

Page 1 of 89

Verified code: 669031

Test Report

Report No.: E20220818423001-6

Customer: Lumi United Technology Co., Ltd

Address: B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential District,

Nanshan District, Shenzhen, China

Sample Name: Smart Video Doorbell G4

Sample Model: SVD-C01

Receive Sample

Date:

Aug.19,2022

Test Date: Aug.19,2022 ~ Oct.14,2022

Reference CFR 47, FCC Part 15 Subpart C

Document: RADIO FREQUENCY DEVICES:Subpart C—Intentional Radiators

Test Result: Pass

Prepared by: Hung lifery Reviewed by: Wu Haoting

GUANGZHOU GRGMETROLOGY & TEST CO., LTD

ssued Date: 2022-12-08

GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com

Report No.: E20220818423001-6 Page 2 of 89

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is

invalid if it is altered or missing; The report is invalid without the signature of the person who prepared,

reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report

is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language

problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the

report.

5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved

propaganda.

 The	following	blanks	

Report No.: E20220818423001-6

TABLE OF CONTENTS

1.	TEST RI	ESULT SUMMARY	6
2.	GENERA	AL DESCRIPTION OF EUT	7
	2.1	APPLICANT	7
	2.2	MANUFACTURER	7
	2.3	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	7
	2.4	CHANNEL LIST	8
	2.5	TEST OPERATION MODE	8
	2.6	LOCAL SUPPORTIVE	8
	2.7	CONFIGURATION OF SYSTEM UNDER TEST	9
	2.8	DUTY CYCLE	10
3.	LABOR	ATORY AND ACCREDITATIONS	11
	3.1	LABORATORY	11
	3.2	ACCREDITATIONS	11
	3.3	MEASUREMENT UNCERTAINTY	12
4.	LIST OF	USED TEST EQUIPMENT AT GRGT	13
5.	CONDU	CTED EMISSION MEASUREMENT	14
	5.1	LIMITS	14
	5.2	TEST PROCEDURES	14
	5.3	TEST SETUP	15
	5.4	DATA SAMPLE	15
	5.5	TEST RESULTS	16
6.	RADIAT	TED SPURIOUS EMISSIONS	18
	6.1	LIMITS	18
	6.2	TEST PROCEDURES	18
	6.3	TEST SETUP	22
	6.4	DATA SAMPLE	23
	6.5	TEST RESULTS	24
7.	6dB BAl	NDWIDTH	38
	7.1	LIMITS	38
	7.2	TEST PROCEDURES	38
	7.3	TEST SETUP	38
	7.4	TEST RESULTS	39
8.	MAXIM	UM PEAK OUTPUT POWER	45
	8.1	LIMITS	45
	8.2	TEST PROCEDURES	45
	8.3	TEST SETUP	45
	8.4	TEST RESULT	46
9.	POWER	SPECTRAL DENSITY	47
	9.1	LIMITS	47
	9.2	TEST PROCEDURES	47
	9.3	TEST SETUP	47
	9.4	TEST RESULTS	48

10.	CC	ONDUCTED BAND EDGES AND SPURIOUS EMISSIONS	54
	10.1	LIMITS	54
	10.2	TEST PROCEDURES	54
	10.3	TEST SETUP	54
	10.4	TEST RESULTS	55
11.	RE	STRICTED BANDSOF OPERATION	
	11.1	LIMITS	74
	11.2	TEST PROCEDURES	75
	11.3	TEST SETUP	7
	11.4	TEST RESULTS	70
AP	PENDIX	A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM	89
AP	PENDIX	B. PHOTOGRAPH OF THE EUT	89

Report No.: E20220818423001-6 Page 5 of 89

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E20220818423001-6	Original Issue	2022-10-14

Report No.: E20220818423001-6 Page 6 of 89

1. TEST RESULT SUMMARY

/ // 📉 /	1		
Standard	Item	Limit / Severity	Result
	Antenna Requirement	§15.203	PASS
	Conducted Emissions	§15.207 (a)	PASS
	Radiated Spurious Emission	\$15.247(d) \$15.205 \$15.209	PASS
CFR 47, FCC Part 15 Subpart C (§15.247)	6 dB Bandwidth	§15.247 (a)(2)	PASS
ANSI C63.10-2013 KDB 558074 D01 15.247 measurement guidance	Maximum Peak Output Power	§15.247(b)(3)	PASS
v05r02	Power Spectral Density	§15.247(e)	PASS
	Conducted band edges and Spurious Emission	§15.247(d)	PASS
	Restricted bands of operation	\$15.205 \$15.209 \$15.247(d)	PASS

The EUT have one antenna. The antenna is internal antenna. The max gain of Antenna is 0.5dBi, which accordance 15.203is considered sufficient to comply with the provisions of this section.

Report No.: E20220818423001-6 Page 7 of 89

2. GENERAL DESCRIPTION OF EUT

2.1 APPLICANT

Name: Lumi United Technology Co., Ltd

Address: B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential District,

Nanshan District, Shenzhen, China

2.2 MANUFACTURER

Name: Lumi United Technology Co., Ltd

Address:

B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential District,

Nanshan District, Shenzhen, China

2.3 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Product Name: Smart Video Doorbell G4

Product Model: SVD-C01

Adding Model: SVD-C03

the same technical construction including circuit diagram, PCB LAYOUT, hardware version and software version identical, except color of enclosures and sales method are

different.

Trade Name: Aqara

FCC ID: 2AKIT-SVDC01

Rating: AC 12-24V power supplied by AC power convert

DC 8-24V power supplied by DC adapter

DC 4.5V power supplied by battery

Frequency Band: 2412MHz-2462MHz for IEEE 802.11b/g/n HT20

Modulation Type: DSSS for IEEE 802.11b mode;

OFDM for IEEE 802.11g/n mode

Antenna Specification: FPC antenna with 0.5dBi gain (Max)

Temperature Range: $-10^{\circ}\text{C} \sim +55^{\circ}\text{C}$

Hardware Version: T0

Software Version: 1.0.4_0010

Sample submitting way: ■Provided by customer □Sampling

Sample No: E20220818423001-0001, E20220818423001-0008

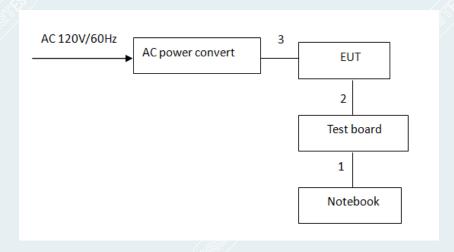
Report No.: E20220818423001-6 Page 8 of 89

2.4 CHANNEL LIST

	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n HT20						
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)						Frequency (MHz)	
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

2.5 TEST OPERATION MODE

Mode No.	Description of the modes			
(8) 1	2.4G Wi-Fi TX mode			


2.6 LOCAL SUPPORTIVE

Name of Equipment	Manufacturer	Model	Serial Number	Note
Notebook	LENOVO	TianYi 310-14ISK	MP18DLC6	/
Test board	/	1 / 57	/	/
Adapter	Jingsai	/	/	/

No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
1	USB cable	1	No	0	0.5m
2	DC cable	1	No	0	0.2m
3	AC cable	1	No	0	1.2m

Report No.: E20220818423001-6 Page 9 of 89

2.7 CONFIGURATION OF SYSTEM UNDER TEST

Test software:

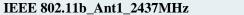
Software version	Test level
	IEEE802.11b: -30
QCOM_V1.0	IEEE802.11g: -30
/2	IEEE802.11n HT20: -30

Power Setting:

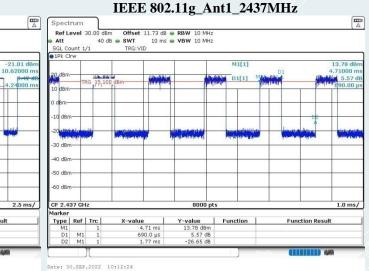
Mode	Date Rate	Frequecy (MHz)	Power Setting
		2412	-30
IEEE 802.11b	1M	2437	-30
		2462	-30
		2412	-30
IEEE 802.11g	6M	2437	-30
É		2462	-30
		2412	-30
IEEE 802.11n HT20	MCS0	2437	-30
	//	2462	-30

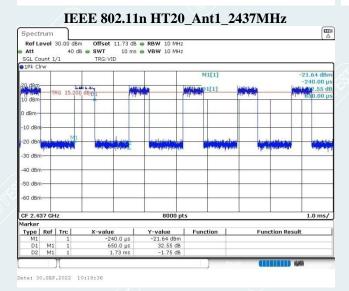
Report No.: E20220818423001-6 Page 10 of 89

2.8 DUTY CYCLE


Spectrum

Marker Type | Ref | Trc |


Date: 30.SEP.2022 10:03:11


EUT Name	Smart Video Doorbell G4	Model	SVD-C01
Environmental Conditions	23.8℃/52%RH/101.0kPa	Test Voltage	AC 120V/60Hz (AC 24V by AC power convert)
Tested By	Qin Tingting	Tested Date	2022-09-30

Test	Antonno	Frequency	Transmission	Transmission	Duty	T
Mode	Antenna	(MHz)	Duration [ms]	Period [ms]	Cycle [%]	[s]
IEEE 802.11b	Ant1	2437	4.24	5.32	79.70	0.00424
IEEE 802.11g	Ant1	2437	0.69	1.77	38.98	0.00069
IEEE 802.11n HT20	Ant1	2437	0.65	1.73	37.57	0.00065

M1[1]

Y-value Function
-21.01 dBm
0.42 dB
18.74 dB

Function Result

Report No.: E20220818423001-6 Page 11 of 89

3. LABORATORY AND ACCREDITATIONS

3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co., Ltd.

No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District

Add : Shenzhen, 518110, People's Republic of China

P.C. : 518110

Tel : 0755-61180008

Fax : 0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA A2LA(Certificate#:2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number: CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.grgtest.com

	The	following	blanks	<i></i>
--	-----	-----------	--------	---------

Report No.: E20220818423001-6 Page 12 of 89

3.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
		9kHz~30MHz	5.1dB
		30MHz~200MHz	4.5dB
, se	Horizontal	200MHz~1000MHz	4.4dB
		1GHz∼18GHz	5.6dB
Radiated Emission		18GHz~26.5GHz	3.65dB
Radiated Emission		9kHz~30MHz	5.1dB
		30MHz~200MHz	4.4dB
	Vertical	200MHz~1000MHz	4.5dB
		1GHz∼18GHz	5.6dB
		18GHz~26.5GHz	3.65dB
Conduction Emission		150kHz∼30MHz	3.40dB

Measurement	Uncertainty
RF frequency	6.0×10 ⁻⁶
RF power conducted	0.78 dB
Occupied channel bandwidth	0.4 dB
Unwanted emission, conducted	0.68 dB
Humidity	6 %
Temperature	2℃

This uncertainty represents an expanded uncertainty factor of k=2.

Report No.: E20220818423001-6 Page 13 of 89

4. LIST OF USED TEST EQUIPMENT AT GRGT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Conducted Emissions				
EZ-EMC	EZ	CCS-3A1-CE	/	/
EMI Receiver	R&S	ESCI	100783	2023-08-28
LISN(EUT)	R&S	ENV216	101543	2023-09-13
Radiated Spurious Emiss	sion & Restricted bar	nds of operation		
Test S/W	EZ	CCS-03A1		
Loop Antenna	TESEQ	HLA6121	52599	2023-04-02
Test Receiver	R&S	ESR7	102444	2023-09-02
Preamplifier	EMEC	EM330	I00426	2023-03-05
Bi-log Antenna	Schwarzbeck	VULB9160	VULB9160-3401	2022-10-27
Spectrum Analyzer	Agilent	N9010A	MY52221469	2023-06-29
Horn Antenna	Schwarzbeck	BBHA 9120D	02143	2022-10-22
Board-Band Horn Antenna	Schwarzbeck	ввна 9170	ВВНА 9170-497	2023-10-14
Amplifier	Tonscend	TAP01018048	AP20E8060075	2023-05-05
Amplifier	Tonscend	TAP184050	AP20E806071	2023-05-05
Amplifier	SHIRONG ELECTRONIC	DLNA-1G18G-G40	20200928005	2023-05-08
Test S/W	Tonscend	JS32-RE/2.5.1.5		/6
6 dB Bandwidth				
Spectrum Analyzer	R&S	FSV30	104381	2022-12-10
Output Power	•			
Pulse power sensor	Anristu	MA2411B	1126150	2023-03-01
Power meter	Anristu	ML2495A	1204003	2023-02-28
Conducted band edges an	nd Spurious Emission	n		
Spectrum Analyzer	R&S	FSV30	104381	2022-12-10
Power Spectral Density	•			
Spectrum Analyzer	R&S	FSV30	104381	2022-12-10

Note: The calibration interval of the above test instruments is 12 months.

Report No.: E20220818423001-6 Page 14 of 89

5. CONDUCTED EMISSION MEASUREMENT

5.1 LIMITS

/_//A V /		/////////_
Frequency range	Limits	(dBµV)
Frequency range	Quasi-peak	Average
150kHz∼0.5MHz	66~56	56~46
0.5MHz∼5MHz	56	46
5MHz~30MHz	60	50

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.

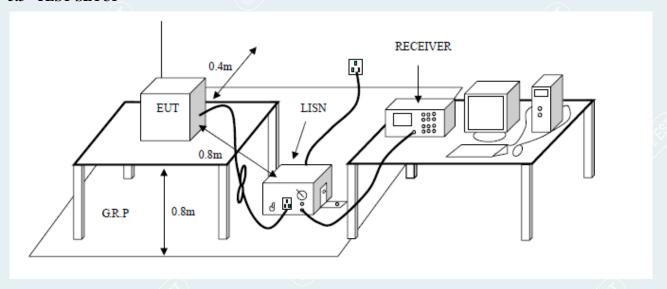
5.2 TEST PROCEDURES

Procedure of Preliminary Test

Test procedures follow ANSI C63.10:2013.

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:
- 1) place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or
- 2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;
- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;
- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.
- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.
- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.


The test mode(s) described in Item 2.6 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.6 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Report No.: E20220818423001-6 Page 15 of 89

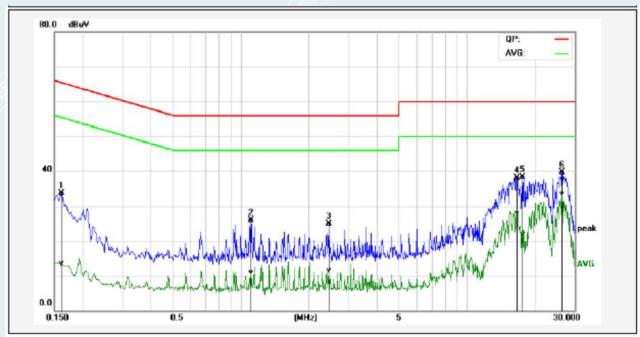
5.3 TEST SETUP

5.4 DATA SAMPLE

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)		Result	Average Result (dBuV)	Limit	Average Limit (dBuV)	Margin	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

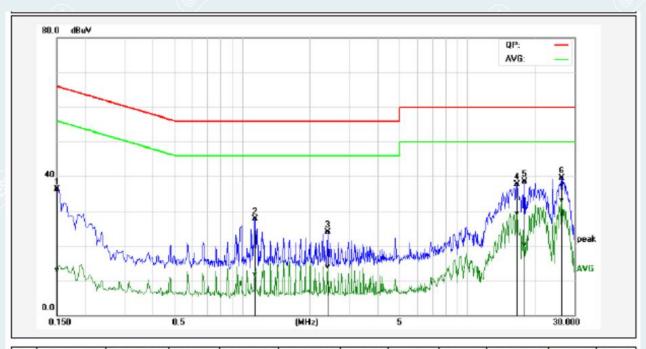
Result = Quasi-peak Reading/ Average Reading + Factor


Limit = Limit stated in standard Margin = Result (dBuV) – Limit (dBuV)

Report No.: E20220818423001-6 Page 16 of 89

5.5 TEST RESULTS

All models were pretested and the worst modes and channels were recorded in this report. (IEEE 802.11n HT20 2462MHz)


	/		
EUT Name	Smart Video Doorbell G4	Model	SVD-C01
Environmental Conditions	24.5°C/47%RH/101.0kPa	Test Mode	Mode 1
Tested By	Wang Xinyuan	Line	L
Tested Date	2022-10-18		AC 24V by AC power convert from AC 120V/60Hz

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1620	24.15	3.80	9.61	33.76	13.41	65.36	55.36	-31.60	-41.95	Pass
2	1.1140	16.26	1.29	9.61	25.87	10.90	56.00	46.00	-30.13	-35.10	Pass
3	2.4580	15.24	1.90	9.63	24.87	11.53	56.00	46.00	-31.13	-34.47	Pass
4	16.6820	28.28	18.03	9.78	38.06	27.81	60.00	50.00	-21.94	-22.19	Pass
5	17.5900	28.56	12.05	9.80	38.36	21.85	60.00	50.00	-21.64	-28.15	Pass
6*	26.3220	29.83	23.59	9.84	39.67	33.43	60.00	50.00	-20.33	-16.57	Pass

Report No.: E20220818423001-6 Page 17 of 89

EUT Name	Smart Video Doorbell G4	Model	SVD-C01
Environmental Conditions	24.5°C/47%RH/101.0kPa	Test Mode	Mode 1
Tested By	Wang Xinyuan	Line	N
Tested Date	2022-10-18		AC 24V by AC power convert from AC 120V/60Hz

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	26.62	3.32	9.60	36.22	12.92	65.99	56.00	-29.77	-43.08	Pass
2	1.1460	18.02	2.03	9.61	27.63	11.64	56.00	46.00	-28.37	-34.36	Pass
3	2.3980	14.19	4.37	9.62	23.81	13.99	56.00	46.00	-32.19	-32.01	Pass
4	16.6020	27.92	19.42	9.84	37.76	29.26	60.00	50.00	-22.24	-20.74	Pass
5	18.0380	28.63	10.48	9.86	38.49	20.34	60.00	50.00	-21.51	-29.66	Pass
6*	26.3220	29.42	23.15	9.99	39.41	33.14	60.00	50.00	-20.59	-16.86	Pass

Report No.: E20220818423001-6 Page 18 of 89

6. RADIATED SPURIOUS EMISSIONS

6.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits

specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(μV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30~88	100	3	40
88~216	150	3	43.5
216~960	200	3	46
Above 960	500	3	54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the Peak Limit= $74+20*\log(3/1)=83.54$ (dB μ V/m). The Avg Limit= $54+20*\log(3/1)=63.54$ (dB μ V/m).

6.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Report No.: E20220818423001-6 Page 19 of 89

Final measurement:

- --- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 360° .
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Report No.: E20220818423001-6 Page 20 of 89

3) Sequence of testing 1GHz to 18GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Report No.: E20220818423001-6 Page 21 of 89

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE:

- (a). The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak & AVG), RBW=300Hz(for Peak & AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).
- (b). The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).
- (c). The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.
- (d). The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle \geq 98%, set VBW \leq RBW/100 (i.e.,10kHz) but not less than 10Hz. Where duty cycle is defined in section 2.9. If the EUT duty cycle is \leq 98%, set VBW \geq 1/T, Where T is defined in section 2.9.

 The	following	blanks	

6.3 TEST SETUP

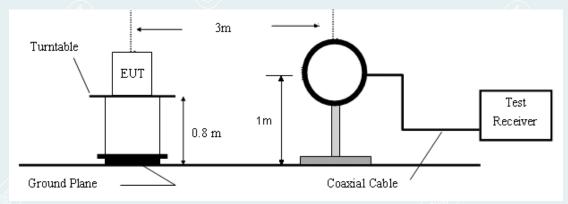


Figure 1. 9kHz to 30MHz radiated emissions test configuration

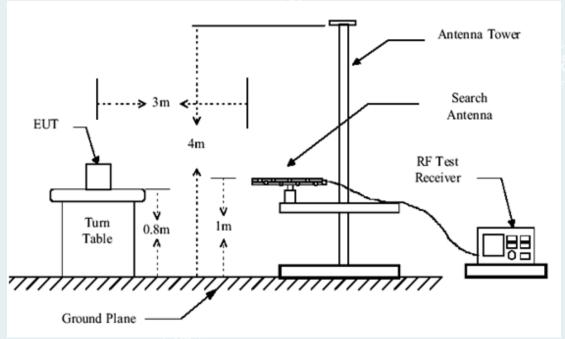


Figure 2. 30MHz to 1GHz radiated emissions test configuration

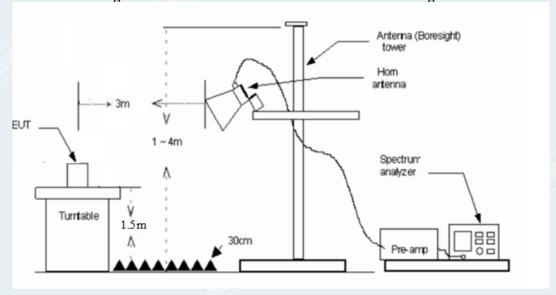


Figure 3. 1GHz to 18GHz radiated emissions test configuration

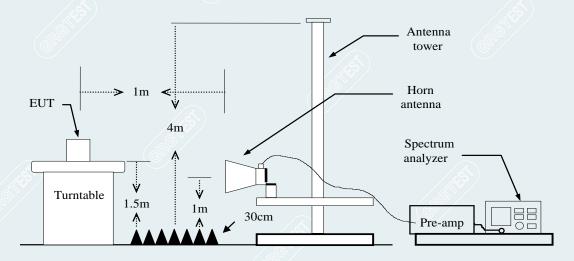


Figure 4.18GHz to 26.5GHz radiated emissions test configuration

6.4 DATA SAMPLE

30MHz to 1GHz

No.	Frequency	Reading	Factor Level		Limit Margin		Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

1GHz-18GHz

No.	Frequency	Reading	Reading Factor Level Limit		Margin	Remark	Pole	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
XXX	XXX	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
XXX	XXX	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical

Frequency (MHz) = Emission frequency in MHz

Ant.Pol. (H/V) = Antenna polarization

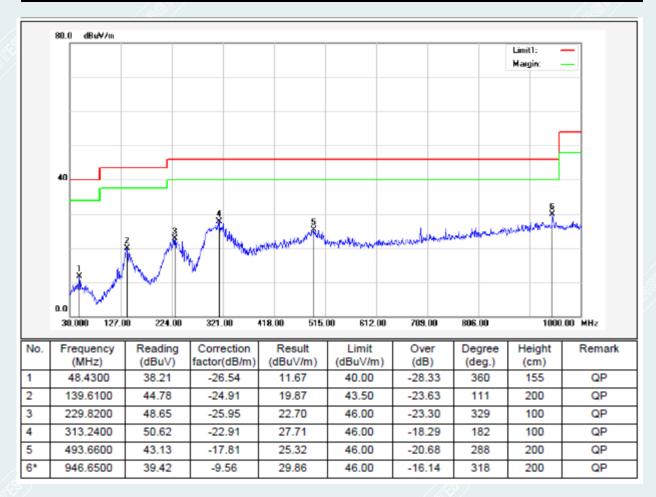
 $Reading \ (dBuV) \hspace{1cm} = Uncorrected \ Analyzer \ / \ Receiver \ reading$

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Remark Result (dBuV/m) – Limit (dBuV/m)

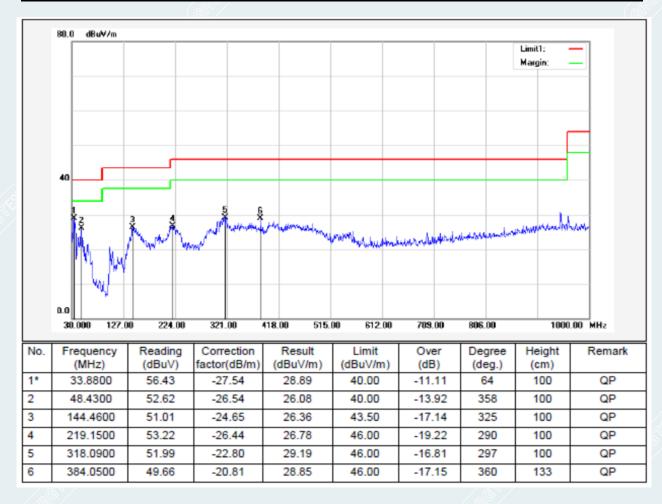
Peak = Peak Reading

QP = Quasi-peak Reading AVG = Average Reading Report No.: E20220818423001-6 Page 24 of 89


6.5 TEST RESULTS

This item pre-scan all power supply,AC 12V/24V supply by AC power convert,DC 8V/24V supply by DC adapter and DC 4.5V supply by battery,then the report display the worst case and data.(AC 24V supply by AC power convert)

Below 1GHz


All models were pretested and the worst modes and channels were recorded in this report. (IEEE 802.11n HT20 2462MHz)

EUT Name	Smart Video Doorbell G4	Model	SVD-C01
Environmental Conditions	23.7°C/45%RH/101.0kPa		AC 24V by AC power convert from AC 120V/60Hz
Test Mode	Mode 1	Polarity	Horizontal
Tested By	Tang Shenghui	Tested Date	2022-09-30

Report No.: E20220818423001-6 Page 25 of 89

EUT Name	Smart Video Doorbell G4	Model	SVD-C01
Environmental Conditions	23.7°C/45%RH/101.0kPa	i i est vaitage	AC 24V by AC power convert from AC 120V/60Hz
Test Mode	Mode 1	Polarity	Vertical
Tested By	Tang Shenghui	Tested Date	2022-09-30

Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- Radiated emissions measured in frequency range from 9 kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 3 Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.

Report No.: E20220818423001-6 Page 26 of 89

1GHz-18GHz:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Mode: IEEE 802.11b

Lowest Frequency (2412MHz)

Environment: 23.5°C/56%RH/101.0kPa

Date:2022-09-24

Voltage: AC 24V by AC power convert from AC 120V/60Hz

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1166	70.99	46.38	-24.61	74.00	27.62	100	278	Horizontal
2	1328.2	69.78	46.73	-23.05	74.00	27.27	100	330	Horizontal
3	1659	68.96	45.80	-23.16	74.00	28.20	100	330	Horizontal
4	2658.4	65.01	46.58	-18.43	74.00	27.42	100	278	Horizontal
5	3618	58.67	42.32	-16.35	74.00	31.68	200	345	Horizontal
6	4824	60.09	47.77	-12.32	74.00	26.23	200	81	Horizontal

	?\\ <i>j</i> ``/					/_/\\\\\\\\\			
Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1166.2	69.79	45.50	-24.29	74.00	28.50	200	16	Vertical
2	1328.8	69.69	47.04	-22.65	74.00	26.96	200	226	Vertical
3	1662.4	69.95	47.47	-22.48	74.00	26.53	100	322	Vertical
4	2653.8	65.21	47.40	-17.81	74.00	26.60	100	308	Vertical
5	3324	62.44	44.83	-17.61	74.00	29.17	200	240	Vertical
6	4824	59.59	47.02	-12.57	74.00	26.98	200	346	Vertical

Report No.: E20220818423001-6 Page 27 of 89

Mode: IEEE 802.11b

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1162.6	69.65	44.97	-24.68	74.00	29.03	100	240	Horizontal
2	1328.4	67.84	44.78	-23.06	74.00	29.22	100	304	Horizontal
3	1660.6	68.62	45.48	-23.14	74.00	28.52	100	328	Horizontal
4	1997.4	65.60	44.43	-21.17	74.00	29.57	100	278	Horizontal
5	2660.2	65.37	46.94	-18.43	74.00	27.06	100	16	Horizontal
6	4873.5	60.63	47.60	-13.03	74.00	26.40	200	95	Horizontal

			<u>c_\ </u>						
Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity
1	1165.2	70.98	46.72	-24.26	74.00	27.28	100	279	Vertical
2	1333.6	69.16	46.66	-22.50	74.00	27.34	100	265	Vertical
3	1663	70.29	47.83	-22.46	74.00	26.17	200	323	Vertical
4	2654.2	64.41	46.61	-17.80	74.00	27.39	100	201	Vertical
5	3996	61.79	45.87	-15.92	74.00	28.13	100	58	Vertical
6	4873.5	58.35	45.31	-13.04	74.00	28.69	200	280	Vertical

Report No.: E20220818423001-6 Page 28 of 89

Mode: IEEE 802.11b

Highest Frequency (2462MHz) Date: 2022-09-24 Environment: 23.5° C/56%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

\ <u> </u>									
Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1164.4	69.25	44.61	-24.64	74.00	29.39	100	278	Horizontal
2	1333.6	67.96	44.85	-23.11	74.00	29.15	100	318	Horizontal
3	1664	68.06	44.95	-23.11	74.00	29.05	100	331	Horizontal
4	2659.4	64.77	46.33	-18.44	74.00	27.67	100	16	Horizontal
5	4924.5	61.95	49.39	-12.56	74.00	24.61	200	108	Horizontal
6	6682.5	54.16	47.69	-6.47	74.00	26.31	100	82	Horizontal

- 6										
	AV Fin	al Data List								
	NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle	Polarity
	1	4926	-12.51	56.35	43.84	54.00	10.16	200	94	Horizontal

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1165.2	70.84	46.58	-24.26	74.00	27.42	200	15	Vertical
<u>\$</u> 2	1330	69.02	46.41	-22.61	74.00	27.59	100	266	Vertical
3	1663.2	68.58	46.13	-22.45	74.00	27.87	200	318	Vertical
4	2660.6	64.90	47.17	-17.73	74.00	26.83	100	203	Vertical
5	3997.5	63.41	47.49	-15.92	74.00	26.51	100	123	Vertical
6	4924.5	60.00	47.69	-12.31	74.00	26.31	200	186	Vertical

Report No.: E20220818423001-6 Page 29 of 89

Mode: IEEE 802.11g

Lowest Frequency (2412MHz) Date: 2022-09-24 Environment: 23.5 °C/56%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1166.4	68.65	44.05	-24.60	74.00	29.95	200	143	Horizontal
2	1248.6	66.66	44.71	-21.95	74.00	29.29	100	251	Horizontal
3	1328.2	65.56	42.51	-23.05	74.00	31.49	100	193	Horizontal
4	1666	69.54	46.45	-23.09	74.00	27.55	200	328	Horizontal
5	1997.4	64.48	43.31	-21.17	74.00	30.69	100	278	Horizontal
6	4816.5	56.54	44.31	-12.23	74.00	29.69	200	227	Horizontal

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1164.8	69.24	44.98	-24.26	74.00	29.02	100	296	Vertical
2.0	1330.4	69.82	47.22	-22.60	74.00	26.78	100	269	Vertical
3	1664.4	69.38	46.96	-22.42	74.00	27.04	200	321	Vertical
4	2655	65.35	47.56	-17.79	74.00	26.44	100	203	Vertical
5	3996	63.26	47.34	-15.92	74.00	26.66	100	18	Vertical
6	4809	56.25	43.85	-12.40	74.00	30.15	200	252	Vertical

Report No.: E20220818423001-6 Page 30 of 89

Mode: IEEE 802.11g

Middle Frequency (2437MHz)

Environment: 23.5 °C/56%RH/101.0kPa

Date: 2022-09-24

Voltage: AC 24V by AC power convert from AC 120V/60Hz

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1166.4	67.39	42.79	-24.60	74.00	31.21	100	265	Horizontal
2	1328	67.38	44.33	-23.05	74.00	29.67	100	201	Horizontal
3	1660.2	69.24	46.09	-23.15	74.00	27.91	100	16	Horizontal
4	2663.2	64.93	46.51	-18.42	74.00	27.49	100	293	Horizontal
5	4326	57.53	43.29	-14.24	74.00	30.71	200	173	Horizontal
6	4840.5	56.78	44.23	-12.55	74.00	29.77	100	173	Horizontal

Suspec	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1	1165	71.68	47.42	-24.26	74.00	26.58	100	292	Vertical				
2.0	1330.4	69.19	46.59	-22.60	74.00	27.41	100	267	Vertical				
3	1661.2	69.96	47.44	-22.52	74.00	26.56	200	317	Vertical				
4	2664.6	64.82	47.14	-17.68	74.00	26.86	100	214	Vertical				
5	3324	63.25	45.64	-17.61	74.00	28.36	200	268	Vertical				
6	4663.5	58.32	45.97	-12.35	74.00	28.03	100	30	Vertical				

Report No.: E20220818423001-6 Page 31 of 89

Mode: IEEE 802.11g

Highest Frequency (2462MHz)

Environment: 23.5°C/56%RH/101.0kPa

Date: 2022-09-24

Voltage: AC 24V by AC power convert from AC 120V/60Hz

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1165.4	68.46	43.84	-24.62	74.00	30.16	100	266	Horizontal
2	1327.6	66.78	43.73	-23.05	74.00	30.27	100	17	Horizontal
3	1659.8	66.59	43.44	-23.15	74.00	30.56	200	17	Horizontal
4	2661.4	63.47	45.04	-18.43	74.00	28.96	200	17	Horizontal
5	3613.5	57.17	40.96	-16.21	74.00	33.04	100	235	Horizontal
6	4924.5	57.49	44.93	-12.56	74.00	29.07	200	96	Horizontal

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity
1	1163.8	72.05	47.82	-24.23	74.00	26.18	100	278	Vertical
2.0	1331.6	69.65	47.08	-22.57	74.00	26.92	100	265	Vertical
3	1660	70.43	47.88	-22.55	74.00	26.12	200	305	Vertical
4	3318	62.82	45.37	-17.45	74.00	28.63	200	256	Vertical
5	3985.5	63.53	47.68	-15.85	74.00	26.32	100	344	Vertical
6	4924.5	57.50	45.19	-12.31	74.00	28.81	200	190	Vertical

Report No.: E20220818423001-6 Page 32 of 89

Mode: IEEE 802.11n HT20

Lowest Frequency (2412MHz) Environment: 23.5 °C/56% RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

Date: 2022-09-24

\ <u> </u>									
Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1165.6	70.88	46.26	-24.62	74.00	27.74	100	225	Horizontal
2	1333	67.15	44.05	-23.10	74.00	29.95	100	328	Horizontal
3	1659.6	69.46	46.30	-23.16	74.00	27.70	100	340	Horizontal
4	2656	65.47	47.03	-18.44	74.00	26.97	100	28	Horizontal
5	3985.5	60.50	44.35	-16.15	74.00	29.65	100	32	Horizontal
6	4812	56.82	44.65	-12.17	74.00	29.35	200	81	Horizontal

Suspec	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity				
1	1161	71.93	47.76	-24.17	74.00	26.24	200	15	Vertical				
2.0	1330.4	69.76	47.16	-22.60	74.00	26.84	200	239	Vertical				
3	1661	69.48	46.96	-22.52	74.00	27.04	100	318	Vertical				
4	2659.2	64.97	47.23	-17.74	74.00	26.77	100	318	Vertical				
5	3981	62.53	46.71	-15.82	74.00	27.29	100	212	Vertical				
6	4950	56.05	44.68	-11.37	74.00	29.32	100	212	Vertical				

Report No.: E20220818423001-6 Page 33 of 89

Mode: IEEE 802.11n HT20

Middle Frequency (2437 MHz) Environment: 23.5 °C/56% RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

Date: 2022-09-24

Cumpat	Suspected Data List											
Suspeci	teu Data List							1				
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
1	1165.2	70.31	45.68	-24.63	74.00	28.32	100	265	Horizontal			
2	1330	68.14	45.07	-23.07	74.00	28.93	100	278	Horizontal			
3	1666.4	69.31	46.23	-23.08	74.00	27.77	100	334	Horizontal			
4	2656.4	62.62	44.18	-18.44	74.00	29.82	100	15	Horizontal			
5	3592.5	58.09	42.14	-15.95	74.00	31.86	100	84	Horizontal			
6	4860	56.48	43.65	-12.83	74.00	30.35	200	69	Horizontal			

Suspec	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	1162.8	71.27	47.06	-24.21	74.00	26.94	200	355	Vertical
2.0	1329	70.00	47.35	-22.65	74.00	26.65	100	279	Vertical
3	1661.2	70.42	47.90	-22.52	74.00	26.10	100	317	Vertical
4	2660.6	65.28	47.55	-17.73	74.00	26.45	100	202	Vertical
5	3988.5	63.85	47.99	-15.86	74.00	26.01	100	306	Vertical
6	4947	55.58	44.10	-11.48	74.00	29.90	100	30	Vertical

Report No.: E20220818423001-6 Page 34 of 89

Mode: IEEE 802.11n HT20

Highest Frequency (2462MHz) Environment: 23.5°C/56%RH/101.0kPa Date: 2022-09-24 Voltage: AC 24V by AC power convert from AC 120V/60Hz

\	f(x) = f(x)												
Suspec	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1	1166.8	68.08	43.49	-24.59	74.00	30.51	100	345	Horizontal				
2	1327.8	68.24	45.19	-23.05	74.00	28.81	100	331	Horizontal				
3	1661.2	67.56	44.42	-23.14	74.00	29.58	100	331	Horizontal				
4	2074.2	63.61	42.70	-20.91	74.00	31.30	100	331	Horizontal				
5	2661.4	63.97	45.54	-18.43	74.00	28.46	200	16	Horizontal				
6	4930.5	57.36	45.01	-12.35	74.00	28.99	200	108	Horizontal				

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	1162.6	70.24	46.03	-24.21	74.00	27.97	100	292	Vertical	
2.0	1333.6	68.78	46.28	-22.50	74.00	27.72	200	223	Vertical	
3	1664.4	69.63	47.21	-22.42	74.00	26.79	200	327	Vertical	
4	2662.6	65.39	47.69	-17.70	74.00	26.31	100	317	Vertical	
5	2997.2	63.73	47.34	-16.39	74.00	26.66	100	237	Vertical	
6	3988.5	63.62	47.76	-15.86	74.00	26.24	100	302	Vertical	

Report No.: E20220818423001-6 Page 35 of 89

18GHz-26.5GHz:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11n HT20)

Mode: IEEE 802.11n HT20 Lowest Frequency (2412MHz)

Lowest Frequency (2412MHz) Date: 2022-09-26 Environment: 23.5°C/56%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

Tested By: Zhang Zishan

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	18499.8	52.56	40.34	-12.22	83.54	43.20	100	256	Horizontal	
2	19646.025	52.57	41.29	-11.28	83.54	42.25	100	304	Horizontal	
3	20403.375	51.74	41.13	-10.61	83.54	42.41	100	78	Horizontal	
4	21201.525	51.62	41.56	-10.06	83.54	41.98	100	288	Horizontal	
5	22650.35	48.15	39.22	-8.93	83.54	44.32	100	157	Horizontal	
6	24909.225	43.53	36.14	-7.39	83.54	47.40	100	141	Horizontal	

				/ / S\\						
Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity	
1	18481.95	53.45	41.31	-12.14	83.54	42.23	100	55	Vertical	
2	19049.325	52.88	41.12	-11.76	83.54	42.42	100	170	Vertical	
3	19711.05	52.72	41.56	-11.16	83.54	41.98	100	248	Vertical	
4	20403.375	51.84	41.33	-10.51	83.54	42.21	100	216	Vertical	
5	21187.5	51.24	41.28	-9.96	83.54	42.26	100	312	Vertical	
6	22598.075	48.48	39.46	-9.02	83.54	44.08	100	345	Vertical	

Report No.: E20220818423001-6 Page 36 of 89

Mode: IEEE 802.11n HT20 Middle Frequency (2437MHz)

Date: 2022-09-26 Voltage: AC 24V by AC power convert from AC 120V/60Hz Environment: 23.5°C/56%RH/101.0kPa

Tested By: Zhang Zishan

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	18321.3	53.42	41.10	-12.32	83.54	42.44	100	95	Horizontal	
2	18997.9	53.42	41.62	-11.80	83.54	41.92		306	Horizontal	
3	19450.525	52.72	41.26	-11.46	83.54	42.28	100	112	Horizontal	
4	20329.425	51.55	40.84	-10.71	83.54	42.70	100	306	Horizontal	
5	21971.625	49.34	39.57	-9.77	83.54	43.97	100	64	Horizontal	
6	22807.175	48.69	39.96	-8.73	83.54	43.58	100	273	Horizontal	

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	18530.4	53.03	40.93	-12.10	83.54	42.61	100	119	Vertical	
2.0	19289.45	52.86	41.28	-11.58	83.54	42.26	100	218	Vertical	
3	19722.95	53.12	41.98	-11.14	83.54	41.56	100	0	Vertical	
4	20465	51.95	41.52	-10.43	83.54	42.02	100	235	Vertical	
5	21190.9	51.17	41.21	-9.96	83.54	42.33	100	298	Vertical	
6	22666.5	48.23	39.32	-8.91	83.54	44.22	100	7	Vertical	

Report No.: E20220818423001-6 Page 37 of 89

Mode: IEEE 802.11n HT20

Highest Frequency (2462MHz) Environment: 23.5 °C/56% RH/101.0kPa Date: 2022-09-26 Voltage: AC 24V by AC power convert from AC 120V/60Hz

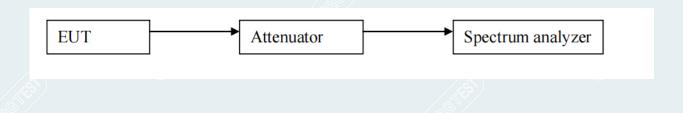
Tested By:Zhang Zishan

Suspect	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity		
1	18420.325	53.15	40.88	-12.27	83.54	42.66	100	71	Horizontal		
2	19714.45	52.08	40.84	-11.24	83.54	42.70	100	295	Horizontal		
3	21082.1	50.92	40.83	-10.09	83.54	42.71	100	54	Horizontal		
4	21955.05	49.75	39.98	-9.77	83.54	43.56	100	153	Horizontal		
5	22707.725	48.25	39.41	-8.84	83.54	44.13	100	184	Horizontal		
6	25098.35	43.10	35.91	-7.19	83.54	47.63	100	263	Horizontal		

					<u>/</u>						
Suspec	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity		
1	18165.325	53.10	40.67	-12.43	83.54	42.87	100	126	Vertical		
2	19040.825	53.46	41.69	-11.77	83.54	41.85	100	16	Vertical		
3	20491.775	51.99	41.59	-10.40	83.54	41.95	100	16	Vertical		
4	21298	50.86	40.98	-9.88	83.54	42.56	100	94	Vertical		
5	22757.025	47.50	38.73	-8.77	83.54	44.81	100	109	Vertical		
6	24063.475	44.68	36.39	-8.29	83.54	47.15	100	143	Vertical		

Report No.: E20220818423001-6 Page 38 of 89

7. 6dB BANDWIDTH


7.1 LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

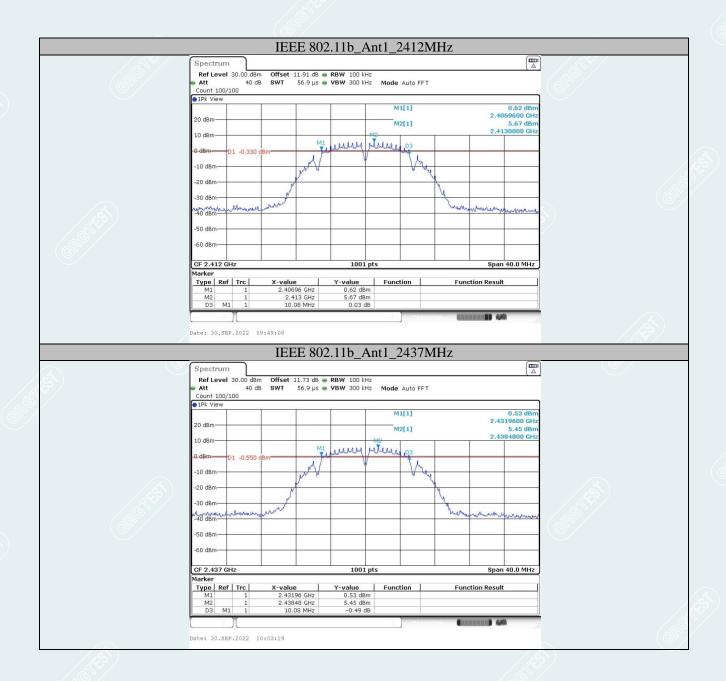
7.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set resolution bandwidth (RBW) = 100kHz.Set the video bandwidth (VBW) ≥ 3 x RBW. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- 3) Repeat above procedures until all frequencies measured were complete.

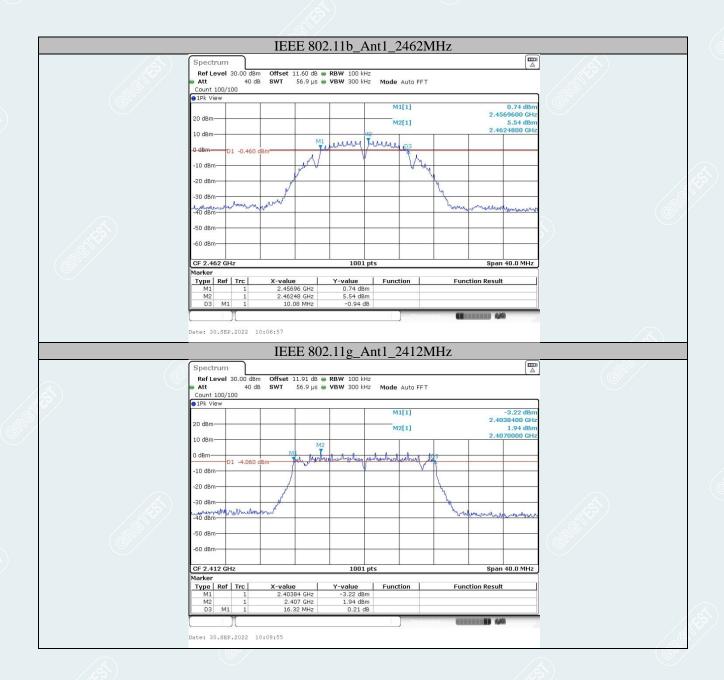
7.3 TEST SETUP

Report No.: E20220818423001-6 Page 39 of 89

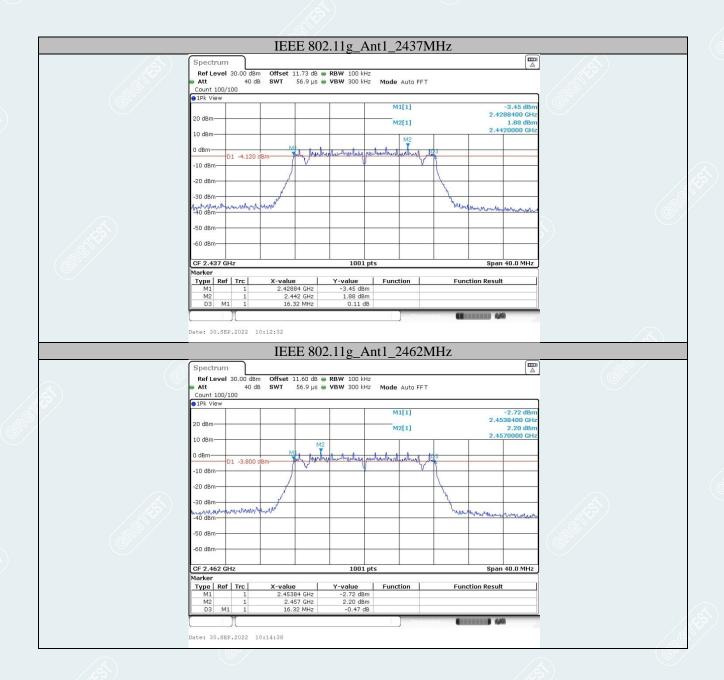
7.4 TEST RESULTS

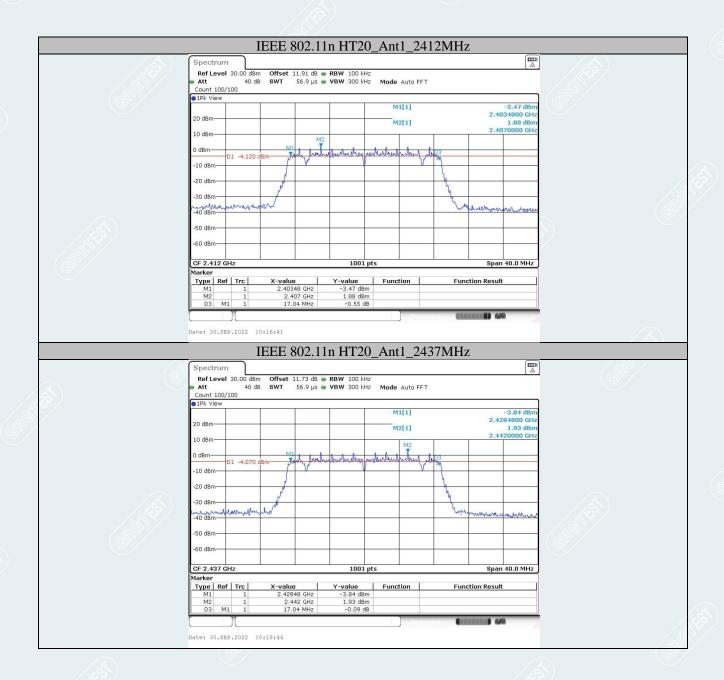

Environment: 23.8°C/52%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

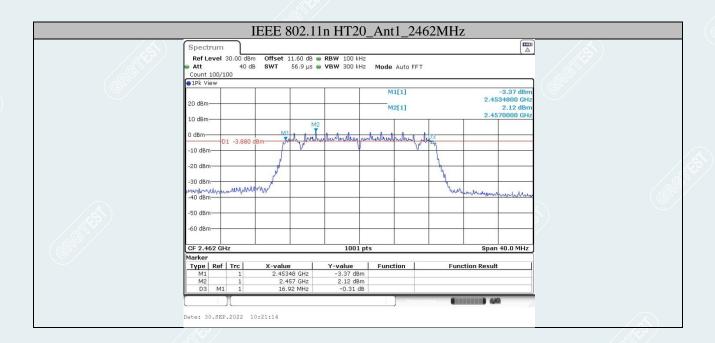
Tested By:Qin Tingting


Date: 2022-09-30

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	10.08	≥0.5	PASS
IEEE 802.11b	Ant1	2437	10.08	≥0.5	PASS
		2462	10.08	≥0.5	PASS
	Ant1	2412	16.32	≥0.5	PASS
IEEE 802.11g		2437	16.32	≥0.5	PASS
		2462	16.32	≥0.5	PASS
HEEE 000 11	Ant1	2412	17.04	≥0.5	PASS
IEEE 802.11n		2437	17.04	≥0.5	PASS
HT20		2462	16.92	≥0.5	PASS


Report No.: E20220818423001-6 Page 40 of 89


Report No.: E20220818423001-6 Page 41 of 89

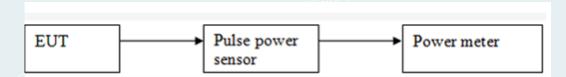

Report No.: E20220818423001-6 Page 42 of 89

Report No.: E20220818423001-6 Page 43 of 89

Report No.: E20220818423001-6 Page 44 of 89

Report No.: E20220818423001-6 Page 45 of 89

8. MAXIMUM PEAK OUTPUT POWER


8.1 LIMITS

The maximum Peak output power measurement is 1W

8.2 TEST PROCEDURES

- 1) RF output of EUT was connected to the broadband peak RF power meter by RF cable. The path loss was compensated to the results for each measurement.
- 2) Set to the maximum power setting and enable the EUT transmit continuously.
- 3) Measure the conducted output power and record the results in the test report.

8.3 TEST SETUP

Report No.: E20220818423001-6 Page 46 of 89

8.4 TEST RESULT

Environment: 23.8°C/52%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz

Tested By:Qin Tingting

Date: 2022-09-30

IEEE 802.11b Mode:

Channel No.	Frequency (MHz)	Measured Channel Power (dBm)	Peak / AVG	Limit	Result
(1)	2412	19.15			Pass
6	2437	19.06	Peak	30dBm	Pass
11	2462	19.68			Pass

IEEE 802.11g Mode:

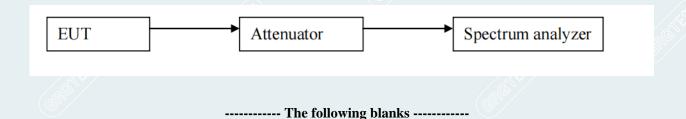
Channel No.	Frequency (MHz)	Measured Channel Power (dBm)	Peak / AVG	Limit	Result
1	2412	26.06			Pass
6	2437	26.15	Peak	30dBm	Pass
11	2462	26.61	<u> </u>		Pass

IEEE 802.11n HT20 Mode:

		/ // X / /			
Channel No.	Frequency (MHz)	Measured Channel Power (dBm)	Peak/ AVG	Limit	Result
1	2412	26.91			Pass
6	2437	26.94	Peak	30dBm	Pass
11	2462	27.14	(<u> </u>	Pass

Report No.: E20220818423001-6 Page 47 of 89

9. POWER SPECTRAL DENSITY


9.1 LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3) The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span to 1.5 times the DTS bandwidth.
 - c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
 - d) Set the VBW \geq [3 \times RBW].
 - e) Detector = peak
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum amplitude level within the RBW.
 - j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- 4) Repeat above procedures until all frequencies measured were complete.

9.3 TEST SETUP

Report No.: E20220818423001-6 Page 48 of 89

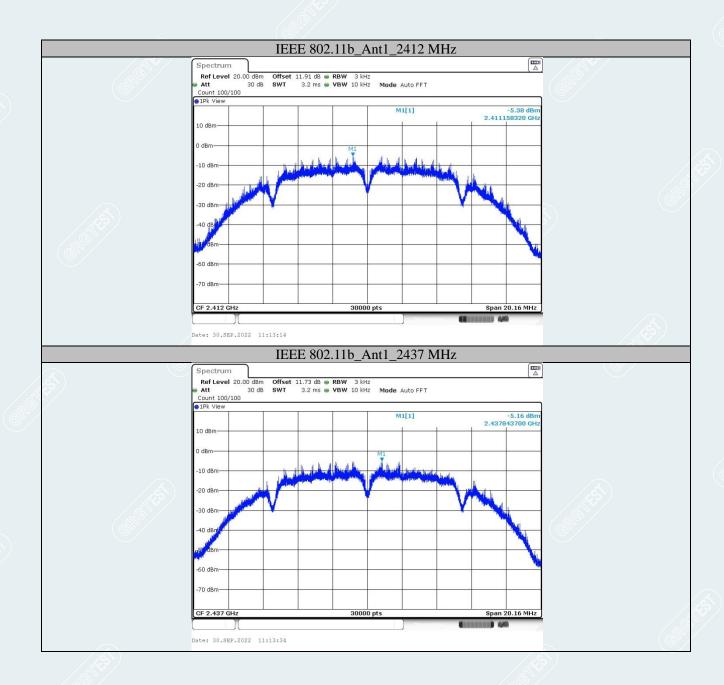
9.4 **TEST RESULTS**

Voltage: AC 24V by AC power convert from AC 120V/60Hz Environment: 23.8°C/52%RH/101.0kPa Tested By:Qin Tingting

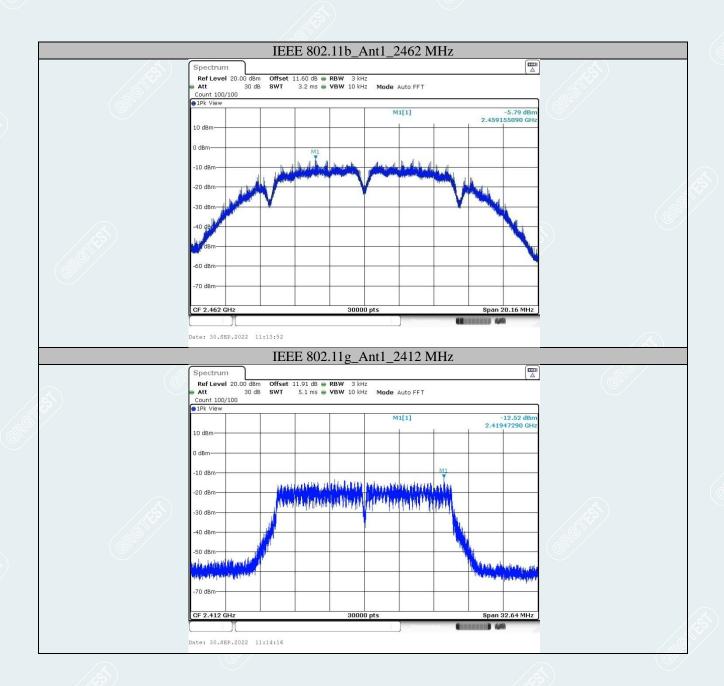
Date: 2022-09-30

IEEE 802.11b Mode:

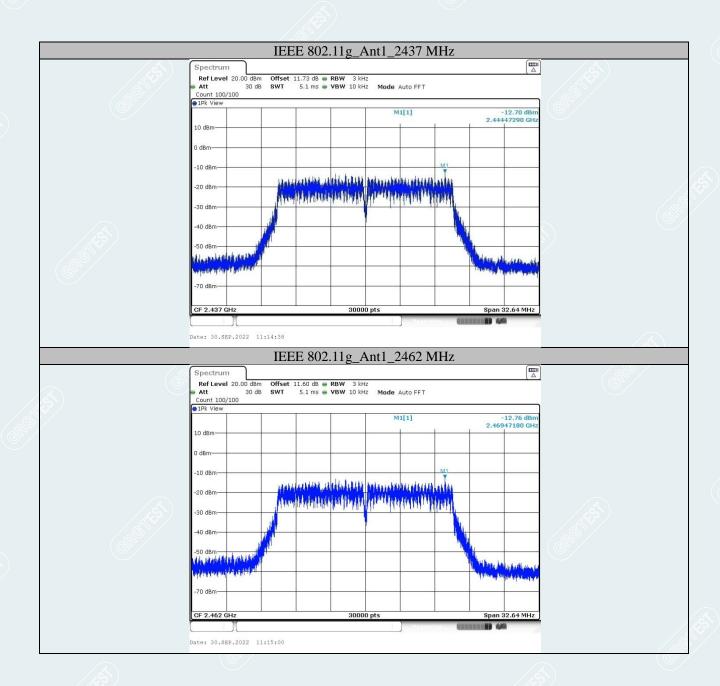
Channel No.	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
1	2412	-5.38	8.00	Pass
6	2437	-5.16	8.00	Pass
(11)	2462	-5.79	8.00	Pass

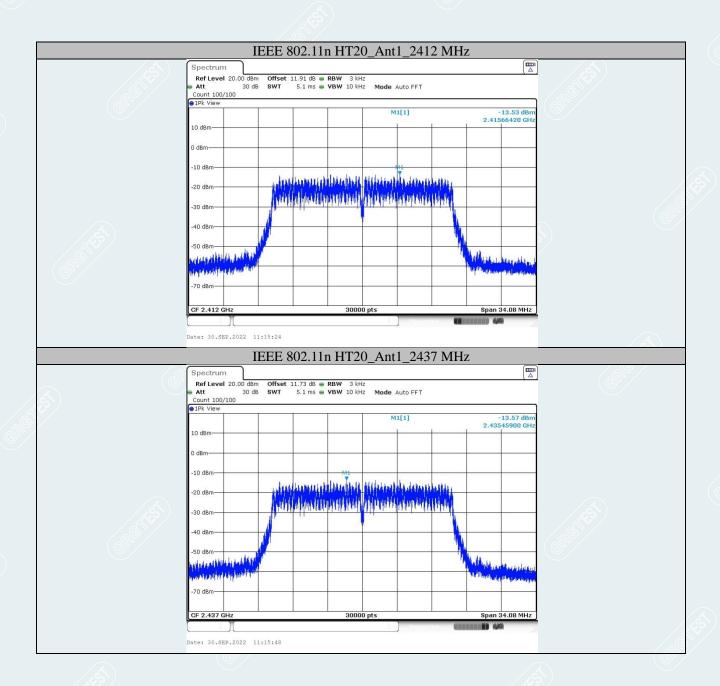

IEEE 802.11g Mode:

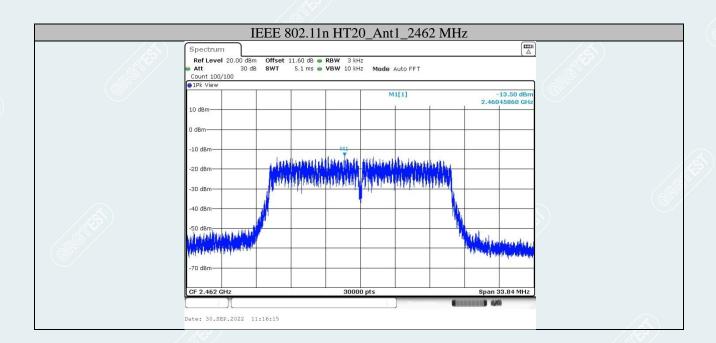
ILLE OUZ.IIG	ouc.			
Channel No.	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
1	2412	-12.52	8.00	Pass
6	2437	-12.70	8.00	Pass
11	2462	-12.76	8.00	Pass


IEEE 802.11n HT20 Mode:

Channel No.	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
1	2412	-13.53	8.00	Pass
6	2437	-13.57	8.00	Pass
11	2462	-13.50	8.00	Pass


Report No.: E20220818423001-6 Page 49 of 89


Report No.: E20220818423001-6 Page 50 of 89


Report No.: E20220818423001-6 Page 51 of 89

Report No.: E20220818423001-6 Page 52 of 89

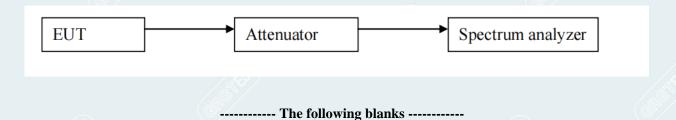
Report No.: E20220818423001-6 Page 53 of 89

Report No.: E20220818423001-6 Page 54 of 89

10. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

10.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


10.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 15.247 measurement guidance v05r02.

Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

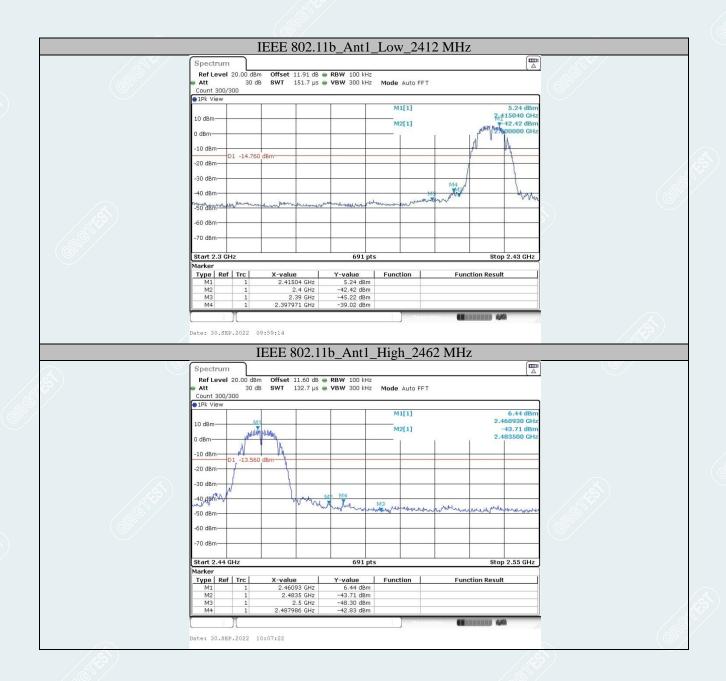
- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100kHz; VBW =300kHz, Frequency range = 30MHz to 26.5GHz; Sweep = auto; Detector Function = Peak; Trace = Max hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

10.3 TEST SETUP

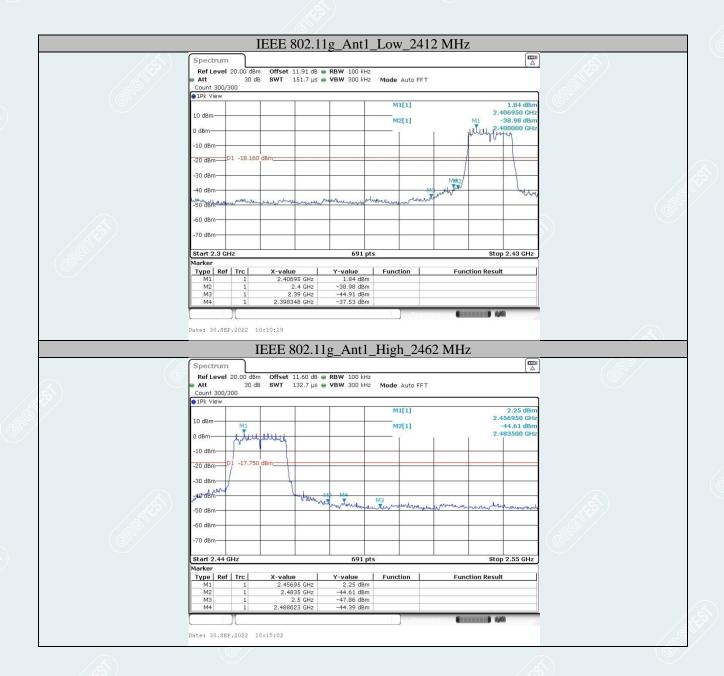
Report No.: E20220818423001-6 Page 55 of 89

10.4 TEST RESULTS

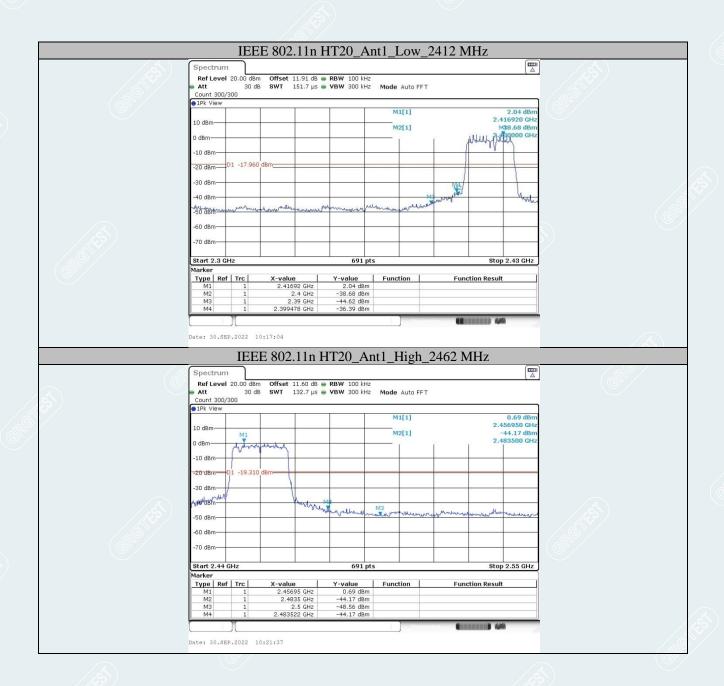
Environment: 23.8°C/52%RH/101.0kPa Voltage: AC 24V by AC power convert from AC 120V/60Hz


Tested By:Qin Tingting

Date: 2022-09-30


Band edge

Test Mode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
IEEE	Ant1	Low	2412	5.24	-39.02	≤-14.76	PASS
802.11b	Allti	High	2462	6.44	-42.83	≤-13.56	PASS
IEEE	Ant1	Low	2412	1.84	-37.53	≤-18.16	PASS
802.11g	711111	High	2462	2.25	-44.39	≤-17.75	PASS
IEEE	A .1	Low	2412	2.04	-36.39	≤-17.96	PASS
802.11n HT20	Ant1	High	2462	0.69	-44.17	≤-19.31	PASS

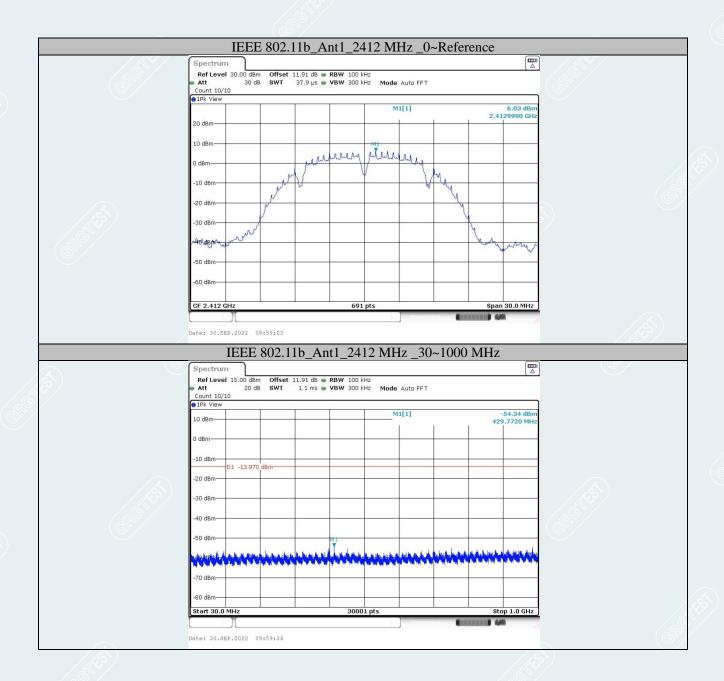

Report No.: E20220818423001-6 Page 56 of 89

Report No.: E20220818423001-6 Page 57 of 89

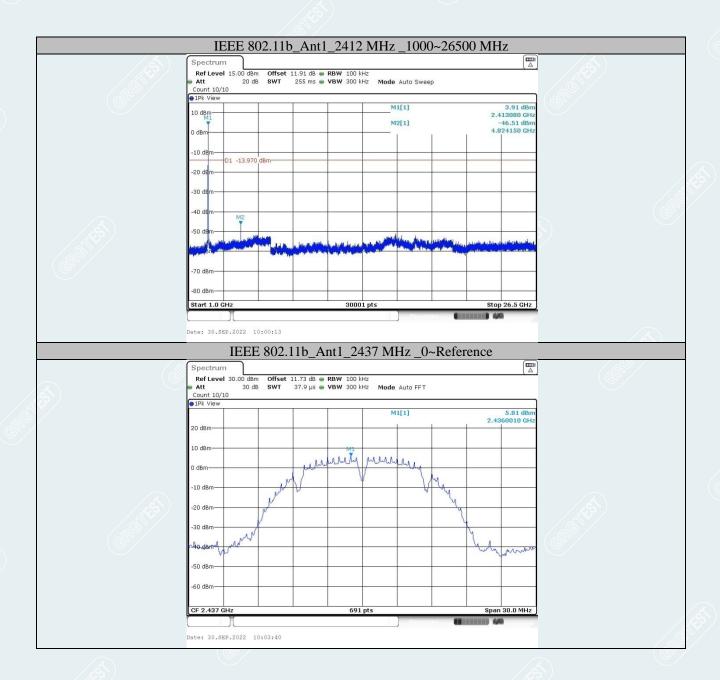
Report No.: E20220818423001-6 Page 58 of 89

Report No.: E20220818423001-6 Page 59 of 89

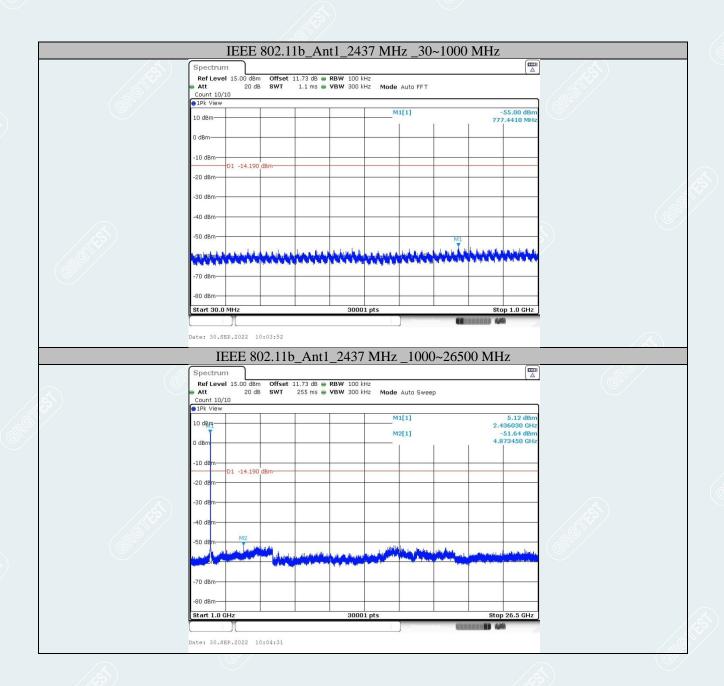
Conducted Spurious Emission:

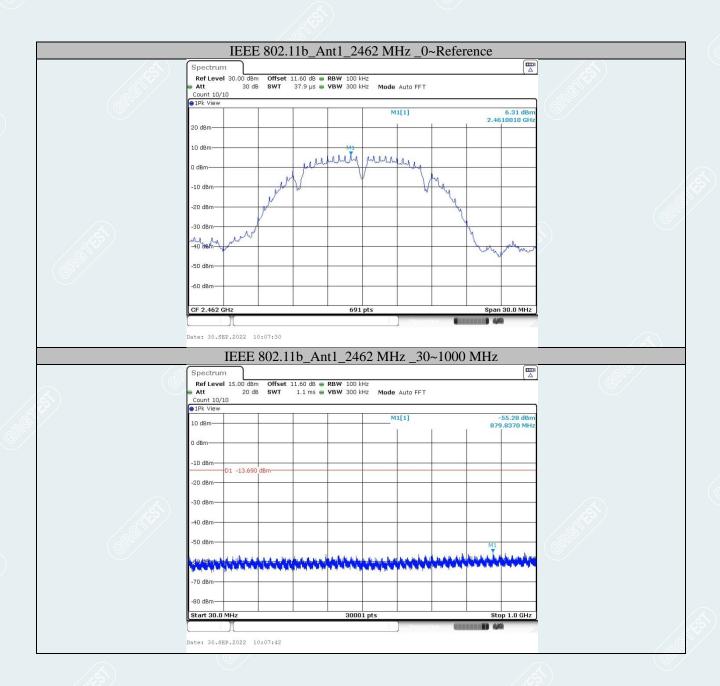

Test Result

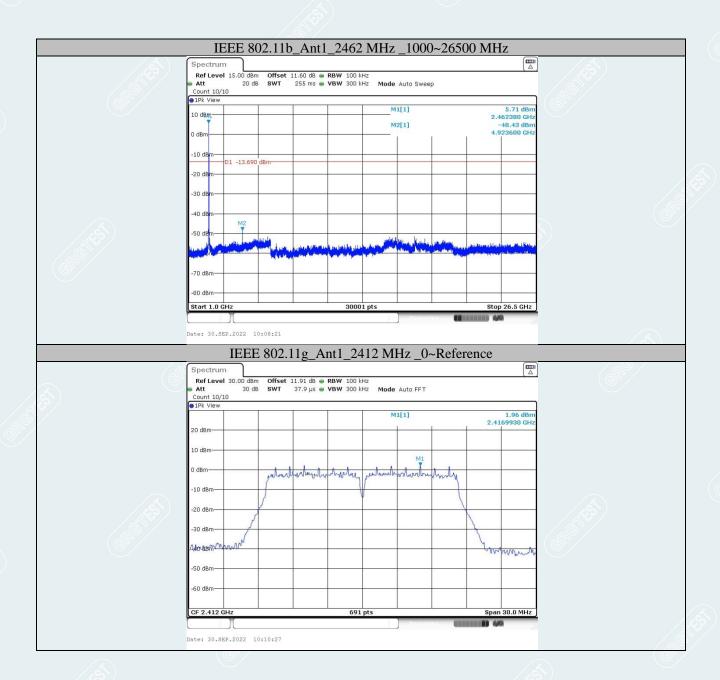
Voltage: AC 24V by AC power convert Date: 2022-09-30 Environment: 23.8°C/52%RH/101.0kPa

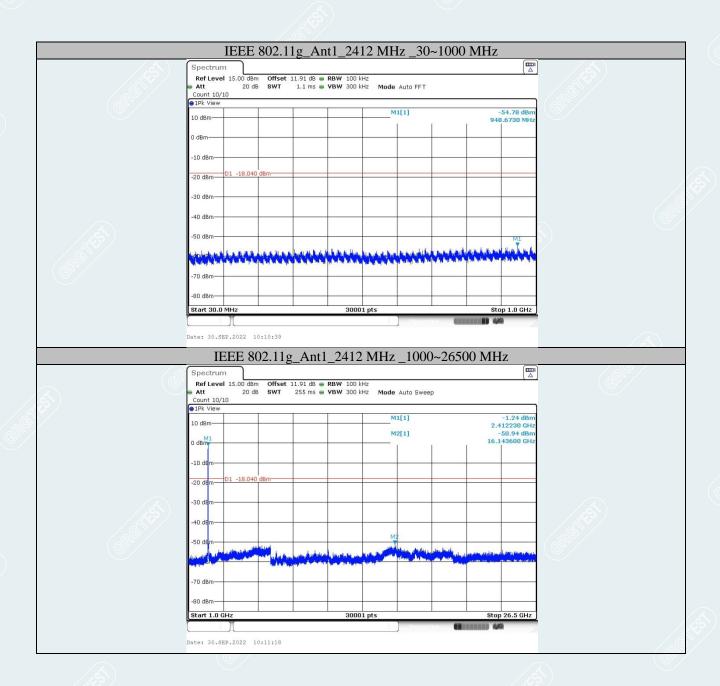

Tested By:Qin Tingting

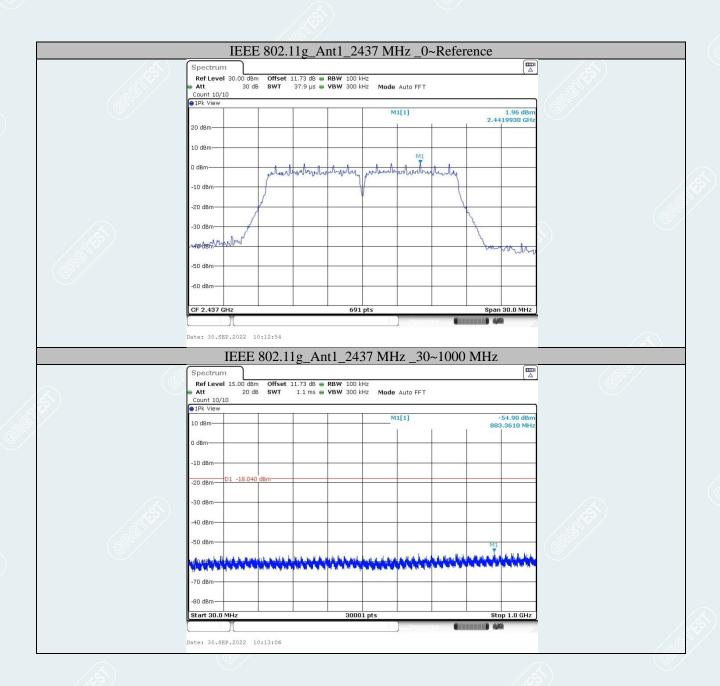
				/ « \			
Test Mode	Antenna	Frequency[MHz]	FreqRange	RefLevel	Result	Limit	Verdict
Test Wiode	Antenna	Trequency[WITZ]	[MHz]	[dBm]	[dBm]	[dBm]	Verdict
			Reference	6.03	6.03		PASS
		2412	30~1000	6.03	-54.34	≤-13.97	PASS
			1000~26500	6.03	-46.51	≤-13.97	PASS
			Reference	5.81	5.81	<u></u>	PASS
IEEE	Ant1	2437	30~1000	5.81	-55	≤-14.19	PASS
802.11b			1000~26500	5.81	-51.64	≤-14.19	PASS
		2462	Reference	6.31	6.31		PASS
			30~1000	6.31	-55.28	≤-13.69	PASS
			1000~26500	6.31	-48.43	≤-13.69	PASS
	Ant1	2412	Reference	1.96	1.96		PASS
			30~1000	1.96	-54.78	≤-18.04	PASS
			1000~26500	1.96	-50.94	≤-18.04	PASS
		nt1 2437	Reference	1.96	1.96		PASS
IEEE			30~1000	1.96	-54.9	≤-18.04	PASS
802.11g			1000~26500	1.96	-51.48	≤-18.04	PASS
			Reference	2.28	2.28		PASS
		2462	30~1000	2.28	-56.14	≤-17.72	PASS
			1000~26500	2.28	-51.8	≤-17.72	PASS
			Reference	1.99	1.99	(®)/	PASS
		2412	30~1000	1.99	-55.18	≤-18.01	PASS
			1000~26500	1.99	-51.78	≤-18.01	PASS
IEEE		(A)	Reference	1.92	1.92		PASS
802.11n	Ant1	2437	30~1000	1.92	-54.32	≤-18.08	PASS
HT20			1000~26500	1.92	-51.16	≤-18.08	PASS
			Reference	2.24	2.24	<u></u>	PASS
		2462	30~1000	2.24	-55.46	≤-17.76	PASS
			1000~26500	2.24	-51.15	≤-17.76	PASS

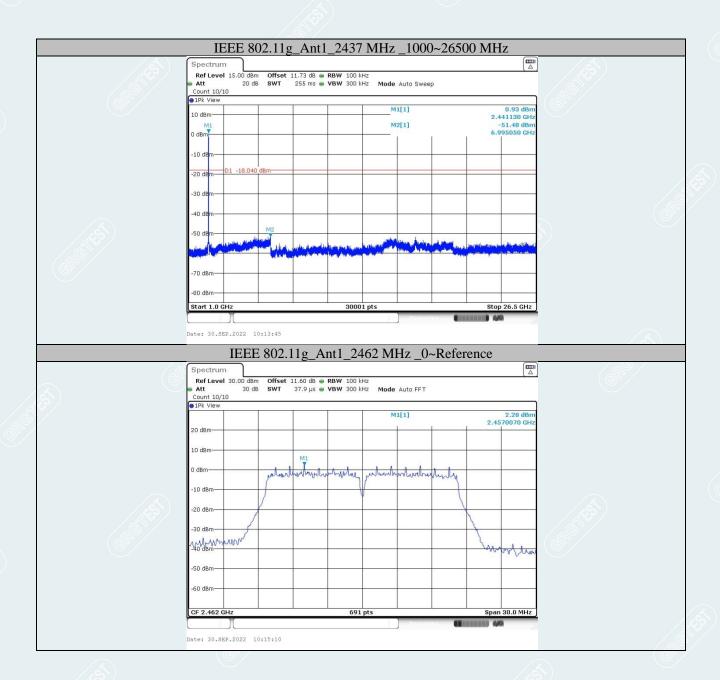

Report No.: E20220818423001-6 Page 60 of 89

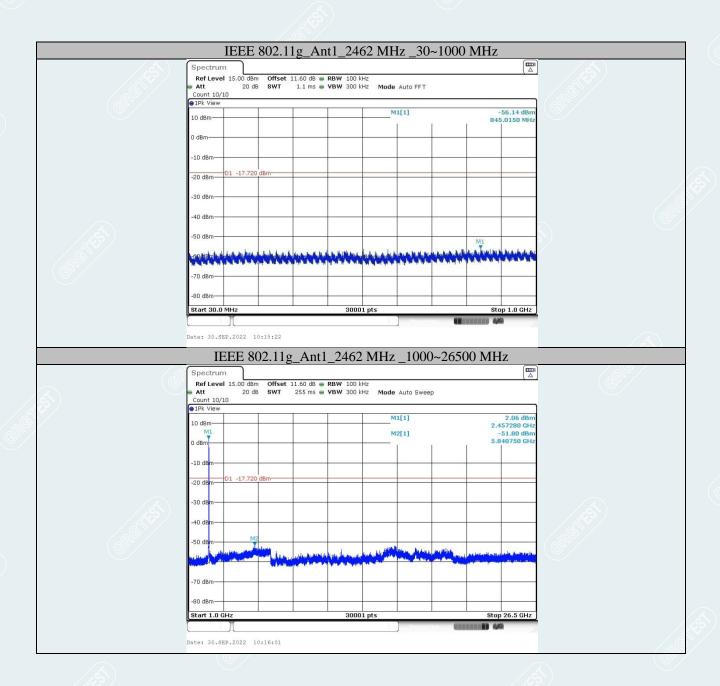

Report No.: E20220818423001-6 Page 61 of 89

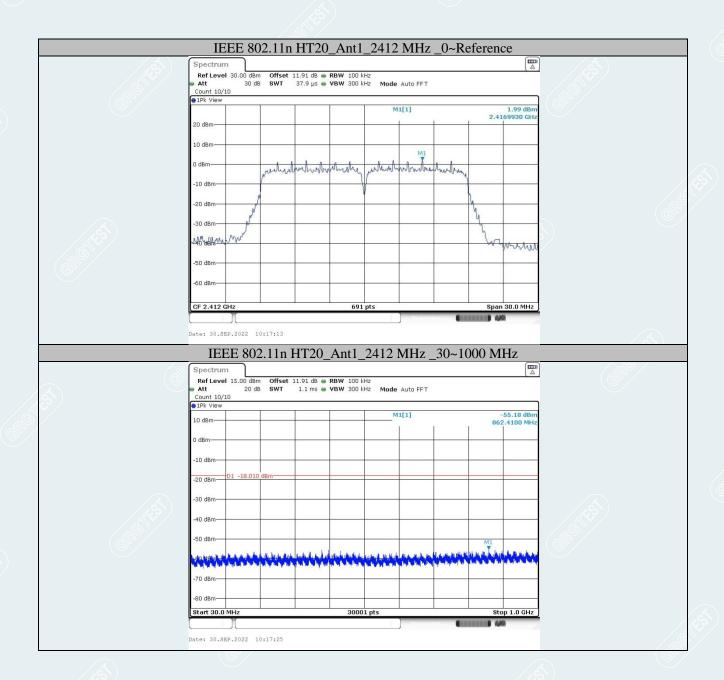

Report No.: E20220818423001-6 Page 62 of 89


Report No.: E20220818423001-6 Page 63 of 89


Report No.: E20220818423001-6 Page 64 of 89


Report No.: E20220818423001-6 Page 65 of 89


Report No.: E20220818423001-6 Page 66 of 89


Report No.: E20220818423001-6 Page 67 of 89

Report No.: E20220818423001-6 Page 68 of 89

Report No.: E20220818423001-6 Page 69 of 89

