 Step 1: Pre-test

4.5.3.2 Step 2: Substitution method to verify the maximum ERP

4.6 Test Conditions

Test Case T		Test Condition	Test Conditions		
Transmit	Average Power,	Test Env.	nv. Ambient Climate & Rated Voltage		
Output	Total	Test Setup	Test Seup 1		
Power Data		RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
	Average Power,	Test Env.	Ambient Climate & Rated Voltage		
	Spectral Density	Test Setup	Test Seup 1		
	(if required)	RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
Peak-to-Aver	age Ratio	Test Env.	Ambient Climate & Rated Voltage		
(if required)		Test Setup	Test Seup 1		
		RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
Modulation C	haracteristics	Test Env.	Ambient Climate & Rated Voltage		
		Test Setup	Test Seup 1		
		RF Channels	Μ		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
Bandwidth	Occupied	Test Env.	Ambient Climate & Rated Voltage		
	Bandwidth	Test Setup	Test Seup 1		
		RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
	Emission	Test Env.	Ambient Climate & Rated Voltage		
	Bandwidth	Test Setup	Test Seup 1		
	(if required)	RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
Band Edges	Compliance	Test Env.	Ambient Climate & Rated Voltage		
		Test Setup	Test Seup 1		
		RF Channels	L, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		
		Test Mode	LTE/TM1,LTE/TM2		
Spurious Emi	ssion at Antenna	Test Env.	Ambient Climate & Rated Voltage		
Terminals		Test Setup	Test Seup 1		
		RF Channels	L, M, H		
		(TX)	(L= low channel, M= middle channel, H= high channel)		

Test Case	Test Conditions			
	Test Mode	LTE/TM1,LTE/TM2		
Field Strength of Spurious	Test Env.	Ambient Climate & Rated Voltage		
Radiation	Test Setup	Test Seup 3		
	Test Mode	LTE/TM1,LTE/TM2		
		NOTE: If applicable, the EUT conf. that has maximum power		
		density (based on the equivalent power level) is		
		selected.		
	RF Channels	L, M, H		
	(TX)	(L= low channel, M= middle channel, H= high channel)		
Frequency Stability	Test Env.	(1) -30 °C to +50 °C with step 10 °C at Rated Voltage;		
		(2) VL, VN and VH of Rated Voltage at Ambient Climate.		
	Test Setup	Test Seup 2		
	RF Channels	L, M, H (L= low channel, M= middle channel, H= high channel)		
	(TX)			
	Test Mode	LTE/TM1,LTE/TM2		

5 Main Test Instruments

Equipment Name	Manufactu rer	Model	Serial Number	Cal Date	Cal- Due
Power supply	KEITHLEY	2303	1288003	2012-11-19	2014-11-18
Wireless Communication Test set	Agilent	N4010A	MY49081592	2013-10-29	2014-10-28
Universal Radio Communication Tester	R&S	CMU200	113164	2013-07-18	2014-07-17
Universal Radio Communication Tester	R & S	CMW500	126855	2013-08-08	2015-08-09
Spectrum Analyzer	Agilent	E4440A	MY48250119	2013-08-09	2014-08-08
Signal Analyzer	R&S	FSQ31	200021	2013-10-29	2014-10-28
Spectrum Analyzer	Agilent	N9030A	MY49431698	2013-10-29	2014-10-28
Temperature Chamber	WEISS	WKL64	56246002940010	2014-02-25	2015-02-24
Temperature Chamber	ESPEC	MW3030	06114003	2014-05-09	2015-05-08
Signal generator	Agilent	E8257D	MY51500314	2014-05-09	2015-05-08
Vector Signal Generator	R&S	SMU200A	104162	2013-10-29	2014-10-28
Test receiver	R&S	ESU26	100387	2013-06-05	2014-06-04
Spectrum analyzer	R&S	FSU3	200474	2013-12-24	2014-12-23
Spectrum analyzer	R&S	FSU43	100144	2013-12-24	2014-12-23
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	2013-02-02	2015-02-01
Trilog Broadband Antenna (30M~3GHz)	SCHWAR ZBECK	VULB 9163	9163-490	2013-02-02	2015-02-01
LOOP Antennas(9kHz-30MHz)	R&S	HFH2-Z2	100262	2013-03-23	2015-03-22
Pyramidal Horn Antenna(18GHz-26-5GH z)	ETS-LIND GREN	3160-09	5140299	2013-03-05	2015-03-04
Artificial Mains Network	R&S	ENV4200	100134	2013-12-24	2014-12-23
Artificial Mains Network	R&S	ENV216	100382	2013-12-24	2014-12-23

6 <u>Measurement Uncertainty</u>

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Test Item	Extended Uncertainty	
Transmit Output Power Data	Power [dBm]	U = 0.39 dB
Bandwidth	Magnitude [%]	U = 0.2%
Band Edge Compliance	Disturbance Power [dBm]	U = 2.0 dB
Spurious Emissions, Conducted	Disturbance Power [dBm]	U = 2.0 dB
Field Strength of Spurious Radiation	ERP [dBm]	For 3 m Chamber:
		U = 4.6 dB (30 MHz to 1GHz)
		U = 3.0 dB (above 1 GHz)
		For 10 m Chamber:
		U = 4.6 dB (30 MHz to 1GHz)
		U = 3.0 dB (above 1 GHz)
Frequency Stability	Frequency Accuracy [ppm]	U = 0.21 ppm

END