

RADIO TEST REPORT

S T

9

Report No: STS1712281W02

Issued for

Shenzhen Kean Digital Co., Ltd.

Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China

Product Name:	Neckband In-Ear Bluetooth Headphones			
Brand Name:	Mindkoo			
Model Name:	MK-BE04			
Series Model:	MK-BE42,MK-BE43,MK-BE44,MK-BE45,MK-BE46, MK-BE47,MK-BE48,MK-BE49,MK-BE50,MK-BE51, MK-BE52,MK-BE53,MK-BE54,MK-BE55,MK-BE56, MK-BE57,MK-BE58,MK-BE59,MK-BE60,MK-BE61, MK-BE62,MK-BE63,MK-BE64,MK-BE65,MK-BE66, MK-BE67,MK-BE68,MK-BE69,MK-BE70,MK-BE71, MK-BE72,MK-BE73,MK-BE74,MK-BE75,MK-BE76, MK-BE77,MK-BE78,MK-BE79,MK-BE80			
FCC ID:	2AKL2-LAEJ3			
Test Standard:	FCC Part 15.247			

Any reproduction of this document must be done in full. No single part of this document may be reproduced a permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 44

Report No.: STS1712281W02

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Kean Digital Co., Ltd.
Address	Rujun Building, Floor 4, No.105, the Center Road, Bantian Street,Longgang Zone, Shenzhen, China
Manufacture's Name:	Shenzhen Kean Digital Co., Ltd.
Address:	Rujun Building, Floor 4, No.105, the Center Road, Bantian Street,Longgang Zone, Shenzhen, China
Product description	
Product Name:	Neckband In-Ear Bluetooth Headphones
Brand Name:	Mindkoo
Model Name:	MK-BE04
Test Standards	FCC Part15.247

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests:	22 Dec. 2017~25 Dec. 2017
Date of Issue:	27 Dec. 2017
Test Result	Pass

Testing Engineer

Sean She

(Sean she)

Technical Manager :

. hou

(Hakim.hou)

Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1712281W02

Table of Contents

Page 3 of 44

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	22
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 REQUIREMENT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	31
6. POWER SPECTRAL DENSITY TEST	34
6.1 APPLIED PROCEDURES / LIMIT	34
6.2 TEST PROCEDURE	34
6.3 TEST SETUP	34
6.4 EUT OPERATION CONDITIONS	34

=#

Report No.: STS1712281W02

Table of Contents

Page 4 of 44

6.5 TEST RESULTS	35
7. BANDWIDTH TEST	37
7.1 APPLIED PROCEDURES / LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	38
8. PEAK OUTPUT POWER TEST	40
8.1 APPLIED PROCEDURES / LIMIT	40
8.2 TEST PROCEDURE	40
8.3 TEST SETUP	40
8.4 EUT OPERATION CONDITIONS	40
8.5 TEST RESULTS	41
9. ANTENNA REQUIREMENT	42
9.1 STANDARD REQUIREMENT	42
9.2 EUT ANTENNA	42
10. EUT TEST PHOTO	43

Page 5 of 44

Report No.: STS1712281W02

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	27 Dec. 2017	STS1712281W02	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.247 (c)	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted Band Edge Emission	PASS			
Part 15.247(d)/part 15.209(a)	Band Edge Emission PASS				
15.203	Antenna Requirement	PASS			

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

Page 7 of 44

No.	Item	Uncertainty		
1	Conducted Emission (9KHz-150KHz)	±2.88dB		
2	Conducted Emission (150KHz-30MHz)	±2.67dB		
3	RF power, conducted	±0.71dB		
4	Spurious emissions, conducted ±0.63d			
5	All emissions, radiated (9KHz-30MHz) ±3.02dB			
6	All emissions, radiated (30MHz-200MHz) ±3.80dB			
7	All emissions, radiated (200MHz-1000MHz)	±3.97dB		
8	All emissions,radiated(>1G) ±3.03dB			

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	Neckband In-Ear Bluetooth Headphones			
Trade Name	Mindkoo			
Model Name	MK-BE04			
Series Model	MK-BE42,MK-BE43,	,MK-BE44,MK-BE45,MK-BE46,		
	MK-BE47,MK-BE48,	,MK-BE49,MK-BE50,MK-BE51,		
	MK-BE52,MK-BE53,	,MK-BE54,MK-BE55,MK-BE56,		
	MK-BE57,MK-BE58,	,MK-BE59,MK-BE60,MK-BE61,		
	MK-BE62,MK-BE63,	,MK-BE64,MK-BE65,MK-BE66,		
	MK-BE67,MK-BE68,	,MK-BE69,MK-BE70,MK-BE71,		
	MK-BE72,MK-BE73,	MK-BE74,MK-BE75,MK-BE76,		
	MK-BE77,MK-BE78,	MK-BE79,MK-BE80		
Model Difference	All are the same except the models.			
	The EUT is a Neckband In-Ear Bluetooth Headphones			
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	DSSS		
Product Description	Radio Technology	BLE		
	Number Of Channel	40		
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	2.5 dbi		
Channel List	Please refer to the N	lote 2.		
Detter	Rated Voltage: 3.7V			
Battery	Capacity: 120mAh			
Hardware version number	HYH_H1_8635_V2.0			
Software version number	V1.0			
Connecting I/O Port(s)	Please refer to the L	Jser's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.								
				Chan	nel List			
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
	01	2402	11	2422	21	2442	31	2462
	02	2404	12	2424	22	2444	32	2464
	03	2406	13	2426	23	2446	33	2466
	04	2408	14	2428	24	2448	34	2468
	05	2410	15	2430	25	2450	35	2470
	06	2412	16	2432	26	2452	36	2472
	07	2414	17	2434	27	2454	37	2474
	08	2416	18	2436	28	2456	38	2476
	09	2418	19	2438	29	2458	39	2478
	10	2420	20	2440	30	2460	40	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Mindkoo	MK-BE04	Ceramic chip Antenna	N/A	2.5	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 44

Report No.: STS1712281W02

2.2 DESCRIPTION OF TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

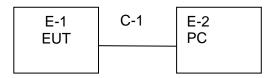
Worst Mode	Description	Data/Modulation
Mode 1	TX CH1(2402MHz)	1 MHz/DSSS
Mode 2	TX CH20(2440MHz)	1 MHz/DSSS
Mode 3	TX CH40(2480MHz)	1 MHz/DSSS

Note:

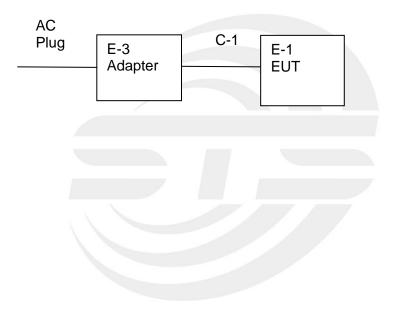
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V,50/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.


For AC Conducted Emission

	Test Case
AC Conducted	Mode 4 : Keeping BT TX
Emission	



2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious EmissionTest

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 12 of 44

Report No.: STS1712281W02

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	PC	HP	500-320cx	N/A	N/A
E-3	Adapter	N/A	N/A	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable shielded line (Charging)	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength^a column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Page 13 of 44

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

aulation rest equipme			-	-	
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESW	101535	2017.06.01	2018.05.31
Bilog Antenna	TESEQ	CBL6111D	34678	2017.03.24	2018.03.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.03.06	2018.03.05
SHF-EHF Horn Antenna (15G-40GHz)	BBHA 9170	SCHWARZBECK	BBHA9170367	2017.05.02	2018.05.01
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2017.03.12	2018.03.11
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2017.10.15	2018.10.14
Pre-mplifier (18G-40G)	MINI-CIRCUITS	AP-040G	1382501	2017.05.15	2018.05.14
Operational Manual Passive Loop (9K30MHz)	ETS	6512	00165355	2017.03.06	2018.03.05
Low frequency cable	EM	R01	N/A	2017.03.12	2018.03.11
Low frequency cable	EM	R06	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R04	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R02	N/A	2017.03/12	2018.03.11
Semi-anechoic chamber	Changling	966	N/A	2017.10.15	2018.10.14
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A
Max-full Antenna Corp	MF	MFA-440H	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2017.03.12	2018.03.11
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	E4407B	MY50140340	2017.03.11	2018.03.10
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10

Shenzhen STS Test Services Co., Ltd.

Page 15 of 44

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)					
	Quasi-peak	Average				
0.15 -0.5	66 - 56 *	56 - 46 *				
0.50 -5.0	56.00	46.00				
5.0 -30.0	60.00	50.00				

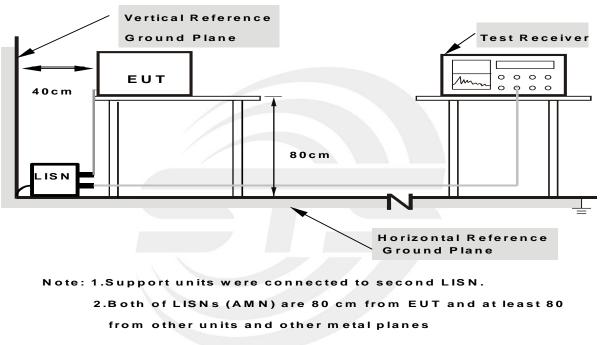
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No.: STS1712281W02



3.2 TEST PROCEDURE

a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 16 of 44

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	26 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		

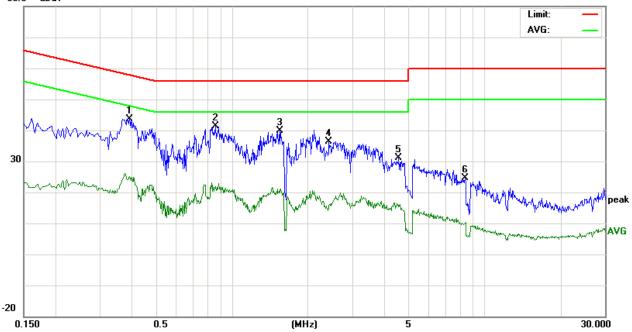
No.	Freq.					Limit (dBuV)		Margin (dB)		P/F			
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG	• • •
1	0.3860	32.07		13.17	10.32	42.39		23.49	58.15	48.15	-15.76	-24.66	Р
2	0.8820	28.89		10.55	10.39	39.28		20.94	56.00	46.00	-16.72	-25.06	Р
3	1.4697	27.81		9.06	10.38	38.19		19.44	56.00	46.00	-17.81	-26.56	Р
4	3.2500	27.71		8.12	10.53	38.24		18.65	56.00	46.00	-17.76	-27.35	Р
5	6.1177	19.87		0.70	10.28	30.15		10.98	60.00	50.00	-29.85	-39.02	Р
6	24.5259	9.66		-3.75	10.11	19.77		6.36	60.00	50.00	-40.23	-43.64	Р

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

Page 18 of 44 Report No.: STS1712281W02


Temperature:	26 °C	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		

	Freq.	Rea	ding_L (dBuV)		Correct Factor	Me	asuren (dBuV)			nit uV)		rgin IB)	P/F
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG	
1	0.3940	33.36		14.75	10.33	43.69		25.08	57.98	47.98	-14.29	-22.90	Ρ
2	0.8659	31.10		11.63	10.37	41.47		22.00	56.00	46.00	-14.53	-24.00	Ρ
3	1.5500	29.53		10.44	10.36	39.89		20.80	56.00	46.00	-16.11	-25.20	Ρ
4	2.4260	26.08		5.11	10.40	36.48		15.51	56.00	46.00	-19.52	-30.49	Ρ
5	4.5899	20.90		5.60	10.22	31.12		15.82	56.00	46.00	-24.88	-30.18	Р
6	8.4016	14.33		-0.11	10.34	24.67		10.23	60.00	50.00	-35.33	-39.77	Р

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

Page 19 of 44

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74 54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	4 MUL / 2 MUL
band)	1 MHz / 3 MHz

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	1 MHz / 3 MHz	

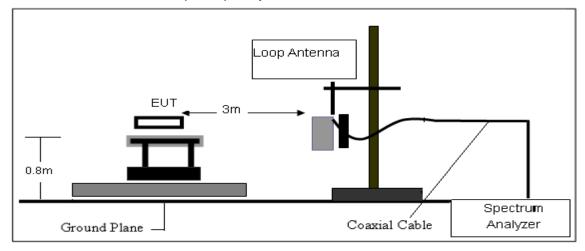
Shenzhen STS Test Services Co., Ltd.

Page 20 of 44

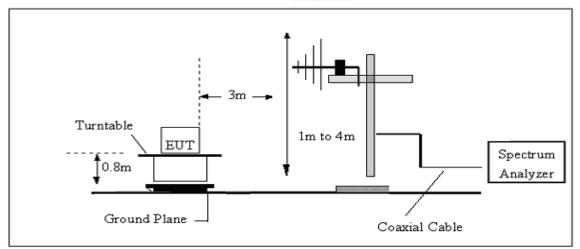
Report No.: STS1712281W02

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

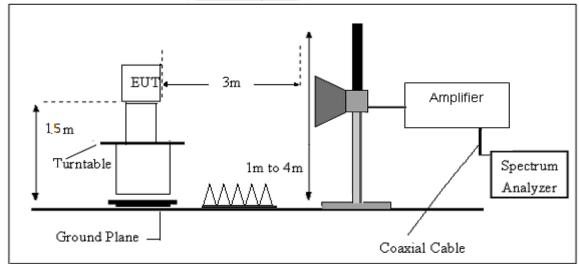
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1712281W02

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	26 ℃	Relative Humidtity:	60%
Test Voltage:	3.7V from Battery	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

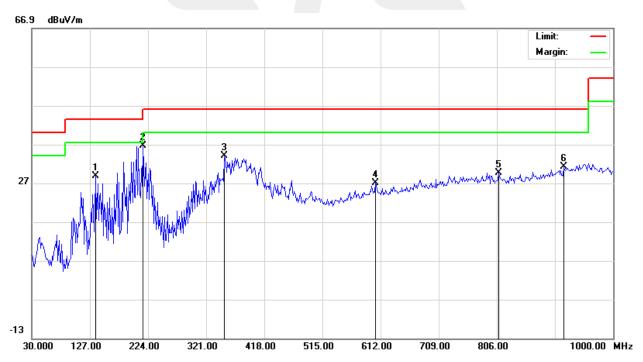
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.


(30MHz -1000MHz)

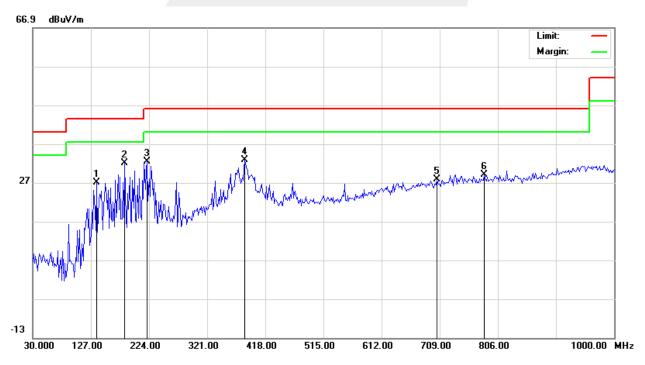
Temperature:	22.4 ℃	Relative Humidity:	52.5%		
Test Voltage:	3.7V from Battery	Phase:	Horizontal		
Test Mode:	Mode1/2/3(Mode 1-1M worst mode)				

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		136.7000	15.11	13.66	28.77	43.50	-14.73	peak
2	*	215.9167	26.17	10.38	36.55	43.50	-6.95	peak
3		351.7167	15.34	18.75	34.09	46.00	-11.91	peak
4		603.9167	3.31	23.74	27.05	46.00	-18.95	peak
5		809.2333	2.30	27.32	29.62	46.00	-16.38	peak
6		917.5500	2.05	29.10	31.15	46.00	-14.85	peak

Remark:

^{1.} Margin = Result (Result = Reading + Factor)–Limit

Page 25 of 44 Re


Report No.: STS1712281W02

Temperature:	22.4 ℃	Relative Humidity:	52.5%	
Test Voltage:	3.7V from Battery	Phase:	Vertical	
Test Mode:	Mode1/2/3(Mode 1-1M worst mode)			

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		136.7000	13.11	13.82	26.93	43.50	-16.57	peak
2	*	183.5833	18.89	13.16	32.05	43.50	-11.45	peak
3		220.7667	21.45	11.04	32.49	46.00	-13.51	peak
4		384.0500	13.84	18.96	32.80	46.00	-13.20	peak
5		704.1500	2.42	25.31	27.73	46.00	-18.27	peak
6		783.3667	1.97	27.09	29.06	46.00	-16.94	peak

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 26 of 44

Report No.: STS1712281W02

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (2402 I	MHz)				
3264.78	48.54	44.70	6.70	28.20	-9.80	38.74	74.00	-35.26	PK	Vertical
3264.78	38.55	44.70	6.70	28.20	-9.80	28.75	54.00	-25.25	AV	Vertical
3264.63	47.96	44.70	6.70	28.20	-9.80	38.16	74.00	-35.84	PK	Horizontal
3264.63	38.84	44.70	6.70	28.20	-9.80	29.04	54.00	-24.96	AV	Horizontal
4804.33	58.57	44.20	9.04	31.60	-3.56	55.01	74.00	-18.99	PK	Vertical
4804.33	38.83	44.20	9.04	31.60	-3.56	35.27	54.00	-18.73	AV	Vertical
4804.36	58.21	44.20	9.04	31.60	-3.56	54.65	74.00	-19.35	PK	Horizontal
4804.36	39.02	44.20	9.04	31.60	-3.56	35.46	54.00	-18.54	AV	Horizontal
5359.78	45.31	44.20	9.86	32.00	-2.34	42.97	74.00	-31.03	PK	Vertical
5359.78	37.71	44.20	9.86	32.00	-2.34	35.37	54.00	-18.63	AV	Vertical
5359.77	46.15	44.20	9.86	32.00	-2.34	43.81	74.00	-30.19	PK	Horizontal
5359.77	38.24	44.20	9.86	32.00	-2.34	35.90	54.00	-18.10	AV	Horizontal
7205.88	50.74	43.50	11.40	35.50	3.40	54.14	74.00	-19.86	PK	Vertical
7205.88	33.52	43.50	11.40	35.50	3.40	36.92	54.00	-17.08	AV	Vertical
7205.87	50.97	43.50	11.40	35.50	3.40	54.37	74.00	-19.63	PK	Horizontal
7205.87	33.36	43.50	11.40	35.50	3.40	36.76	54.00	-17.24	AV	Horizontal

Page 27 of 44

Report No.: STS1712281W02

Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (2440 M	//Hz)				
3264.90	48.64	44.70	6.70	28.20	-9.80	38.84	74.00	-35.16	PK	Vertical
3264.90	39.04	44.70	6.70	28.20	-9.80	29.24	54.00	-24.76	AV	Vertical
3264.66	47.97	44.70	6.70	28.20	-9.80	38.17	74.00	-35.83	PK	Horizontal
3264.66	38.75	44.70	6.70	28.20	-9.80	28.95	54.00	-25.05	AV	Horizontal
4880.44	58.98	44.20	9.04	31.60	-3.56	55.42	74.00	-18.58	PK	Vertical
4880.44	38.68	44.20	9.04	31.60	-3.56	35.12	54.00	-18.88	AV	Vertical
4880.38	58.92	44.20	9.04	31.60	-3.56	55.36	74.00	-18.64	PK	Horizontal
4880.38	39.39	44.20	9.04	31.60	-3.56	35.83	54.00	-18.17	AV	Horizontal
5359.59	45.77	44.20	9.86	32.00	-2.34	43.43	74.00	-30.57	PK	Vertical
5359.59	38.38	44.20	9.86	32.00	-2.34	36.04	54.00	-17.96	AV	Vertical
5359.86	45.74	44.20	9.86	32.00	-2.34	43.40	74.00	-30.60	PK	Horizontal
5359.86	37.33	44.20	9.86	32.00	-2.34	34.99	54.00	-19.01	AV	Horizontal
7310.77	51.57	43.50	11.40	35.50	3.40	54.97	74.00	-19.03	PK	Vertical
7310.77	32.80	43.50	11.40	35.50	3.40	36.20	54.00	-17.80	AV	Vertical
7310.79	51.96	43.50	11.40	35.50	3.40	55.36	74.00	-18.64	PK	Horizontal
7310.79	33.34	43.50	11.40	35.50	3.40	36.74	54.00	-17.26	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 28 of 44

Report No.: STS1712281W02

High Channel

				Antenna	Corrected	Emission							
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector				
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment			
				High	Channel (2480	MHz)							
3264.77	48.07	44.70	6.70	28.20	-9.80	38.27	74.00	-35.73	PK	Vertical			
3264.77	38.31	44.70	6.70	28.20	-9.80	28.51	54.00	-25.49	AV	Vertical			
3264.62	48.63	44.70	6.70	28.20	-9.80	38.83	74.00	-35.17	PK	Horizontal			
3264.62	37.83	44.70	6.70	28.20	-9.80	28.03	54.00	-25.97	AV	Horizontal			
4960.55	59.51	44.20	9.04	31.60	-3.56	55.95	74.00	-18.05	PK	Vertical			
4960.55	38.42	44.20	9.04	31.60	-3.56	34.86	54.00	-19.14	AV	Vertical			
4960.42	58.99	44.20	9.04	31.60	-3.56	55.43	74.00	-18.57	PK	Horizontal			
4960.42	38.76	44.20	9.04	31.60	-3.56	35.20	54.00	-18.80	AV	Horizontal			
5359.87	46.12	44.20	9.86	32.00	-2.34	43.78	74.00	-30.22	PK	Vertical			
5359.87	37.15	44.20	9.86	32.00	-2.34	34.81	54.00	-19.19	AV	Vertical			
5359.65	45.78	44.20	9.86	32.00	-2.34	43.44	74.00	-30.56	PK	Horizontal			
5359.65	37.93	44.20	9.86	32.00	-2.34	35.59	54.00	-18.41	AV	Horizontal			
7439.77	51.53	43.50	11.40	35.50	3.40	54.93	74.00	-19.07	PK	Vertical			
7439.77	33.27	43.50	11.40	35.50	3.40	36.67	54.00	-17.33	AV	Vertical			
7439.78	51.43	43.50	11.40	35.50	3.40	54.83	74.00	-19.17	PK	Horizontal			
7439.78	32.82	43.50	11.40	35.50	3.40	36.22	54.00	-17.78	AV	Horizontal			
Noto:	•						•	•					

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.

4.6 TEST RESULTS (Restricted Bands Requirements)

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					DSSS					
2390.00	68.19	43.80	4.91	25.90	-12.99	55.20	74.00	-18.80	PK	Vertical
2390.00	53.14	43.80	4.91	25.90	-12.99	40.15	54.00	-13.85	AV	Vertical
2390.00	68.57	43.80	4.91	25.90	-12.99	55.58	74.00	-18.42	PK	Horizontal
2390.00	52.43	43.80	4.91	25.90	-12.99	39.44	54.00	-14.56	AV	Horizontal
2483.50	70.10	43.80	5.12	25.90	-12.78	57.32	74.00	-16.68	PK	Vertical
2483.50	53.43	43.80	5.12	25.90	-12.78	40.65	54.00	-13.35	AV	Vertical
2483.50	70.56	43.80	5.12	25.90	-12.78	57.78	74.00	-16.22	PK	Horizontal
2483.50	53.16	43.80	5.12	25.90	-12.78	40.38	54.00	-13.62	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

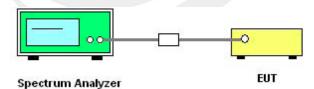
Only show the worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Eroguopou	Lower Band Edge: 2300 – 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	TX Mode /CH01, CH20, CH40	Test Voltage:	DC 3.7V

RL			2 AC				SENSE:INT		AL	IGN AUTO					19 PM Dec 25, 2
nter	Fre	q 12.515	000000 0	F	PNO: F Gain:I			ree Run :: 30 dB		Avg 1	Гуре: Lo	og-Pwr			RACE 1 2 3 4 TYPE MWWW DET P P P P
dB/di		Ref Offset 0. Ref_7.23 d											Mk		02 2 GI 772 dB
7		<u>1</u>													
8															
=															-22.77
					3										
⊧⊢		0.2		()`	>										
-				للم عدر بدامة			n fa ti jako y ta ta k	السرية الاربية		- we have been				~~~	Constant of the second
s Juni		and the second second					n fallaning gibbini anang ang ang anang		- Constanting		-	and the second se			
⊧⊢															
°															1
) MF	17												Ston	25.00 G
art 30 es B		iz 00 kHz				#VB	W 300 I	٢Hz				s	weep		25.00 GI (40001 p
art 30 es B	W 1	00 kHz SCL	×			Y		(Hz Function	FUNC	TION WIDTH	1	S			
art 30 es B	W 1 1 1	00 kHz set		2 GHz		¥ -2.772	dBm		FUNC	TION WIDTH	1	S		2.39 s	
nt 30 es B N N N	W 1 1 1 1	00 kHz f (Δ) f f (Δ)	2.656 7.206	8 GHz 4 GHz	(Δ)	-2.772 -55.124 -46.271	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	
art 30 es B N	W 1 TEC 1 1	900 kHz f (Δ) f	2.656 7.206	8 GHz	(Δ)	-2.772 -55.124	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	
nt 30 es B N N N	W 1 1 1 1	00 kHz f (Δ) f f (Δ)	2.656 7.206	8 GHz 4 GHz	(Δ)	-2.772 -55.124 -46.271	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	
art 30 es B N N N	W 1 1 1 1	00 kHz f (Δ) f f (Δ)	2.656 7.206	8 GHz 4 GHz	(Δ)	-2.772 -55.124 -46.271	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	
art 30 es B N N N	W 1 1 1 1	00 kHz f (Δ) f f (Δ)	2.656 7.206	8 GHz 4 GHz	(Δ)	-2.772 -55.124 -46.271	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	
nt 30 es B N N N	W 1 1 1 1	00 kHz f (Δ) f f (Δ)	2.656 7.206	8 GHz 4 GHz	(Δ)	-2.772 -55.124 -46.271	dBm dBm dBm		FUNC	TION WIDTH		S		2.39 s	

01 CH

20 CH

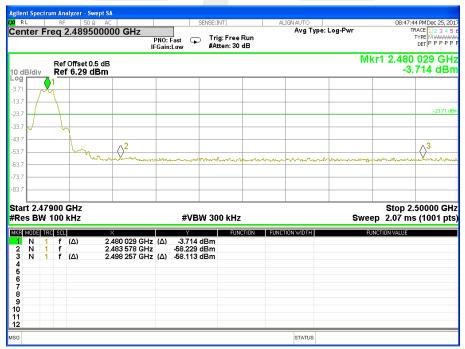
Page 32 of 44

	RF		2 AC			S	ENSE:INT		ALIGN AU				08:43:22 PI
r Fr	eq ′	12.515	000000 G	F	'NO: Fa Gain:L	est 🖵 ow	Trig: Free #Atten: 30		Av	g Type:	Log-Pwr		TRAC TYP DE
iv		Offset 0. F 7.22 d										Mkr	1 2.440 -2.77
	(1											
		() ²	\bigcirc^3							and the second			
en la com		No.				والعاريات							
0 M 8W 1						#\/B)	V 300 kHz	,				woon	Stop 24 2.39 s (4
	SCL		×			#VDV		-	FUNCTION WID	тн			,
	f	(Δ)	2.440 2			-2.776 c	IBm	CHOIL	Tone none with			ronenon	MALOL
1		(Δ)	2.764 2	3 GHz	(Δ)	55.423 c 55.376 c	IBm						
1 1 1	f	(Δ)											
1		(四)	24.414 5	5 GHz		48.013 c	ы						
1 1 1	f	(Δ)		5 GHz		48.013 0	IDIII						
1 1 1	f			5 GHz		-48.013 C							
1 1 1	f			5 GHz		48.013 c							
1 1 1	f			5 GHz		48.013 6							

40 CH

RL		RF	50 Ω	AC			SENSE:INT		β	LIGN AUTO			50 PM Dec 25, 2
enter	Fre	q 12.	51500	0000 GHz	PNO: IFGair			Free R n: 30 d		Avg Type	: Log-Pwr	1	TYPE MWWW DET P P P P
dB/div			set 0.5 c 01 dBr									Mkr1 2.4 -4	80 2 G .995 dE
9		1											
													-25.00
。 					$\langle \rangle^3$								
			$\langle \rangle^2$		ľ					and the second	والمتحافظ المروحين المراجع		a sheet a start of the
				and a line of a					an lines in an mart	1		1	
art 30 es BV			2			#VB	W 300	kHz			Swe	Stop eep 2.39 s	25.00 G (40001 p
MODE	TRC	SCL f (Δ)		× 2.480 2 GH;	. (0)	¥ -4.995	dD ma	FUNCT	ION FUNC	CTION WIDTH	F	JNCTION VALUE	
N	1	f		3.264 2 GH	z	-55.927	dBm						
	1	f (∆) f		7.440 5 GH: 24.542 4 GH:		-46.998 -49.000							
N													

Page 33 of 44



For Band edge

01 CH

RL		RF	50	Ω AC				SENSE:IN	IT		AL	IGN AUTO			08:40:14 PMDec 25,
enter	Fre	eq :	2.3515	50000		PNO: IFGain	Fast ⊂ :Low		j: Free ien: 30			Avg Ty	pe:Log-Pwr		TRACE 1 2 3 TYPE MWWW DET P P P
dB/di			Offset 0											//kr1 2.	402 073 G -2.094 dE
.1															
.1															-22.0
.1						-									
.1														_	
.1															
.1	مامهريها	-V-103	Valor and P	mapan	Unathrought	herm	leynaryhydyrly	Walnut and	hinner	and the second	مريبهاليزيد	montaligation	الاسترادة والمعادية والمحمد المراجع والمراجع	weld when me is to	en and an and a start and a start
1															
.1															
art 2. es B							#VE	3W 300) kHz				Sv	Ste stere 9.8	op 2.40300 C 7 ms (1001)
R MODE	TRC	SCL		×			Y		FUN	CTION	FUNCT	ION WIDTH		FUNCTION V	· · ·
N	1	f	(Δ)		02 073 GHz 96 717 GHz		-2.094	dBm							
N	1	f	(Δ)		98 777 GHz		-45.188								
1															

40 CH

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part 15.247,Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS							

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1712281W02

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	TX Mode /CH01, CH20, CH40	Test Voltage:	DC 3.7V

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-17.512	≤8	PASS
2440 MHz	-17.883	≤8	PASS
2480 MHz	-19.283	≤8	PASS

TX CH01

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

TX CH20

TX CH40

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1712281W02

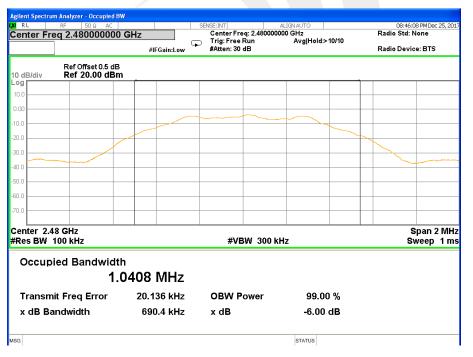
7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	TX Mode /CH01, CH20, CH40	Test Voltage:	DC 3.7V

Frequency	6dB Bandwidth (MHz)	Channel Separation	Result
2402 MHz	0.697	>=500KHz	PASS
2440 MHz	0.689	>=500KHz	PASS
2480 MHz	0.690	>=500KHz	PASS

TX CH 01

	AC		SENSE:INT	ALIGN AUTO			37 PMDec 25, 2
Center Freq 2.402000000 GHz			Center Freq: 2.402000000 GHz			Radio Std: None	
	#1	FGain:Low 🗣	─ Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10		Radio Devi	ce: BTS
Ref Offset dB/div Ref 20.0							
					_		
0							
0							
D							
0							
0							
0							
0							
0							
nter 2.402 GHz							Span 2 M
es BW 100 kHz			#VBW 30	00 kHz			weep 1
Occupied Band	width						
	1.0400	MHz					
Transmit Freq Err	or 23.3	72 kHz	OBW Power	99.00 %			
x dB Bandwidth	696	6.5 kHz	x dB	-6.00 dB			


Shenzhen STS Test Services Co., Ltd.

TX CH 20

TX CH 40

8. PEAK OUTPUT POWER TEST


8.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C					
Section Test Item Limit Frequency Range (MHz) Result					
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1712281W02

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	TX Mode /CH01, CH20, CH40	Test Voltage:	DC 3.7V

TX Mode					
Test Channel	Frequency	Conducted Output Power Peak (dBm) AVG (dBm)		LIMIT	
	(MHz)			dBm	
CH01	2402	-1.73	-3.20	30	
CH20	2440	-1.93	-3.40	30	
CH40	2480	-2.13	-3.60	30	

Duty cycle

Test	Channel	ON Time	Period	Duty cycle	Duty cycle factor		
model	(MHz)	(msec)	(msec)	(%)			
DSSS	2440	0.462	0.648	71.30	1.47		

Note: (1) Duty cycle factor =10*Log (1/duty cycle)

(2) Peak = AVG+ Duty cycle factor

	MDec 25, 2017		ALIGN AUTO		SENSE:INT			50 Ω AC	RF	L
Marker Select Mark Norr	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N		Avg Type: Log-Pwr		Trig: Free Run Atten: 20 dB		PNO: Fast IFGain:Low)00 µs	648.0	ker 3 /
	648.0 μs 0.66 dB	Mkr3 6	Δ					.00 dBm	Ref 10	B/div
De										
		www		102 3A		www.		IN MINI		
Fixe										
Fixe	r 2.440000000 GHz									
				FUNCTION	₹ -0.65 dB			×		MODE TRO
	ON VALUE	FUNCTIC	CTION WIDTH		-0.00 UD	(Δ)	462.0 µs		t (Δ)	Δ2 1
	DN VALUE	FUNCTIO	CTION WIDTH		-0.65 dB 6.83 dBm 0.66 dB 6.83 dBm	(Δ)	462.0 μs 1.266 ms 648.0 μs 1.266 ms		t (Δ) t t (Δ) t	Δ2 1 F 1 Δ4 1 F 1
Propertie M	DN VALUE	FUNCTIO	CTION WIDTH		6.83 dBm 0.66 dB	(Δ)	1.266 ms 648.0 µs		t t (Δ)	F 1 Δ4 1

DSSS

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is Ceramic chip Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Radiated Measurement Photos


Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Conducted Measurement Photos

** ** ** ** END OF THE REPORT ** ** ** **

Shenzhen STS Test Services Co., Ltd.