

FCC SAR TEST REPORT

S T S

A

Report No: STS1612070H01

Issued for

Shenzhen YQT Electronic Technology Co., Ltd

F5, Bldg4, Hua Feng No.1 Science & Technology Zone, Xixiang, Bao'an, Shenzhen, China

Product Name:	smart watch			
Brand Name:	N/A			
Model Name:	Q730			
Series Model:	Q750,Q760,Q50,Q523,Q528,Q60,C1,C2,C3			
FCC ID:	N/A			
	ANSI/IEEE Std. C95.1			
Test Standard:	FCC 47 CFR Part 2 (2.1093)			
	IEEE 1528: 2013			
Max. Report SAR (1g):	Face to mouth:0.269 W/kg			
Max. Report SAR (10g):	Wrist:1.005 W/kg			

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 39

Report No.: STS1612070H01

Test Report Certification

Applicant's name:	Shenzhen YQT Electronic Technology Co., Ltd
Address:	F5, Bldg4, Hua Feng No.1 Science & Technology Zone, Xixiang, Bao'an, Shenzhen, China
	Shenzhen YQT Electronic Technology Co., Ltd
Address:	F5, Bldg4, Hua Feng No.1 Science & Technology Zone, Xixiang, Bao'an, Shenzhen, China
Product description	
Product name:	smart watch
Trademark:	N/A
Model and/or type reference :	Q730
Series Model :	Q750,Q760,Q50,Q523,Q528,Q60,C1,C2,C3
Standards	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	
Date (s) of performance of tests:	06 Dec. 2016
Date of Issue:	07 Dec. 2016
Test Result:	Pass

Testing Engineer :	Aann 13u
_	(Aaron Bu)
Technical Manager :	APPROVAL
	(Vita Li)
Authorized Signatory :	Thoney Yoney
	(Bovey Yang)

Table of Contents

1.General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Factory	5
2.Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
7. EUT Test Position	14
7.1 Body-worn Position Conditions:	14
7.2 Hotspot mode exposure position condition	14
8. Uncertainty	15
8.1 Measurement Uncertainty	15
8.2 System validation Uncertainty	16
9. Conducted Power Measurement	17
9.1 Test Result	17
9.2 Tune-up Power	19
10. EUT And Test Setup Photo	20
10.1 EUT Photo	20
10.2 Setup Photo	23
11. SAR Result Summary	25
11.1 Body-worn SAR	25
12. Equipment List	26
Appendix A. System Validation Plots	27
Appendix B. SAR Test Plots	31
Appendix C. Probe Calibration And Dipole Calibration Report	39

П

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 4 of 39

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Equipment	smart watch					
Brand Name	N/A	N/A				
Model No.	Q730	Q730				
Series Model	Q750,Q760,Q50	Q750,Q760,Q50,Q523,Q528,Q60,C1,C2,C3				
FCC ID	N/A					
Model Difference	Only different in	model name				
Adapter	N/A					
Battery	Rated Voltage: 3 Charge Limit: 4.2 Capacity: 650m/	25V;				
Device Category	Portable					
Product stage	Production unit					
Exposure Environment	General Population	on / Uncontrolled				
IMEI	35746105848803	35				
Hardware Version	G75-MB-V1.3					
Software Version	G75-SW-V1.0	G75-SW-V1.0				
Frequency Range	GSM 850:824.2~848.8MHz PCS1900:1850.2~1909.8MHz WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6MHz					
Max. Reported	Face to mouth (1g):	GSM 850 : 0.125 W/kg GSM 1900 : 0.165 W/kg WCDMA Band II: 0.269 WCDMA Band V: 0.234	Limit:1.6W/kg			
SAR	Wrist(10g):	GSM 850 : 0.816 W/kg GSM 1900 : 1.005 W/kg WCDMA Band II: 0.972 W/kg WCDMA Band V: 0.931 W/kg	Limit:4.0W/kg			
FCC Equipment Class	Licensed Portab	Licensed Portable Transmitter Held to Ear (PCE)				
Operating Mode		GSM: GSM Voice; GPRS; Class 12; WCDMA:RMC,HSDPA,HSUPA Release 6;				
Antenna Specification	GSM,WCDMA: F	GSM,WCDMA: PIFA Antenna				
SIM Card	Support single SIM					
Note: The EUT battery mus power.	t be fully charged ar	nd checked periodically during the t	est to ascertain uniform			

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com

Page 5 of 39 Report No.: STS1612070H01

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration No.: 842334;

IC Registration No.: 12108A-1

Shenzhen STS Test Services Co., Ltd.

2.Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists,	Feet and Ankles
------------	--------------	----------------	-----------------

20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Page 7 of 39

Report No.: STS1612070H01

3. SAR Measurement System

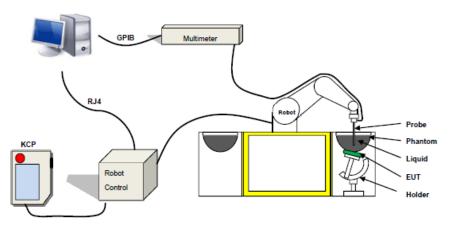
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

SATIMO SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items: - Main computer to control all the system

- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Page 8 of 39 Report No.: STS1612070H01

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 45/15 EPGO281 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 2.5 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 1mm)
- Probe linearity: 0±2.60%(0.11dB)
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Frequency	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2-Propanediol	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	1	64.81	1	34.40	0.97	41.8
1800	/	13.84	/	0.35	1	1	30.45	55.36	1.38	41.0
1900	/	13.84	1	0.35	1	1	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

Tissue dielectric parameters for head and body phantoms								
				σ				
Frequency	3	r	S	/m				
	Head	Body	Head	Body				
300	45.3	58.2	0.87	0.92				
450	43.5	58.7	0.87	0.94				
900	41.5	55.0	0.97	1.05				
1450	40.5	54.0	1.20	1.30				
1800	40.0	53.3	1.40	1.52				
2450	39.2	52.7	1.80	1.95				
3000	38.5	52.0	2.40	2.73				
5800	35.3	48.2	5.27	6.00				

Page 11 of 39 Report No

Report No.: STS1612070H01

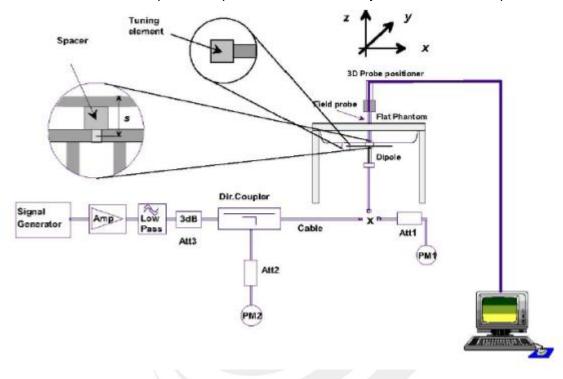
LIQUID MEASUREMENT RESULTS

Date: 06 Dec. 2016 Ambient condition: Temperature 22.7°C Relative humidity: 49%

Head Simula	ting Liquid	Parameters	Target	Measured	Deviation[%	Limited[%]
Frequency	Temp. [°C]				J	
835 MHz	22.30	Permitivity:	41.5	42.31	1.95	±5
033 10112	22.30	Conductivity:	0.9	0.94	4.44	± 5
1900 MHz	22.30	Permitivity:	40	41.20	3.00	± 5
	22.30	Conductivity:	1.4	1.45	3.57	± 5

ating Liquid	Doromotoro	Torget	Maggurad	Doviation ^{[9/1}	Limited[
Temp. [°C]	Falameters	Target	Measured	Deviation[%]	%]
22.20	Permitivity:	55.2	54.12	-1.96	± 5
22.30	Conductivity:	0.97	0.95	-2.06	± 5
22.20	Permitivity:	53.3	53.21	-0.17	± 5
22.30	Conductivity:	1.52	1.50	-1.32	± 5
	ating Liquid Temp. [°C] 22.30 22.30	Temp. [°C] Parameters 22.30 Permitivity: 22.30 Conductivity: 22.30 Permitivity:	Temp. [°C]ParametersTarget22.30Permitivity:55.2Conductivity:0.9722.30Permitivity:53.3	Temp. [°C] Parameters Target Measured 22.30 Permitivity: 55.2 54.12 Conductivity: 0.97 0.95 22.30 Permitivity: 53.3 53.21	Temp. [°C] Parameters Target Measured Deviation[%] 22.30 Permitivity: 55.2 54.12 -1.96 22.30 Conductivity: 0.97 0.95 -2.06 22.30 Permitivity: 53.3 53.21 -0.17

Shenzhen STS Test Services Co., Ltd.


Page 12 of 39

5. SAR System Validation 5.1 Validation System

Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
835 Head	100	0.968	9.68	9.56	1.27	2016-12-06
835 Body	100	0.941	9.41	9.56	-1.62	2016-12-06
1900 Head	100	4.007	40.07	39.7	0.92	2016-12-06
1900 Body	100	4.161	41.61	39.7	4.81	2016-12-06

Ambient condition: Temperature 22.7°C Relative humidity: 49%

Note: The tolerance limit of System validation ±10%.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

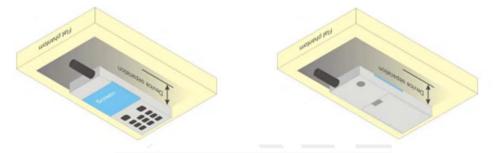
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

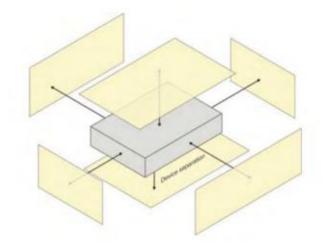
When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

Page 14 of 39



7. EUT Test Position

This EUT was tested in Front Face and Rear Face.


7.1 Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

7.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface).

Shenzhen STS Test Services Co., Ltd.

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Measu	Measurement System								
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
2	Axial isotropy	3.5	R	√3	(1-cp)1/ 2	(1-cp)1/ 2	1.43	1.43	∞
3	Hemispherical isotropy	5.9	R	√3	√Ср	√Ср	2.41	2.41	∞
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	∞
7	Readout electronics	0.5	N	1	1	1	0.50	0.50	∞
8	Response time	0	R	√3	1	1	0	0	∞
9	Integration time	1.4	R	√3	1	1	0.81	0.81	8
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	∞
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8
	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8
Test	sample related								
15	Device positioning	2.6	Ν	1	1	1	2.6	2.6	11
16	Device holder	3	Ν	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phan	tom and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	∞
19	Liquid conductivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	∞
22	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Com	bined standard		RSS	U	$C = \sqrt{\sum_{i=1}^{n} C_i}$	${}^{2}U_{i}^{2}$	10.63%	10.54%	
Expa	nded uncertainty (P=95%)		<i>U</i> =	k U _c ,I	k=2		21.26%	21.08%	

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Report No.: STS1612070H01

8.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Measu	Measurement System								
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp)1 /2	(1-cp)1 /2	1.43	1.43	8
3	Hemispherical isotropy	5.9	R	√3	√Ср	√Ср	2.41	2.41	∞
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8
7	Modulation response	0	Ν	1	1	1	0	0	8
8	Readout electronics	0.5	Ν	1	1	1	0.50	0.50	8
9	Response time	0	R	√3	1	1	0	0	8
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Dipol	le				<u> </u>	1			
16	Deviation of experimental source from	4	N	1	1	1	4.00	4.00	∞
17	Input power and SAR drift mea.	5	R	√3	1	1	2.89	2.89	8
18	Dipole Axis to liquid Distance	2	R	√3	1	1			8
Phar	ntom and set-up	<u>.</u>	<u> </u>		<u> </u>	1		<u> </u>	
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	∞
20	Uncertainty in SAR correction for deviation(in	2.0	Ν	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	Ν	1	1	0.84	2.00	1.68	8
22	Liquid conductivity (temperature uncertainty)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Com	bined standard		RSS		$=\sqrt{\sum_{i=1}^{n}C_{i}^{2}}$	U_i^2	10.15%	10.05%	
Expa	inded uncertainty (P=95%)		$U_{=}$	$k U_{c}$,k	=2		20.29%	20.10%	

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

9. Conducted Power Measurement

9.1 Test Result

Burst Average Power (dBm)								
Band		GSM 850			PCS 1900			
Channel	128	190	251	512	661	810		
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8		
GSM(GMSK, 1-Slot)	31.78	31.86	31.89	28.49	28.51	28.65		
GPRS (GMSK, 1-Slot)	31.76	31.83	31.87	28.45	28.49	28.42		
GPRS (GMSK, 2-Slot)	31.31	31.36	31.44	27.97	28.01	27.96		
GPRS (GMSK, 3-Slot)	29.87	29.94	29.98	26.57	26.54	26.54		
GPRS (GMSK, 4-Slot)	29.43	29.54	29.56	26.07	26.12	26.05		
EGPRS(8PSK, 1-Slot)	31.75	31.82	31.86	28.44	28.48	28.41		
EGPRS(8PSK, 2-Slot)	31.35	31.39	31.41	28.02	28.02	27.91		
EGPRS(8PSK, 3-Slot)	29.91	29.96	29.93	26.56	26.60	26.42		
EGPRS(8PSK, 4-Slot)	29.43	29.49	29.46	26.11	26.19	25.94		
Remark: GPRS, CS4 coding scheme. EGPRS, MCS9 coding scheme. Multi-Slot Class 8, Support Max 4 downlink, 1 uplink, 5 working link								

Multi-Slot Class 8, Support Max 4 downlink, 1 uplink, 5 working link Multi-Slot Class 10, Support Max 4 downlink, 2 uplink, 5 working link

Multi-Slot Class 12 , Support Max 4 downlink, 4 uplink , 5 working link

Fram- Average Power(dBm)								
Band		GSM 850			PCS 1900			
Channel	128	190	251	512	661	810		
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8		
GSM(GMSK, 1-Slot)	22.75	22.83	22.86	19.46	19.48	19.62		
GPRS (GMSK, 1-Slot)	22.73	22.80	22.84	19.42	19.46	19.39		
GPRS (GMSK, 2-Slot)	25.29	25.34	25.42	21.95	21.99	21.94		
GPRS (GMSK, 3-Slot)	25.61	25.68	25.72	22.31	22.28	22.28		
GPRS (GMSK, 4-Slot)	26.42	26.53	26.55	23.06	23.11	23.04		
EGPRS(8PSK, 1-Slot)	22.72	22.79	22.83	19.41	19.45	19.38		
EGPRS(8PSK, 2-Slot)	25.33	25.37	25.39	22.00	22.00	21.89		
EGPRS(8PSK, 3-Slot)	25.65	25.70	25.67	22.30	22.34	22.16		
EGPRS(8PSK, 4-Slot)	26.42	26.48	26.45	23.10	23.18	22.93		

Remark :

1. SAR testing was performed on the maximum frame-averaged power mode.

2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum

burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = Burst averaged power (1 Tx Slot) – 9.03 dB

Frame-averaged power = Burst averaged power (2 Tx Slots) - 6.02 dB

Frame-averaged power = Burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Burst averaged power (4 Tx Slots) – 3.01 dB

Page 18 of 39

Report No.: STS1612070H01

WCDMA

Band	W	CDMA Ban	d V	W	CDMA Band	l II b
Channel	4132	4183	4233	9262	9400	9538
Frequency (MHz)	826.4	836.6	846.6	1852.4	1880.0	1907.6
AMR 12.2Kbps	22.44	22.21	22.31	20.97	21.86	20.79
RMC 12.2Kbps	22.48	22.26	22.35	21.01	21.90	20.83
HSDPA Subtest-1	22.43	22.23	22.32	20.98	21.85	20.75
HSDPA Subtest-2	21.99	21.80	21.92	20.55	21.37	20.27
HSDPA Subtest-3	21.68	21.35	21.56	20.23	20.95	19.87
HSDPA Subtest-4	21.25	21.00	21.15	19.89	20.64	19.43
HSUPA Subtest-1	22.36	22.20	21.91	20.89	21.84	20.28
HSUPA Subtest-2	21.47	21.26	20.92	19.97	20.90	19.32
HSUPA Subtest-3	21.44	20.86	20.55	19.95	20.49	18.86
HSUPA Subtest-4	20.99	20.36	20.08	19.60	20.01	18.37
HSUPA Subtest-5	19.56	18.91	18.63	18.20	18.54	16.90

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1A: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)

Note: CM=1 for $\beta c/\beta d=12/15$, $\beta hs/\beta c=24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH,

E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

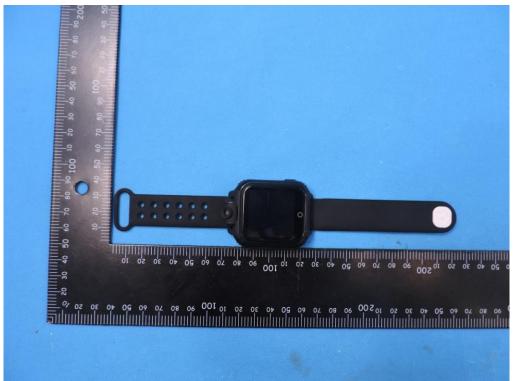
Page 19 of 39

9.2 Tune-up Power

Mada	AVG	AVG
Mode	GSM850	PCS1900
GSM/PCS	31±1dBm	28±1dBm
GPRS (1 Slot)	31±1dBm	28±1dBm
GPRS (2 Slot)	31±1dBm	28±1dBm
GPRS (3 Slot)	29±1dBm	26±1dBm
GPRS (4 Slot)	29±1dBm	26±1dBm
EGPRS (1 Slot)	31±1dBm	28±1dBm
EGPRS (2 Slot)	31±1dBm	28±1dBm
EGPRS (3 Slot)	29±1dBm	26±1dBm
EGPRS (4 Slot)	29±1dBm	25.2±1dBm

Mode	WCDMA Band V(AVG)	WCDMA Band II(AVG)
AMR	22±1dBm	21±1dBm
RMC	22±1dBm	21±1dBm
HSDPA Subtest-1	22±1dBm	21±1dBm
HSDPA Subtest-2	21±1dBm	21±1dBm
HSDPA Subtest-3	21±1dBm	20±1dBm
HSDPA Subtest-4	21±1dBm	20±1dBm
HSUPA Subtest-1	22±1dBm	21±1dBm
HSUPA Subtest-2	21±1dBm	20±1dBm
HSUPA Subtest-3	21±1dBm	20±1dBm
HSUPA Subtest-4	20±1dBm	20±1dBm
HSUPA Subtest-5	19±1dBm	17.7±1dBm

П



Page 20 of 39

10. EUT And Test Setup Photo

10.1 EUT Photo

Front side

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612070H01

Top side

Bottom side

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Left side

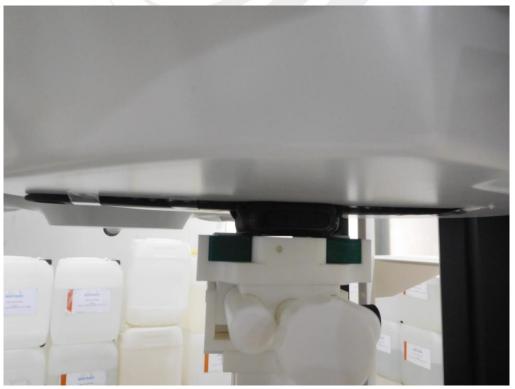
Right side

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

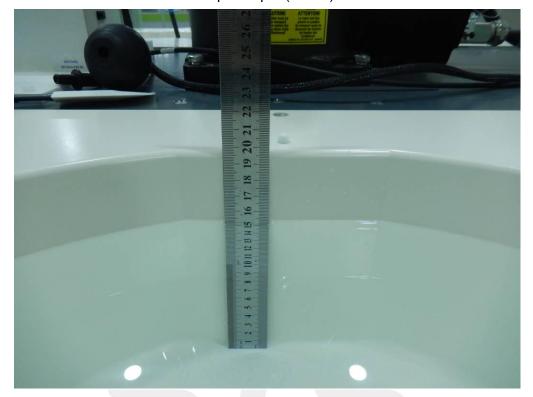
Page 23 of 39


Report No.: STS1612070H01

10.2 Setup Photo

Hold to mouth (separation distance is 10mm)

Body Back side(separation distance is 0mm)



Shenzhen STS Test Services Co., Ltd.

Liquid depth (15 cm)

Ш

Shenzhen STS Test Services Co., Ltd.

11. SAR Result Summary

11.1 Body-worn SAR

Band	Mode	Test Position	Ch.	Result (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (1g) (W/Kg)	Meas. No.
GSM 850	VOICE	Face to mouth	251	0.122	2.00	32	31.89	0.125	1
GSM1900	VOICE	Face to mouth	810	0.152	-4.33	29	28.65	0.165	3
WCDMA Band II	RMC	Face to mouth	9400	0.263	-2.18	22	21.90	0.269	5
WCDMA Band V	RMC	Face to mouth	4132	0.208	-2.69	23	22.48	0.234	7

Band	Mode	Test Position	Ch.	Result (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (10g) (W/Kg)	Meas. No.
GSM 850	GPRS Data-4 Slot	Wrist	251	0.737	-2.54	30	29.56	0.816	2
GSM1900	GPRS Data-4 Slot	Wrist	661	1.003	-3.35	26.20	26.19	1.005	4
WCDMA Band II	RMC	Wrist	9400	0.950	-0.07	22	21.90	0.972	6
WCDMA Band V	RMC	Wrist	4132	0.826	-0.65	23	22.48	0.931	8

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612070H01

12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
835MHz Dipole	SATIMO	SID835	SN 30/14 DIP0G835-332	2014.09.01	2017.08.31
1900MHz Dipole	SATIMO	SID1900	SN 30/14 DIP1G900-333	2014.09.01	2017.08.31
E-Field Probe	MVG	SSE2	SN 45/15 EPGO281	2015.10.12	2016.10.11
Antenna	SATIMO	ANTA3	SN 07/13 ZNTA52	2014.09.01	2017.08.31
Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2014.09.01	2017.08.31
Phantom1	SATIMO	SAM	SN 32/14 SAM115	N/A	N/A
Phantom2	SATIMO	SAM	SN 32/14 SAM116	N/A	N/A
SAR TEST BENCH	SATIMO	GSM and WCDMA mobile phone POSITIONNIN G SYSTEM	SN 32/14 MSH97	N/A	N/A
SAR TEST BENCH	SATIMO	LAPTOP POSITIONNIN G SYSTEM	SN 32/14 LSH29	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 32/14 OCPG52	2016.08.30	2017.08.29
Multi Meter	Keithley	Multi Meter 2000	4050073	2016.10.23	2017.10.22
Signal Generator	Agilent	N5182A	MY50140530	2016.10.23	2017.10.22
Power Meter	R&S	NRP	100510	2016.10.23	2017.10.22
Power Meter	HP	EPM-442A	GB37170267	2016.10.23	2017.10.22
Power Sensor	R&S	NRP-Z11	101919	2016.10.09	2017.10.08
Power Sensor	HP	8481A	2702A65976	2016.10.09	2017.10.08
Network Analyzer	Agilent	5071C	EMY46103472	2015.12.12	2016.12.11
Attenuator 1	PE	PE7005-10	N/A	2016.10.23	2017.10.22
Attenuator 2	PE	PE7005-3	N/A	2016.10.23	2017.10.22
Attenuator 3	Woken	WK0602-XX	N/A	2015.12.12	2016.12.11
Dual Directional Coupler	Agilent	778D	50422	2015.11.18	2016.11.17

П

Report No.: STS1612070H01

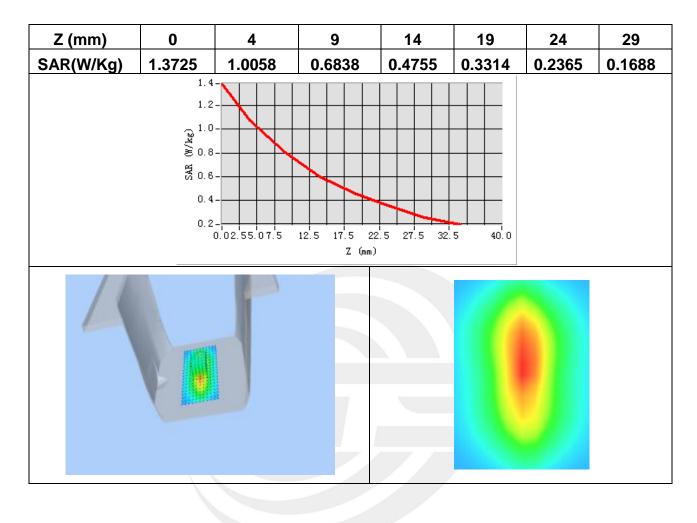
Appendix A. System Validation Plots

System Performance Check Data (835MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-06 Measurement duration: 14 minutes 13 seconds

Experimental conditions.

Probe	
Phantom	Validation plane
Device Position	-
Band	835MHz
Channels	-
Signal	CW
Frequency (MHz)	835MHz
Relative permittivity (real part)	54.70
Relative permittivity	21.408187
Conductivity (S/m)	0.98
Power drift (%)	0.090000
Ambient Temperature:	22.7°C
Liquid Temperature:	22.3°C
ConvF:	1.85
Crest factor:	1:1


Maximum location: X=1.00, Y=0.00

SAR Peak: 1.45 W/kg

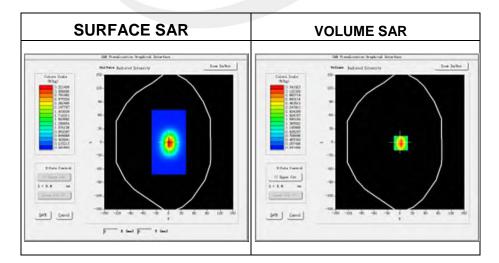
SAR 10g (W/Kg)	0.613913
SAR 1g (W/Kg)	0.941052

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.

Page 29 of 39

Report No.: STS1612070H01



System Performance Check Data (1900MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-06 Measurement duration: 14 minutes 46 seconds

Experimental conditions.

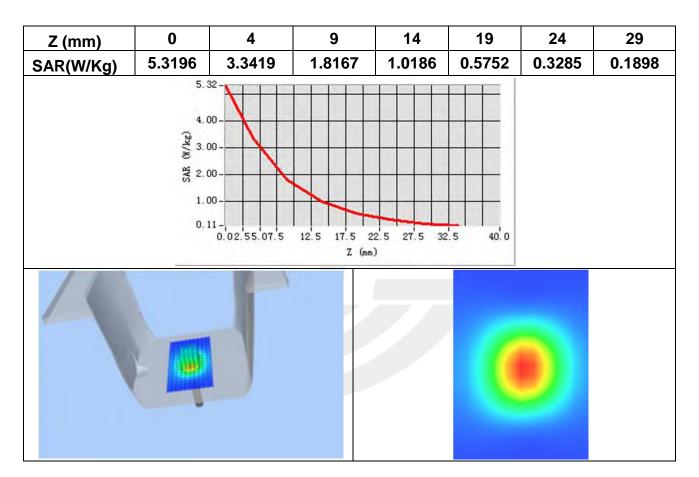
Device Position	-
Band	1900MHz
Channels	_
Signal	CW
Frequency (MHz)	1900
Relative permittivity (real part)	52.31
Relative permittivity	12.87531
Conductivity (S/m)	1.5
Power drift (%)	0.37
Ambient Temperature:	22.7°C
Liquid Temperature:	22.3°C
Probe	SN 45/15 EPGO281
ConvF:	2.16
Crest factor:	1:1

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 30 of 39


Report No.: STS1612070H01

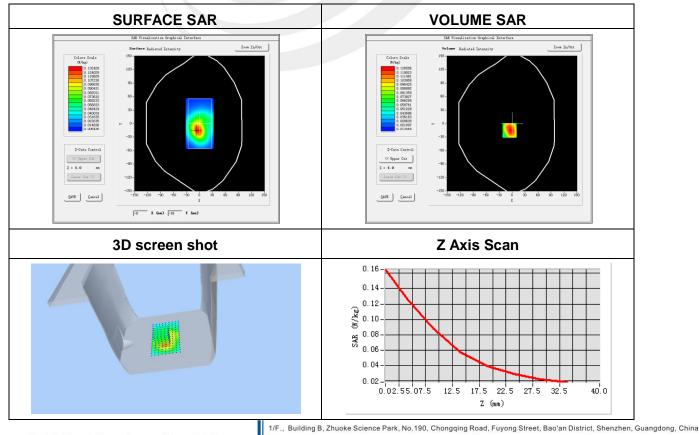
Maximum location: X=2.00, Y=2.00

SAR Peak: 5.30 W/kg

SAR 10g (W/Kg)	2.383383
SAR 1g (W/Kg)	4.160721

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.


Appendix B. SAR Test Plots

Plot 1: DUT: smart watch ; EUT Model: Q730

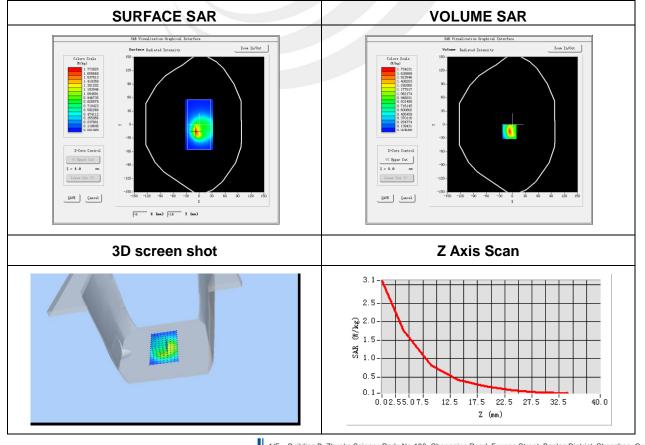
Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	1.85
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Face to mouth
Band	GSM 850
Channels	High
Signal	TDMA (Crest factor: 8.32)
Frequency (MHz)	848.8
Relative permittivity (real part)	42.27
Conductivity (S/m)	0.91
Variation (%)	2.00
Maximum location:	X=-6.00, Y=-15.00

SAR Peak: 0.18 W/kg

SAR 10g (W/Kg) 0.076410		
	0.076410	SAR 10g (W/Kg)
SAR 1g (W/Kg) 0.122154	0.122154	SAR 1g (W/Kg)

Shenzhen STS Test Services Co., Ltd.

Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com


Page 32 of 39

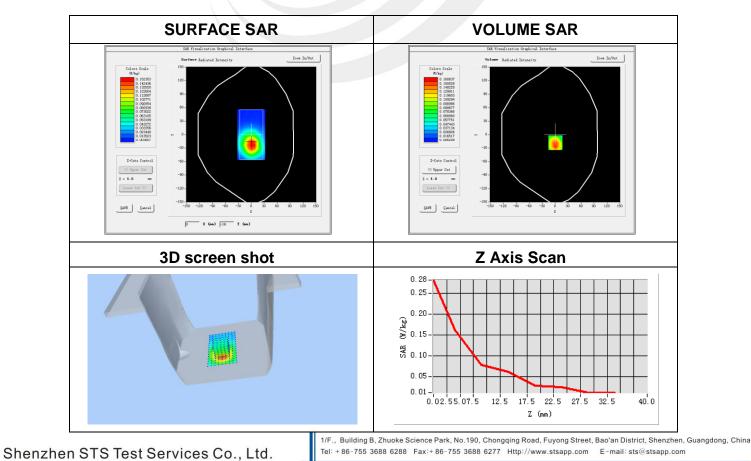
Report No.: STS1612070H01

Plot 2: DUT: smart watch ; EUT Model: Q730

,,	
Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	1.85
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Wrist
Band	GPRS 850
Channels	High
Signal	Duty Cycle: 2.00 (Crest factor: 2.0)
Frequency (MHz)	848.8
Relative permittivity (real part)	55.20
Conductivity (S/m)	0.97
Variation (%)	-2.54
Maximum location:	X=-7.00, Y=-16.00
SAR Peak	: 3.07 W/kg
SAR 10g (W/Kg)	0.737216

SAR 10g (W/Kg)	0.737216
SAR 1g (W/Kg)	1.592984

Shenzhen STS Test Services Co., Ltd.



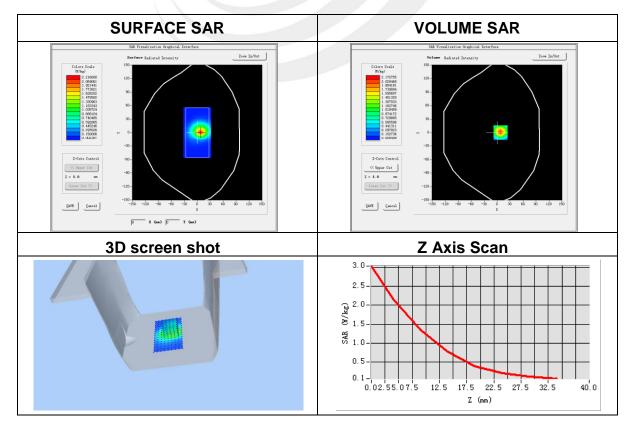
Page 33 of 39

Plot 3: DUT: smart watch ; EUT Model: Q730

Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	2.16
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Face to mouth
Band	GSM 1900
Channels	High
Signal	TDMA (Crest factor: 8.32)
Frequency (MHz)	1909.8
Relative permittivity (real part)	53.30
Conductivity (S/m)	1.43
Variation (%)	-4.33
	: X=1.00, Y=-18.00 : 0.25 W/kg

SAR 10g (W/Kg)	0.086654
SAR 1g (W/Kg)	0.152407

Ш


Page 34 of 39 Report No.: STS1612070H01

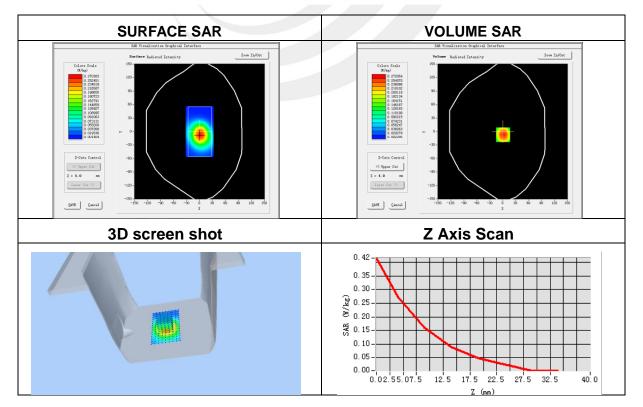
Plot 4: DUT: smart watch ; EUT Model: Q730

,		
Test Date	2016-12-06	
Ambient Temperature(°C)	22.70	
Liquid Temperature(°C)	22.30	
Probe	SN 45/15 EPGO281	
ConvF	2.16	
Area Scan	dx=8mm dy=8mm, h= 5.00 mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm	
Phantom	Validation plane	
Device Position	Wrist	
Band	GPRS 1900	
Channels	Middle	
Signal	Duty Cycle: 2.00 (Crest factor: 2.0)	
Frequency (MHz)	1880.0	
Relative permittivity (real part)	53.30	
Conductivity (S/m)	1.52	
Variation (%)	-3.35	
Maximum locat	Maximum location: X=8.00, Y=0.00	

SAR Peak: 3.27 W/kg

SAR 10g (W/Kg)	1.003119
SAR 1g (W/Kg)	1.988521

Shenzhen STS Test Services Co., Ltd.

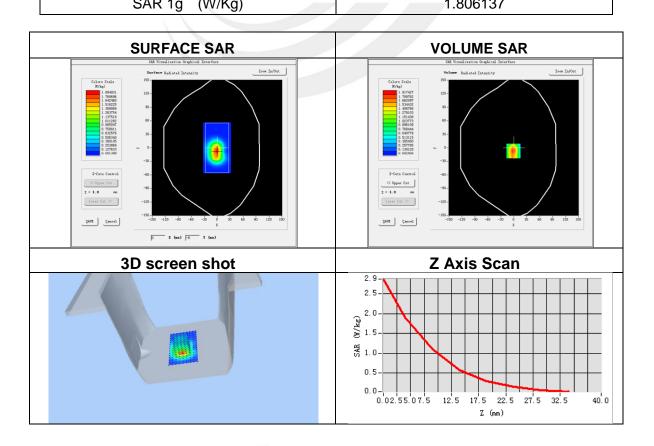

Page 35 of 39

Report No.: STS1612070H01

Plot 5: DUT: smart watch ; EUT Model: Q730

,	
Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	2.10
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Face to mouth
Band	WCDMA II
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	1880.0
Relative permittivity (real part)	40.00
Conductivity (S/m)	1.40
Variation (%)	-2.18
Maximum location: X=1.00, Y=-7.00 SAR Peak: 0.41 W/kg	

SAR 10g (W/Kg)	0.144722
SAR 1g (W/Kg)	0.263401



Page 36 of 39

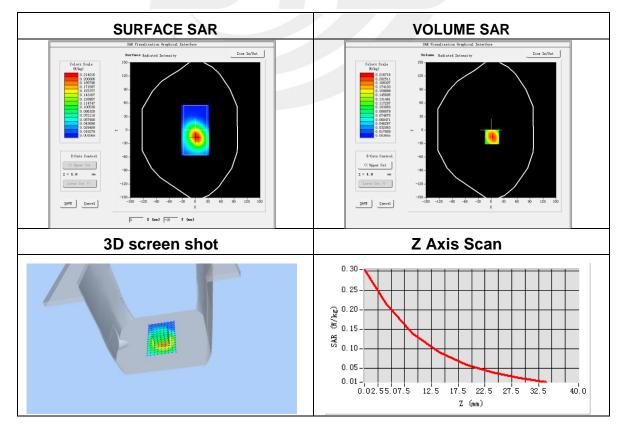
Report No.: STS1612070H01

Plot 6: DUT: smart watch ; EUT Model: Q730

Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	2.16
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZaamSaan	5x5x7,dx=8mm dy=8mm dz=5mm,
ZoomScan	Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Wrist
Band	WCDMA II
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	1880.0
Relative permittivity (real part)	39.71
Conductivity (S/m)	1.40
Variation (%)	-0.07
Maximum location:	X=-1.00, Y=-7.00
SAR Peak:	2.94 W/kg
SAR 10g (W/Kg)	0.950240
SAR 1g (W/Kg)	1 806137

Shenzhen STS Test Services Co., Ltd.

Page 37 of 39

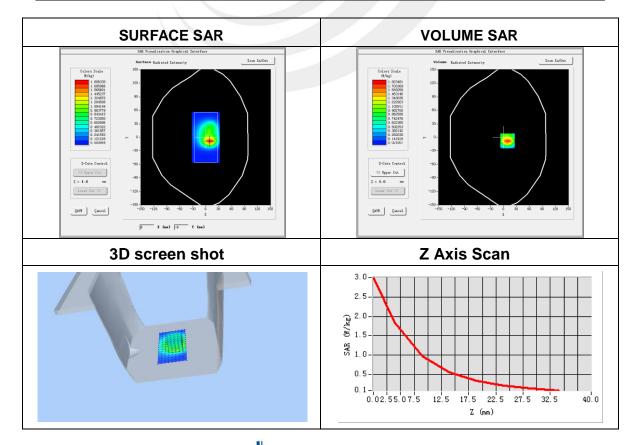

Report No.: STS1612070H01

Plot 7: DUT: smart watch ; EUT Model: Q730

22.70 22.30 SN 45/15 EPGO281 1.78 3mm dy=8mm, h= 5.00 mm
SN 45/15 EPGO281 1.78
1.78
3mm dy=8mm, h= 5.00 mm
.dx=8mm dy=8mm dz=5mm, ndx=8mm dy=8mm, h= 5.00 mm
Face to mouth
WCDMA V
Low
CDMA (Crest factor: 1.0)
826.4
42.27
0.91
-2.69

SAR Peak: 0.31 W/kg

	5
SAR 10g (W/Kg)	0.125781
SAR 1g (W/Kg)	0.207517



Page 38 of 39

Report No.: STS1612070H01

Plot 8: DUT: smart watch ; EUT Model: Q730

Test Date	2016-12-06
Ambient Temperature(°C)	22.70
Liquid Temperature(°C)	22.30
Probe	SN 45/15 EPGO281
ConvF	1.85
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,
	Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Wrist
Band	WCDMA V
Channels	Low
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	826.4
Relative permittivity (real part)	55.5
Conductivity (S/m)	0.96
Variation (%)	-0.65
Maximum location: X=9.00, Y=-8.00	
SAR Peak: 3.12 W/kg	
SAR 10g (W/Kg)	0.826475
SAR 1g (W/Kg)	1.698197

Shenzhen STS Test Services Co., Ltd.

Page 39 of 39

Report No.: STS1612070H01

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.