2017-03-09 13:30
Document responsible
Mikael Henning

A

Confidentiality
Confidential

This document is managed in
Sharepoint

MPE CALCULATIONS BT001 \& BT002

For FCC and BTO01 equipment

1-g SAR is calculated for BT001 equipment, the value is 1.7 which is less than the test exclusion threshold value of 3 .
$\mathrm{SAR}_{1-\mathrm{g}}=(3.68+2.7+1.0) \mathrm{dBm} / 5 \mathrm{~mm} * \operatorname{SQRT}(2.402)=5.47 \mathrm{~mW} / 5 \mathrm{~mm} * 1.55=1.7$
Where

Maximum peak output power $=3.68 \mathrm{dBm}$
Peak antenna gain $=2.7 \mathrm{dBi}$

Tune up tolerance $=1.0 \mathrm{~dB}$

Operating frequency $=2.402 \mathrm{GHz}$

Minimum distance $=5 \mathrm{~mm}$

For FCC and BTOO2 equipment

1-g SAR is calculated for BTOO2 equipment, the value is 2.29 which is less than the test exclusion threshold value of 3 .
$\operatorname{SAR}_{1-\mathrm{g}}=(3.68+4.0+1.0) \mathrm{dBm} / 5 \mathrm{~mm} * \operatorname{SQRT}(2.402)=7.38 \mathrm{~mW} / 5 \mathrm{~mm} * 1.55=2.29$

Where

Maximum peak output power $=3.68 \mathrm{dBm}$
Peak antenna gain $=4.0 \mathrm{dBi}$

Tune up tolerance $=1.0 \mathrm{~dB}$

Operating frequency $=2.402 \mathrm{GHz}$

Minimum distance $=5 \mathrm{~mm}$

For ISED and BTOO1 equipment

Source-based and time-averaged output power is calculated for BT001 equipment, the value is 0.11 mW which is less than the exemption limit of 4 mW according to RSS-102 section 2.5 .1, under frequency condition of 2450 MHz and separation distance condition of 5 mm .
$P_{\text {MAX }}=(3.68+2.7+1.0) d B m * 0.02=5.47 \mathrm{~mW} * 0.02=0.11 \mathrm{~mW}$
Where

Maximum peak output power $=3.68 \mathrm{dBm}$
Peak antenna gain $=2.7 \mathrm{dBi}$

Tune up tolerance $=1.0 \mathrm{~dB}$

Duty cycle $=2 \%=0.02$

For ISED and BTOO2 equipment

Source-based and time-averaged output power is calculated for BT001 equipment, the value is 0.15 mW which is less than the exemption limit of 4 mW according to RSS-102 section 2.5 .1, under frequency condition of 2450 MHz and separation distance condition of 5 mm .
$P_{\text {MAX }}=(3.68+4.0+1.0) d B m * 0.02=7.38 \mathrm{~mW}^{*} 0.02=0.15 \mathrm{~mW}$
Where
Maximum peak output power $=3.68 \mathrm{dBm}$

Peak antenna gain $=4 \mathrm{dBi}$
Tune up tolerance $=1.0 \mathrm{~dB}$
Duty cycle $=2 \%=0.02$

