

Report No. ATT2017SZ0522156F1 - Page 1 of 49 -

F	CC REPORT			
FCC ID:	2AKLL-POLAR3D20			
Applicant's name:	Zhejiang Flashforge 3D Technology C	O., Ltd.		
Address	No.518, Xianyuan Road, Jinhua, Zhej	iiang, China		
Manufacturer	Zhejiang Flashforge 3D Technology C	O., Ltd.		
Address	No.518, Xianyuan Road, Jinhua, Zhej	iiang, China		
Test item description:	POLAR 3D PRINTER			
Trade Mark	POLAR3D			
Model/Type reference	POLAR 3D 2.0			
List Model	POLAR3D20			
Standard:	FCC Part 15.407			
Date of receipt of test sample:	May 15 2017			
Date of testing	May 15 2017 ~ May 31 2017			
Date of issue	May 31 2017			
Result	Pass			
Compiled by		Jack Vin		
(position+printed name+signature):	File administrators Jack Yu	fuor you		
Supervised by		Tenny you		
(position+printed name+signature):	Test Engineer Jerry You	July		
Approved by				
(position+printed name+signature):	Manager Can Liu	(an live		
Testing Laboratory Name: :	Shenzhen Asia Test Technology Co.,L	td.		
Address	7 / F, Xinwei Building, Gushu Villa District, Shenzhen, China	age, Xixiang Town, Baoan		
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Asia Test Technology Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Asia Test Technology Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.				

Report No. ATT2017SZ0522156F1 - Page 2 of 49 -

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	<u> 3</u>
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
2.1.	Product Description	4
2.2.	EUT operation mode	5
2.3.	EUT configuration	5
2.4.	Test mode applicability and tested channel detail	5
<u>3.</u>	TEST ENVIRONMENT	<u> 7</u>
3.1.	Address of the test laboratory	7
3.2.	Environmental conditions	7
3.3.	Statement of the measurement uncertainty	7
3.4.	Equipments Used during the Test	7
<u>4.</u>	TEST CONDITIONS AND RESULTS	9
4.1.	AC Power Conducted Emission	9
4.2.	Radiated Emission	12
4.3.	Peak Transmit Power Measurement	29
4.4.	Bandwidth	30
4.5.	Peak Power Spectral Density Measurement	34
4.6.	On Time and Duty Cycle	40
4.7.	Frequency Stability	42
4.8.	Band Edge Compliance of RF Emission	44
4.9.	Antenna Requirement	47
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	48

6.	EXTERNAL	AND INTE	RNAL PHOTOS	OF THE EU	T 49

Report No. ATT2017SZ0522156F1 - Page 3 of 49 -

1. <u>TEST STANDARDS AND TEST DESCRIPTION</u>

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC Part 15, Subpart E (Section 15.407)		
15.407(b)(6)&15.207	AC Power Conducted Emission	PASS
15.407(b/1/2/3)(b)(5)	Electric Field Strength Spurious Emissions, 30MHz ~ 40000MHz	PASS
15.407(a/1/2/3)	Peak Transmit Power	PASS
15.407(a/1/2/3)	Peak Power Spectral Density	PASS
15.407(g)	Frequency Stability	PASS

This device support 802.11abgn 2.4g+5g mode. This device is not supported simultaneous transmission(2.4G WIFI+5GWIFI), When used 2,4g wifi, the 5g wifi is unactivated. and vice versa.

Report No. ATT2017SZ0522156F1 - Page 4 of 49 -

2. <u>SUMMARY</u>

2.1. Product Description

Name of EUT	POLAR 3D PRINTER
Model No.:	POLAR 3D 2.0
List Model:	POLAR3D20
Power supply:	DC 12V
Adapter information:	M/N:KPL-065F-VI Input:100-240V~, 50/60Hz, 1.7A Output:12Vdc, 5.42A, 65W
WIFI	
Supported type:	802.11a/b/g/n
Modulation:	CCK, DQPSK, DBPSK for DSSS
	64QAM, 16QAM, QPSK, BPSK for OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
	802.11a: 5.150 ~ 5.250GHz and 5.725 ~ 5.850GHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
	802.11a: 20MHz for Normal mode
Channel separation:	802.11b/802.11g/802.11n(H20): 5MHz
	802.11a: 20MHz for Normal mode
Antenna type:	Internal Antenna
Antenna gain:	0 dBi

Report No. ATT2017SZ0522156F1 - Page 5 of 49 -

2.2. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides command

to control the EUT for staying in continous transmitting and receiving mode for testing.

Frequency band	5150 - 5250 MHz	5250 -5350 MHz	5470-5725 MHz	5725 - 5850
Frequency (ch A)	5180 MHz			5745 MHz
Frequency (ch B)	5220 MHz			5785 MHz
Frequency (ch C)	5240 MHz			5825 MHz
Number of channels	4			5

2.3. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\ensuremath{\bigcirc}$ supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer :	/
		Model No. :	/

2.4. Test mode applicability and tested channel detail

EUT configure		Appli	cable to		Description	
mode	PLC	RE<1G	RE≥1G	APCM	Description	
	х	х	х	Х		
Where PLC: Power L	Emission	RE<1G RE: Radiated Emission below 1GHz				
RE≥1G: Radiated En	nission above 10	GHz	APCM: Antenna	Port Conduct	ed Measurement	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates(if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Mode	Available	Tested	Modulation	Modulation	Data Rate
	Channel	Channe I	Technology	Type	(Mbps)
802.11a	1 to 9	3	OFDM	BPSK	6

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Mode Available Tested Modulation Modulation Data Rate		Mode	Available	Tested	Modulation	Modulation	Data Rate
---	--	------	-----------	--------	------------	------------	-----------

Report No. ATT2017SZ0522156F1 - Page 6 of 49 -

				9 -	
	Channe I	Channe I	Technology	Туре	(Mbps)
802.11a	1 to 9	3	OFDM	BPSK	6

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Mode	Available	Tested	Modulation	Modulation	Data Rate
	Channel	Channe I	Technology	Type	(Mbps)
802.11a	1 to 9	1, 4, 5, 9	OFDM	BPSK	6

Bandedge Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Mode	Available	Tested	Modulation	Modulation	Data Rate
	Channel	Channe I	Technology	Type	(Mbps)
802.11a	1 to 9	1, 4, 5, 9	OFDM	BPSK	6

Antenna Port Conducted Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Mode	Available	Tested	Modulation	Modulation	Data Rate
	Channel	Channe I	Technology	Type	(Mbps)
802.11a	1 to 9	1, 4, 5, 9	OFDM	BPSK	6

Report No. ATT2017SZ0522156F1 - Page 7 of 49 -

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Asia Test Technology Co.,Ltd. 7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China FCC Registration No.: 348715 The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10:2013 and CISPR Publication 22.

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	Normal Temperature:	25°C	
Temperature	High Temperature:	55°C	
	Low Temperature:	-20°C	
	Normal Voltage	DC 12V	
Voltage	High Voltage	DC 13.2V	
	Low Voltage	DC 10.8V	
Othor	lative Humidity	55 %	
Other	Air Pressure	989 hPa	

3.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Asia Test Technology Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-12.75 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	3.54 dB	(1)
Radiated Emissio 18-40GHz	2.86 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.4. Equipments Used during the Test

Report No. ATT2017SZ0522156F1 - Page 8 of 49 -

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data	due date			
1	Semi- anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016	10/24/2017			
2	Broadband antenna	R&S	VULB 9160	VULB91 60- 516	30MHz-1500 MHz	10/25/2016	10/24/2017			
3	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GH z	06/05/2016	10/24/2017			
4	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016	10/24/2017			
5	EMI Measuring Receiver	R&S	ESR	101660	9KHz-40GHz	10/25/2016	10/24/2017			
6	Multi-device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016	10/24/2017			
7	Amplifier	EM	EM-30180	060538	1GHz-18GH z	10/25/2016	10/24/2017			
8	Amplifier	Schwarzbeck	BBV 9475	BBV 9475- 663	1GHz-18GH z	06/05/2016	06/04/2017			
9	Spectrum Analyzer	agilent	E4440B	US44300368	1GHz- 26.5GH z	06/05/2016	06/04/2017			
10	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016	10/24/2017			
11	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016	10/24/2017			
12	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016	10/24/2017			
13	Power Meter	Anritsu	ML2495A	N/A	40MHz	10/25/2016	10/24/2017			
14	Power sensor	Anritsu	MA2411B	N/A	40MHz	10/25/2016	10/24/2017			
15	Radiated Cable 1#	FUJIKURA	5D-2W	01	30MHz-1GHz	10/25/2016	10/24/2017			
16	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz - 25GHz	10/25/2016	10/24/2017			
17	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz-30MHz	10/25/2016	10/24/2017			
18	SMA Antenna connector	Dosin	Dosin- SMA	N/A	N/A	10/25/2016	10/24/2017			
Note: The S SMA antenr The Cal Inte	Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list.									

The Cal.Interval was one year

Report No. ATT2017SZ0522156F1 - Page 9 of 49 -

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013
- The EUT received DC12V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Maximum RF Line Voltage (dBµV)							
(MHz)	CLA	SS A	CLASS B					
	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency

Report No. ATT2017SZ0522156F1 - Page 10 of 49 -

						Phas	e :L			
No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	25.33	11.94	37.27	55.99	-18.72	AVG		
2		0.1539	40.19	11.84	52.03	65.78	-13.75	QP		
3		0.4940	22.97	10.02	32.99	56.10	-23.11	QP		
4		0.4940	17.52	10.02	27.54	46.10	-18.56	AVG		
5		19.7099	33.79	11.05	44.84	60.00	-15.16	QP		
6	*	19.7099	27.57	11.05	38.62	50.00	-11.38	AVG		
Rema Fact	ark: or =	Insertion I	₋oss + Ca	ible Loss						
100.0	dBu'	v								
										Limit: — AVG: —
50 ×	50		×	Mangaran Managaran M Managaran Managaran Ma	n halan an a	м/тм _{ар} луу «М ^а м _{ар} уула» (MH2)	m M	Man and a start of the start of	and	peak AVG 30.000
0.1	50		0.5			(MHz)		5		30.000

0.0

0.150

0.5

Shenzhen Asia Test Technology Co., Ltd.

Report No. ATT2017SZ0522156F1 - Page 11 of 49 -

30.000

Phase :N

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1		0.1500	38.33	11.94	50.27	65.99	-15.72	QP			
2		0.1660	20.00	11.61	31.61	55.15	-23.54	AVG			
3		0.4940	22.78	10.02	32.80	56.10	-23.30	QP			
4		0.4940	16.82	10.02	26.84	46.10	-19.26	AVG			
5		19.2340	33.39	10.98	44.37	60.00	-15.63	QP			
6	*	19.7979	26.94	11.06	38.00	50.00	-12.00	AVG			
Rema Fact	ark: or =	Insertion	Loss + Ca	able Loss							
100.0	dBu	,									
										Limit: AVG·	_
	_										
-											
50X	Ϋ́ι Ι										
	∭₄l	N 1								^	ų –
		MANA	×							In	N
h	MU		Mar A							WALKER .	Mund dalla
	MAL.		IN IN A M	h. Anthe	1. Walnut Rowles	tak un	MAN MAN	MM.	hund the other thank	that .	peak
)		MARA L	('9899°') (^{ww}	In ANNIA MARINA	Maria - Angelanda - Angelan Maria - Angelanda - Angeland	NAVY ANY	. Mr.		1 Jan Mary Mary	NO WWW.	AVG
	1.11	- tuthu M	MAL W	White have	and the state of t	NAME NO WANT	<u>1</u> 74944 1794	Mw. And Ward	www.		

(MHz)

5

Report No. ATT2017SZ0522156F1 - Page 12 of 49 -

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz

Report No. ATT2017SZ0522156F1 - Page 13 of 49 -

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m(1.5m above 1G) above ground plane.

2. Maximum procedure was performed by raising the receiving antenna from 1 m to 4 m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.

3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

4. Repeat above procedures until all frequency measurements have been completed. Note: Fro radiated meissiont test above 1GHz:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

Report No. ATT2017SZ0522156F1 - Page 14 of 49 -

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

Frequencies (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m) *note 3		
5150~5250	-27	68.3		
5250~5350	-27	68.3		

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz(68.2 dBuV/m at 3m) at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz(105.2 dBuV/m at 3m) at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6(110.8 dBuV/m at 3m) dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz(122.2 dBuV/m at 3m) at the band edge.

TEST RESULTS

Remark:

1. The radiated measurement are performed the each test mode and channel (low/mid/high), the datum recorded below is the worst case for all the test mode and channel.

2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.

3. HORN ANTENNA for the radiation emission test above 1G.

Report No. ATT2017SZ0522156F1 - Page 15 of 49 -

For 9KHz to 30MHz

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

For 30MHz to 1000MHz

80.0 dBuV/m Limit: Margin: X ۶ X 40 0.0 30.000 70 80 (MHz) 400 500 600 700 1000.000 40 50 60 300 Correct Reading Antenna Table Measure-Over Limit No. Mk. Freq. Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector degree Comment cm 35.8746 50.89 -16.76 34.13 40.00 -5.87 QP 1 ! 97.4560 51.78 -15.66 43.50 -7.38 QP 2 36.12 3 129.4677 49.93 -14.95 34.98 43.50 -8.52 QP 32.69 250.3012 46.26 -13.57 46.00 -13.31 QP 4 5 480.5276 48.38 -5.90 42.48 46.00 -3.52 QP * 6 ! 875.2470 2.21 QP 39.66 41.87 46.00 -4.13

Polarization :H

Report No. ATT2017SZ0522156F1 - Page 16 of 49 -

Polarization :V

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Antenna Factor + Cable Loss.
- 3. N/A means All Data have pass Limit

Report No. ATT2017SZ0522156F1 - Page 17 of 49 -

TX 5180 MHz Polarization: Horizontal Test mode: **RBW/VBW** Frequency 1-18GHz Spurious : 1MHz/3MHz for Peak,1MHz/10Hz for range: Average. non-restricted band: 100KHz/300KHz for Peak. 80.0 dBu¥/m Limit: AVG 6 3 ľ man NAMM 40 WWW 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz Reading Correct Antenna Table Measure-Limit Over No. Mk. Freq. Level Factor ment Height Degree MHz dBuV dB dB dBuV/m dBuV/m Detector cm degree Comment 5150.000 42.98 -4.30 38.68 68.30 -29.62 1 peak 2 5150.000 28.37 -4.30 24.07 54.00 -29.93 AVG 3 10360.00 39.44 6.68 46.12 68.30 -22.18 peak 10360.00 32.56 -14.76 4 * 6.68 39.24 54.00 AVG 14685.00 28.17 15.55 74.00 -30.28 5 43.72 peak 17532.50 25.76 6 20.26 46.02 74.00 -27.98 peak

spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

For 1GHz to 40GHz

Report No. ATT2017SZ0522156F1 - Page 18 of 49 -

Test mode:	TX 5180 MHz	Polarizatio	on: Vertica	l			
Frequency	1-18GHz	RBW/VBW	Spurio	us : 1M	Hz/3MH	z for Peak	,1MHz/10Hz for
range:			Averag	le.			
			non-res	stricted	band: 1	00KHz/300	KHz for Peak.
80.0 dBu∀/m		ĺ	1		1		<u></u>
				L,			.imic:
			5		7	8	
40	×	3		Mama	man	MMMM	Maran
40 J.M. h. h	Marmon	Mundan	v~~~~¥~~w~	w. fr its			
AL WWWW	mm 3	¥					
0.0	4400.00 0100.00	7000.00 0	E00.00 112	00.00 1	12000.00	14000.00	10000 00 MIL
1000.000 2700.00	Reading Correct	Measure-	100.00 112	UU.UU I	Antenna	Table	18000.00 MHZ
No. Mk. Freq.	Level Factor	ment Li	imit Over		Height	Degree	
MHz	dBuV dB	dBuV/m dB	BuV/m dB	Detector	cm	degree Com	nment
1 5150.000	47.29 -4.30	42.99 68	.30 -25.31	peak			
2 5150.000	35.49 -4.30	31.19 54	.00 -22.81	AVG			
3 7842.500	41.30 0.57	41.87 74	.00 -32.13	peak			
4 7842.500	32.15 0.57	32.72 54	.00 -21.28	AVG			
5 10360.00	38.93 6.68	45.61 68	.30 -22.69	peak			
6 * 10360.00	32.05 6.68	38.73 54	.00 -15.27	AVG			
7 13537.50	29.20 14.87	44.07 74	.00 -29.93	peak			
8 15620.00	28.27 17.20	45.47 68	.30 -22.83	peak			

Report No. ATT2017SZ0522156F1 - Page 19 of 49 -

Report No. ATT2017SZ0522156F1 - Page 20 of 49 -

Report No. ATT2017SZ0522156F1 - Page 21 of 49 -

Tes	t mode:	TX 524	0 MHz	Polariza	ation:	Horizo	ntal					
Free	quency	1-18GH	lz	RBW/VI	ЗW	Spurio	us : 1N	MHz/3MH	Iz for P	eak,1M	Hz/10Hz	for
rang	je:					Avera	ne					
						non-re	stricte	d band: 1	00KHz	/300KH	z for Pea	ak.
80.0	dBuV/m											
										Limit: AV C:		
40	1 X	2	******		AMMA/	m fr	have	mm	mum	www	mm	
	N JAN MAN	Anna				×						
0.0	00 000 2700 00	4400.00	C100.00	7000 00	9500	00 112	00.00	12000.00	1400.0	0	19000 00 1	40-
	00.000 2700.00	Reading	Correct	Measure-	3300.	00 112	.00.00	Antenna	Table	0	10000.001	4H2
No	. Mk. Freq.	Level	Factor	ment	Limit	Over		Height	Degree			
	MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detecto	r cm	degree	Comment		
1	1510.000	50.39	-9.85	40.54	74.00	-33.46	peak					
2	2 5350.000	42.56	-3.82	38.74	68.30	-29.56	peak					
3	5350.000	31.91	-3.82	28.09	54.00	-25.91	AVG					
	6907.500	44.50	-1.26	43.24	74.00	-30.76	peak					
5	6907.500	34.12	-1.26	32.86	54.00	-21.14	AVG					
6	6 10480.00	36.96	7.04	44.00	68.30	-24.30	peak					
7	/ * 10480.00	26.81	7.04	33.85	54.00	-20.15	AVG					

Report No. ATT2017SZ0522156F1 - Page 22 of 49 -

Report No. ATT2017SZ0522156F1 - Page 23 of 49 -

Report No. ATT2017SZ0522156F1 - Page 24 of 49 -

Report No. ATT2017SZ0522156F1 - Page 25 of 49 -

Report No. ATT2017SZ0522156F1 - Page 26 of 49 -

Report No. ATT2017SZ0522156F1 - Page 27 of 49 -

Report No. ATT2017SZ0522156F1 - Page 28 of 49 -

spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

REMARKS: 1. Corrected Amplitude level (dBuV/m)=Reading(dBuV)+Factor(dB/m)

- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. For Wireless 802.11a mode at 54Mbps.

Report No. ATT2017SZ0522156F1 - Page 29 of 49 -

4.3. Peak Transmit Power Measurement

TEST CONFIGURATION

TEST PROCEDURE

The EUT was directly connected to the Power Meter and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

<u>LIMIT</u>

Frequency Band	Limit
5.15 – 5.25GHz	The lesser of 250mW (24dBm)
5.725 – 5.825GHz	The lesser of 1W (30dBm)

TEST RESULTS

Remark:We measured output power at difference data rate for each mode and recorded woest case for each mode.

4.3.1 802.11a Test Mode

A. Test Verdict

TEST CONDITIONS	CHANNEL FREQUEN CY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	26dBc Occupied Bandwidth (MHz)	PEAK POWER LIMIT	PASS/FAIL
Thom OF°C.	5180	9.53	9.79	20.492	050m\\/	PASS
100m=25°C;	5220	8.45	9.27	20.666	230111VV (24dBm)	PASS
	5240	8.63	9.36	20.492	(240011)	PASS

TEST CONDITI ONS	CHANNEL FREQUE N CY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	6dBc Occupied Bandwidth (MHz)	PEAK POWER LIMIT	6dBc Occupie d Bandwidt h LIMIT (kHz)	PASS/ FAIL
Tnom=25	5745	6.71	8.27	16.400	4147		PASS
°C; Vnom	5785	7.18	8.56	16.408	(20dBm)	500	PASS
=12Vdc	5825	6.82	8.34	16.411	(SUUDIII)		PASS

NOTE: The Occupied Bandwidth plot, please refer to the following pages.

Report No. ATT2017SZ0522156F1 - Page 30 of 49 -

4.4. Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

26db bandwidth (5150-5250MHz)

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6db bandwidth (5725-5850MHz)

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

<u>LIMIT</u>

Frequency Band	Limit
5.15 – 5.25GHz	/
5.725 – 5.825GHz	>500kHz

TEST RESULTS

Remark:We measured output power at difference data rate for each mode and recorded woest case for each mode.

Report No. ATT2017SZ0522156F1 - Page 31 of 49 -

26dB Occupied Bandwidth:

Spect	num									Ē
RefL	evel	30.00	18m		RBW 300 kHz					
🛢 Att		40) dB Б₩ Т	12.6 µs 👄 🛛	VBW 1 MHz	Mode A	uto FFT			
😑 1Pk M	ax									
						ħ	13[1]			-28.54 dBm
20 dBm									5.:	1901590 GHa
20 0011	'					C	CC BW		16.671	490593 MHz
10 dBm					_	ħ	[1[1]			-2.56 dBm
						6.01			5.:	1816930 GHz
0 dBm-	-			-		INI 1				-
			J.	m	www			m	2	
-10 aBr			17							
-20 dBr									N	
20 000	"	M2							`∿M3	
-30 dBr	n — 🗖 🗖	1 -2 <mark>0</mark> .	560 dBm						<u> </u>	
\sim	~~^								~~	-
-40 dBr	n — — —									
-50 dBr	n		_		_					
-60 dBr	⊓———									-
CF 5.1	8 GHz	2	•		691	pts	1		Spa	in 30.0 MHz
Marker										
Түрө	Ref	Trc	X-va	ue	Y-yalue	Fund	tion	FI	unction Resu	ilt
M1		1	5.18	1693 GHz	-2.56 dBi	m				
T1		1	5,171	5774 GHz	-10,13 dB	m (CC BW		16.671	490593 MHz
T2		1	5.188	2489 GHz	-10.33 dB	m				
M2 M2		1	5,10	9007 GHZ	-28.87 dBi	m				
1713			5.19	0139 GH2	-28,54 QBI		_			
		I					Me	asuring 🛛		

6dB Occupied Bandwidth:

							Report - P	No age	. AT 9 33	T2017S of 49 -	Z0522156F
Spectrun	n									Ē	
Ref Leve	1 20.00 dBn	۱	😑 R	BW 100 kHz						`	•
Att	30 di	3 6W T 37	.9 µs 😐 ۷	'BW 300 kHz	Mode	Auto FFT					
●1Pk Max											
						M1[1]				-5.30 dBm	
10 -0-									5.78	367720 GHz	
10 08 m						OCC BW			16.4090	00000 MHz	
0 d8m						_M2[1]				-19.63 dBm	
o donn		T1			T				5.77	766210 GHz	
-10 dBm	D1 11 400	بالسميطلة لجزر	the last of	a have been by	mili	halan	أكمحاليجم	8			
	101 -11,400										
-20 dBm								+			
		μ						N.			
-30 dBm —								- 4	·		
	1								<u>`</u> u		
-40 dBm	have								1000		
WWWWW										an walk h	
-su asm											
-60 dBm											
-70 dBm											
	1				-+-						
CF 5.705 (JH2			691	DES				spar	1 30.U MHZ	
Marker	-1 1										
Type Re	f Trc	X-yalue)	Y-yalue	F	unction	F	unct	on Result	t	
M1	1	5.7867	72 GHz	-5.30 dBr	n						
T1 T0	1	5.77670	07 GHZ	-10.71 dBr	n	OCC BW			16.4000	00000 MHz	
12 M0	1	5.79310		-12.62 dBr	n						
M2	1	5.7700	21 GHZ	-13.03 dBr	n n						
1710		3.7931	oz anz	-12,01 UBI				_			
	П					Me	asuring			a k	6

Spect	num										Ē
Ref L	evel	20.00 dBm			RBW 100 kHz						
e Att		30 dB	6WT 37.	9 µs 😐	VBW 300 kHz	м	ode Auto FFT				
🔵 1Pk M	ax										1
-							M2[1]				-13.35 dBm
40.10										5.8:	166210 GHz
10 dem							Occ Bw			16.4109	99553 MHz
0.40							M1[1]				-5.38 dBm
o ubrii-			T1							5.85	273880 GHz
-10 dBm	₁		12 alasahe	mhead	Laudan Son	ma	andration	Janah	-sal 2		
		1 -11.160	04m		· T · · · ·				- V- T		
-20 dBr	1—				-						
			4								
-30 dBr	ı—⊢	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								h	
		1								N	
-40 dBr	1 	.M ^N								1 mar 10	a 0
mm	MMPI	~								×44	mound
-50 dBr	<u>ا</u>										
-60 dBr	<u>ا</u>										
	_										
-70 aBr											
CF 5.8	25 GH	12			691	pts	•			Spar	1 30.0 MHz
Marker											
Түрө	Ref	Tre	X-yalue	· 1	Y-yalue	1	Function	1	Fun	ction Resul	t
M1		1	5.82736	38 GHz	-5.38 dB	m					
T1		1	5.016707	77 GHz	-10.40 dB	m	Occ Bw			16,4105	98553 MHz
T2		1	5.833118	17 GHz	-11.99 dB	m					
M2		1	5.81662	21 GHz	-13.35 dB	m					
M3		1	5,83316	i2 GHz	-12.51 dB	m					
		17					Me	ASUPID	a 💼		m 4
								Jusarin			- ///

Report No. ATT2017SZ0522156F1 - Page 34 of 49 -

4.5. Peak Power Spectral Density Measurement

TEST CONFIGURATION

TEST PROCEDURE

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission.

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

<u>LIMIT</u>

The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No. ATT2017SZ0522156F1 - Page 35 of 49 -

The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

TEST RESULTS

4.4.1 802.11a Test Mode

A. Test Verdict

Test Mode	Frequency (MHz)	Measured Conducted PSD (dBm)	ANT. Gain (dB)	Duty Cycle factor (dB)	Report Conducted PSD (dBm)	PSD Limits (dBm)	Verdict
	5180	4.51	0	0	4.51	17	PASS
802.11a	5220	4.95	0	0	4.95	17	PASS
	5240	4.82	0	0	4.82	17	PASS

Remark:

1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a;
- 4. Report conducted PSD = Measured conducted average power + Duty Cycle factor;
- 5. Please refer to following test plots;

Test Mode	Frequency (MHz)	Measured Conducted PSD PSD (dBm/700KHz)	RBW factor (dB)	Duty Cycle factor (dB)	Report Conducted PSD (dBm/500KHz)	PSD Limits (dBm/500KHz)	Verdict
	5745	4.15	-1.46	0	2.69	30	PASS
802.11a	5785	4.57	-1.46	0	3.11	30	PASS
	5825	4.43	-1.46	0	2.97	30	PASS

Remark:

1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a
- 4. Report conducted PSD = measured conducted PSD + Duty Cycle factor + RBW factor;
- 5. RBW factor = 10 log (500 KHz / 700 KHz) = -1.46 dB;

Report No. ATT2017SZ0522156F1 - Page 36 of 49 -

B. Test Plots

				Report No. - Page	ATT20175 38 of 49 -	SZ0522156F
Spectrum		981W ZOO KH2]
Att 30 di	3 Б₩ Т 5.7 µs 🖷 '	VBW 3 MHz	Mode Auto FFT			
ellek Max			M1[1]		4.15 dBm	
10 d8m			MI		0.7409040 GHz	
0 dBm				\rightarrow		-
-10 dBm						-
-20 dBm					\rightarrow	-
-30 dBm						
-40 dBm		_		_		
-50 dBm				_		-
-60 dBm						-
-70 dBm						-
CF 5.745 GHz		6000 P	ts		Span 30.0 MHz	Į
Type Ref Trc M1 1	X-value 5.746954 GHz	Y-value 4.15 dBm	Function	Functio	in Result	ſ
			Mea	suring) 4/0	

Spectrum	<u> </u>					1	♥
Ref Level	20.00 dBm 30 dB	n 8 6W T 5.7 us	RBW 700 kHz	Mode Auto FFT			
●1Pk Max							
_				M1[1]		4.57 d 5.7847830 (iBm GHz
10 d8m			M:				-
0 dBm			~~~		$\sim \rightarrow \sim$		
-10 dBm						\mathbf{X}	
00 48-	1						
-20 06m							
~30_d8m							_
-40 dBm							
-50 dBm							_
-60 dBm							
-70 dBm							
CF 5.785 G	Hz		6000	pts		Span 30.0 M	HZ
Tyne Ref	Tra	X-volue	Y-value	Evortion	Euor	tion Result	-1
M1	1	5.784783 G	Hz 4.57 dB	m			
	Π) Me	asuring		Å

Report No. ATT2017SZ0522156F1 - Page 40 of 49 -

4.6. On Time and Duty Cycle

TEST PROCEDURE

- 1. Set the centre frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.

TEST SETUP

TEST RESULTS

mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
802.11a	5.0	5.0	1	100	0	0.01

The EUT was programmed to be in continuously transmitting mode.

	RF 50 9	AC		Trig: Free	Run	Avg Type	: Log-Pwr	TRAC	E 1 2 3 4 5 6	Marker
l dB/div	Ref Offset 0.5	dB IBm	NO: Fast 并 Gain:Low	Atten: 30	dB			D	T P NNNNN	Marker Tab ^{On <u>C</u>}
	homentality	ralwynauthau	ntuksaaniyiha	phypanylly	m the second	walnum	ugalddynaufyll	yon White White	oralwyaway)	Marker Count [Off]
0.00										Coup Marker On <u>C</u>
0.0										
0.0										
60.0	-									All Markers O
0.0										
enter 5.18	0000000 G	Hz	#\/B\M	50 MH7			Swaan 6	S 000 mc (pan 0 Hz	2 of

Report No. ATT2017SZ0522156F1 - Page 41 of 49 -

Agilent Spectrum Analyzer - Swept SA				
RF 50 Q AC Center Freq 5.745000000 GHz	SENSE:INT	ALIGNAUTO (Avg Type: Log-Pwr	TRACE 123456	Frequency
PN0: Fast → IFGain:Low Ref Offset 0.5 dB 10 dB(div. Ref 20.00 dBm	Atten: 30 dB	recendora no	DET P NNNNN	Auto Tune
Log 100 ที่หมัดที่ได้มีแต่ไววร์มีผู้แต่สุดสุดสุดมีผู้เกิดขัติเราะหลังสามาร์	engtussedededdaethynedidaeth	ร่างร่างการแห่งสาวอาสารเสียงการสาวอาสาร	uliphangthayasi (jakai	Center Freq 5.745000000 GHz
-10.0				Start Freq 5.745000000 GHz
-20.0				Stop Freq 5.745000000 GHz
-40.0				CF Step 8.000000 MHz <u>Auto</u> Man
-60.0				Freq Offset 0 Hz
-70.0 Center 5.745000000 GHz Res BW 8 MHz #VBV	6 50 MHz	Sweep 5.000 m	Span 0 Hz is (1001 pts)	

Report No. ATT2017SZ0522156F1 - Page 42 of 49 -

4.7. Frequency Stability

LIMITS OF FREQUENCY STABILITY MEASUREMENT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

TEST PROCEDURE

- 1. The EUT was placed inside temperature chamber and powered and powered by nominal DC voltage.
- 2. Set EUT as normal operation.
- 3. Turn the EUT on and couple its output to spectrum.
- 4. Turn the EUT off and set the chamber to the highest temperature specified.
- 5. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT and measure the operating frequency.

TEST SETUP

Report No. ATT2017SZ0522156F1 - Page 43 of 49 -

Technical characteristics		5180 MHz	5220 MHz	5240 MHz
25 °C Vnom		5179.995 5219.949		5239.998
-20 °C	Vmin	5179.957	5219.949	5239.955
	Vmax	5179.977	5219.946	5239.994
F0°C	Vmin	5179.908	5219.955	5239.959
50 C	Vmax	5179.936	5219.946	5239.937

Technical characteristics		5745 MHz	5785 MHz	5825 MHz
25 °C Vmin		5744.947	5784.972	5824.971
-20 °C	Vmin	5744.966	5784.971	5824.936
	Vmax	5744.934	5785.083	5825.034
E0°C	Vmin	5745.072	5784.939	5824.976
50 °C	Vmax	5744.987	5784.977	5825.042

Report No. ATT2017SZ0522156F1 - Page 44 of 49 -

4.8. Band Edge Compliance of RF Emission

EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

LIMITS

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

TEST PROCEDURE

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

₩ Spectrum RBW 1 MHz Ref Level 20.00 dBm 6WT 17 µs 😑 VBW 3 MHz Att 30 dB Mode Auto FFT 🖯 1Av Ma M1[1] 2.45 dB 5.172735 GH 10 dBm MZ[1] м: -45.27 dBn 5.150000 GHz 0 dBrr -10 dBr -20 dBm -27.00 -30 dBm 40 dBr M 450 dBm -60 dBm -70 dBm CF 5.15 GHz Span 120.0 MHz 1001 pts Marker Type Ref Tro Y-volue Function Function Result X-volue 5.17235 GHz 2.45 dBm -45.27 dBm 1 M2 5.15 GHz Measuring...

TEST RESULTS

Report No. ATT2017SZ0522156F1 - Page 45 of 49 -

Refleve	20 00 dB	m 🖷 F	PRW 1 MHz			
Att	30 c	B BWT 94.8 US 🖷 🕯	BW 3 MHz MD	de Auto FET T		
1Pk Max					-07	2010
				M1[1]		-5.61 dBn
10 dBm				M2[1]		-46.91 dBn
0 dBm	a 5		1		MI	a.72000 GH
-10 dBm	2		-	p	halalantan taka ha	dul
-20 dBm —					-	
-30 dBm —			-			<u> </u>
-40 dBm	×.		MZ	nut any and		have any levelor
-50 dBm-	moluna	4 march and and	we wanter out the are	<u>.</u>	12	
-60 dBm						
-70 dBm	<u>.</u>		-			~
CF 5.725 C	Hz		1001 p	ts		Span 80.0 MHz
darker Tussel Bel	I Tran I	N		Counting 1	F	De seilt
M1	1	5.74617 GHz	-5.61 dBm	FUNCTION	Function	IN RESULT
M2	1	5.725 GHz	-46.91 dBm			

			Re	eport No - Pag	р. АТ је 46	T2017SZ of 49 -	20522156
pectrum							
RefLevel 20.00 dBm	RBW 1 MHz	otus ohoN	FFTT				
Pk Max		Hode Auto					
		M1	[1]			-5.41 dBm	
		100			5.8	27720 GHz	
		MZ	[1]		-	53.81 dBm	
		T.			5.6	50000 GHz	
and dehaled beer build build							
dBm							
dBm					-		
dipm-							
100	None of le						
dBm	Hund					a a set of	
	1.00	Trobusing	Wirkstran	mound	manufar	Munomit	
dBm			ę.				
222 C	1 1	I					
dBm			2		8 - C		
5.85 GHz	1001	pts			Span	80.0 MHz	
ker	39		69				
rpe Ref Trc X-value	Y-volue	Functi	оп	Fund	tion Result	. 1	
M1 1 5.82772 GH:	-5.41 dBn	n					
M2 1 5.85 GH:	-53,81 dBn	n					

Report No. ATT2017SZ0522156F1 - Page 47 of 49 -

4.9. Antenna Requirement

Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The WLAN antenna is PCB antenna and the maximum antenna gain of WLAN uesed was 0 dBi. It compliance FCC rule.

Report No. ATT2017SZ0522156F1 - Page 48 of 49 -

5. Test Setup Photos of the EUT

Radiated Emission (30MHz-1GHz)

Radiated Emission (above 1GHz)

Report No. ATT2017SZ0522156F1 - Page 49 of 49 -

Conducted Emission (AC Mains)

6. External and Internal Photos of the EUT

.....End of Report.....