

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

Т	EST REPORT				
Report No	CTC20201127E05				
FCC ID:	2AKIT-G2H				
IC:	22635-G2H				
Applicant:	Lumi United Technology Co., Ltd				
Address	8th Floor, JinQi Wisdom Valley, No.1 Tar Taoyuan Residential District, Nanshan D				
Manufacturer	Lumi United Technology Co., Ltd				
Address	8th Floor, JinQi Wisdom Valley, No.1 Tangling Road, Liuxian Ave, Taoyuan Residential District, Nanshan District, Shenzhen, China				
Product Name······:	Camera Hub G2, Camera Hub G2H				
Trade Mark······:	Aqara				
Model/Type reference······:	CH-H01				
Listed Model(s) ·····:	CH-H01-H1, CH-H01-H2, CH-H01-H3, CH-H01-H4, CH-H01-H5, ZNSXJ12LM, ZNSXJ12LM-G0				
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-247 Issue 2 RSS-Gen Issue 5				
Date of receipt of test sample:	Apr. 23, 2019				
Date of testing	Apr. 25, 2019 to Aug. 18, 2020				
Date of issue	Aug. 24, 2020				
Result	PASS				
Compiled by:		Jim Jiang			
(Printed name+signature)	Jim Jiang	Jim 6			
Supervised by:		naillar Ma			
(Printed name+signature)	Miller Ma	Miller Ma			
Approved by:					
(Printed name+signature)	Walter Chen	water chos			
Testing Laboratory Name	CTC Laboratories, Inc.				
Address 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China					
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.					

Table of Contents

Page

1.	TEST	SUMMARY	.3
	1.1.	Test Standards	.3
	1.2.	REPORT VERSION	.3
	1.3.	TEST DESCRIPTION	.4
	1.4.	TEST FACILITY	.5
	1.5.	MEASUREMENT UNCERTAINTY	.5
	1.6.	ENVIRONMENTAL CONDITIONS	.6
2.	GEN	ERAL INFORMATION	.7
	2.1.	CLIENT INFORMATION	
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	Accessory Equipment Information	
	2.4.	OPERATION STATE	
	2.5.	Measurement Instruments List	
3.	TEST	ITEM AND RESULTS	1
	3.1.	CONDUCTED EMISSION	1
	3.2.	RADIATED EMISSION	
	3.3.	BAND EDGE EMISSIONS	27
	3.4.	BANDWIDTH	33
	3.5.	PEAK OUTPUT POWER	36
	3.6.	POWER SPECTRAL DENSITY	39
	3.7.	ANTENNA REQUIREMENT	12

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz. RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. RSS-Gen: General Requirements for Compliance of Radio Apparatus.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Aug. 24, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C(15.247)/ RSS-247 Issue 2/ RSS-Gen Issue 5					
Test liem	Standard Section		Beault		
Test Item	FCC	IC	Result	Test Engineer	
Antenna Requirement	15.203	/	Pass	Zaki Zhang	
Conducted Emission	15.207(a)	RSS-GEN 8.8	Pass	Zaki Zhang	
Band-Edge & Unwanted Emissions into Restricted Frequency	15.205&15.247(d)	RSS-GEN 8.9	Pass	Zaki Zhang	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (1)	Pass	Zaki Zhang	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (4)	Pass	Zaki Zhang	
Power Spectral Density	15.247(e)	RSS 247 5.2 (2)	Pass	Zaki Zhang	
Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	15.205, 15.209&15.247(d)	RSS 247 5.5	Pass	Zaki Zhang	

Note: "N/A" is not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35 °C
Relative Humidity:	30~60 %
Air Pressure:	101.2 kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Lumi United Technology Co., Ltd	
Address:	8th Floor, JinQi Wisdom Valley, No.1 Tangling Road, Liuxian Ave, Taoyuan Residential District, Nanshan District, Shenzhen, China	
Manufacturer:	Lumi United Technology Co., Ltd	
Address:	8th Floor, JinQi Wisdom Valley, No.1 Tangling Road, Liuxian Ave, Taoyuan Residential District, Nanshan District, Shenzhen, China	

2.2. General Description of EUT

Product Name:	Camera Hub G2, Camera Hub G2H		
Marketing Name:	Aqara		
Model/Type reference:	CH-H01		
Listed Model(s):	CH-H01-H1, CH-H01-H2, CH-H01-H3, CH-H01-H4, CH-H01-H5, ZNSXJ12LM, ZNSXJ12LM-G0		
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit, only named differently for marketing purpose.		
Power supply:	Adapter 1: RD0501000-USBA-180MG Input: 100-240AC, 50/60Hz 0.25A MAX Output: 5VDC, 1000mA Adapter 2: A18A-050100U-US2 Input: 100-240AC, 50/60Hz 0.2A Output: 5VDC, 1A		
Hardware version:	V1.0.1		
Software version:	V1.0.1		
Zigbee			
Operation frequency:	2405MHz~2480MHz		
Modulation Type:	O-QPSK		
Max Peak Output Power:	9.66dBm		
Channel number:	16		
Channel separation:	5MHz		
Antenna type:	Monopole Antenna		
Antenna gain:	2.8dBi		

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Aqara Motion Sensor	RTCGQ11LM		LUMI		
Mobile Phone	A1660		APPLE		
Router	R4CM		XIAOMI		
Cable Information	Cable Information				
Name Shielded Type Ferrite Core Length					
USB Cable	Shielded	No	200cm		

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. Zigbee 16 channels are provided to the EUT. Channels 11/18/26 were selected for testing. **Operation Frequency List:**

Channel	Frequency (MHz)	Test software power Settings
11	2405	10
12	2410	
:	:	÷
17	2435	
18	2440	10
19	2445	
:	÷	÷
25	2475	
26	2480	0

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The software test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Zigbee instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

Tonso	Tonscend JS0806-2 Test system						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28, 2019	Dec. 27, 2020	
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28, 2019	Dec. 27, 2020	
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 28, 2019	Dec. 27, 2020	
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 28, 2019	Dec. 27, 2020	
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 28, 2019	Dec. 27, 2020	
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 28, 2019	Dec. 27, 2020	
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 28, 2019	Dec. 27, 2020	
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 28, 2019	Dec. 27, 2020	
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 28, 2019	Dec. 27, 2020	
10	Climate Chamber	ESPEC	MT3065	/	Dec. 28, 2019	Dec. 27, 2020	
11	300328 v2.1.1 test system	TONSCEND	v2.6	/	/	/	

Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 28, 2019	Dec. 27, 2020
2	LISN	R&S	ENV216	101113	Dec. 28, 2019	Dec. 27, 2020
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 28, 2019	Dec. 27, 2020
4	ISN CAT6	Schwarzbeck	NTFM 8158	8158-0046	Dec. 28, 2019	Dec. 27, 2020

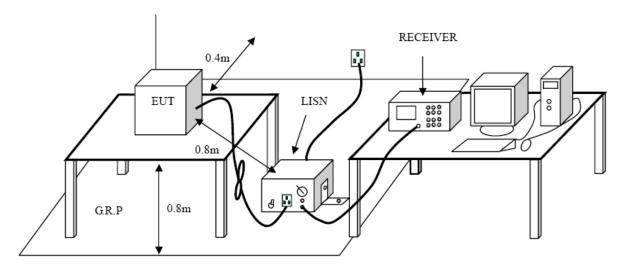
Radia	ted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated until
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 28, 2019	Dec. 27, 2020
2	High pass filter	micro-tranics	HPM50111	142	Dec. 28, 2019	Dec. 27, 2020
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28, 2019	Dec. 27, 2020
4	Ultra-Broadba nd Antenna	SchwarzBeck	BBHA9170	25841	Dec. 28, 2019	Dec. 27, 2020
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 28, 2019	Dec. 27, 2020
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28, 2019	Dec. 27, 2020
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 28, 2019	Dec. 27, 2020
8	Pre-Amplifier	HP	8447D	1937A030 50	Dec. 28, 2019	Dec. 27, 2020
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28, 2019	Dec. 27, 2020
10	Antenna Mast	UC	UC3000	N/A	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28, 2019	Dec. 27, 2020
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX10 2	DA1580	Dec. 28, 2019	Dec. 27, 2020
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019	Dec. 27, 2020
15	RF Connection Cable	HUBER+SUHN ER	RE-7-FL	N/A	Dec. 28, 2019	Dec. 27, 2020
16	RF Connection Cable	Chengdu E-Microwave			Dec. 28, 2019	Dec. 27, 2020
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28, 2019	Dec. 27, 2020
18	Attenuator	Chengdu E-Microwave	EMCAXX-10R NZ-3		Dec. 28, 2019	Dec. 27, 2020

Note: 1. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

<u>Limit</u>


Conducted Emission Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)						
Frequency	Quasi-peak Level	Average Level					
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
500kHz~5MHz	56	46					
5MHz~30MHz	60	50					

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

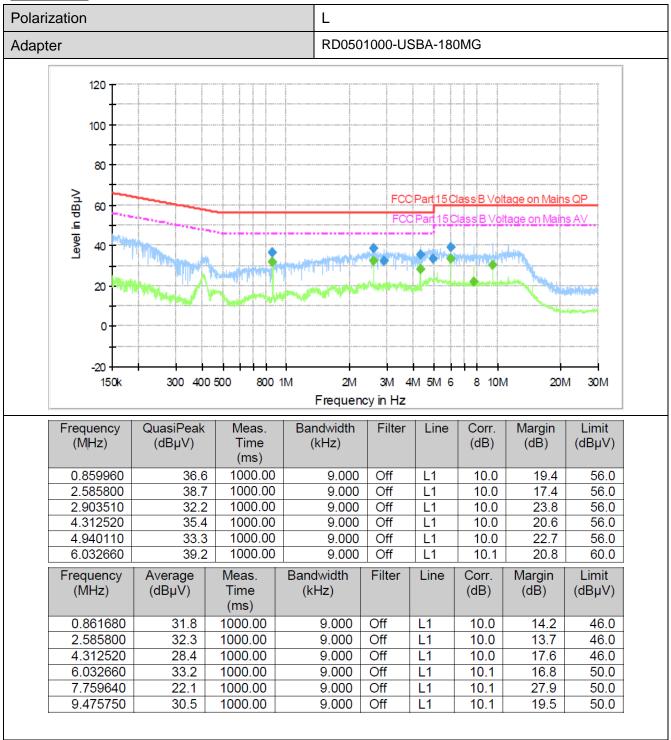
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 500hm /50uH coupling impedance for the measuring equipment.

The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

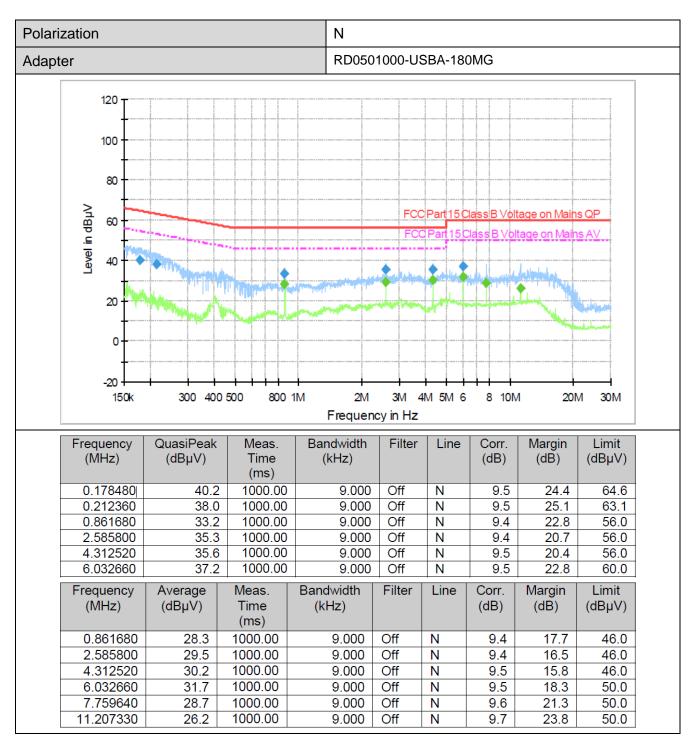
4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

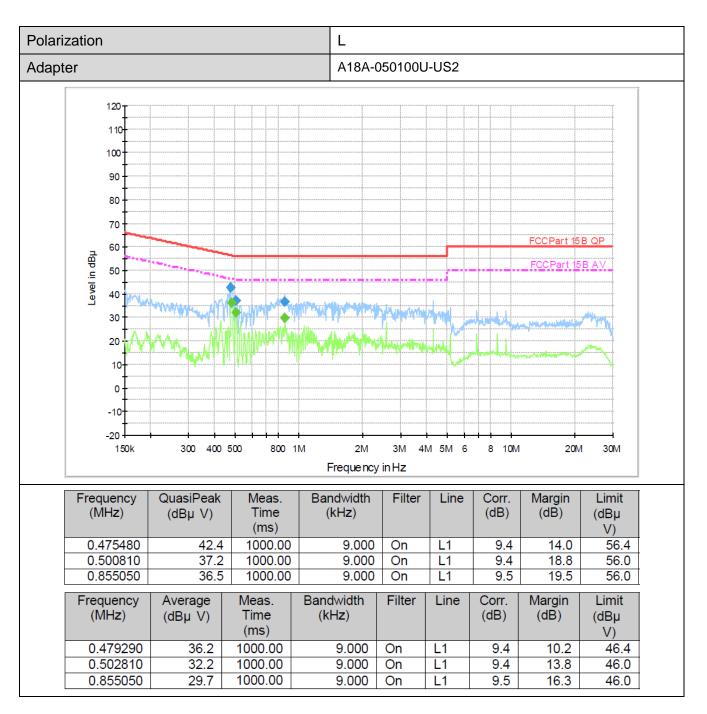

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

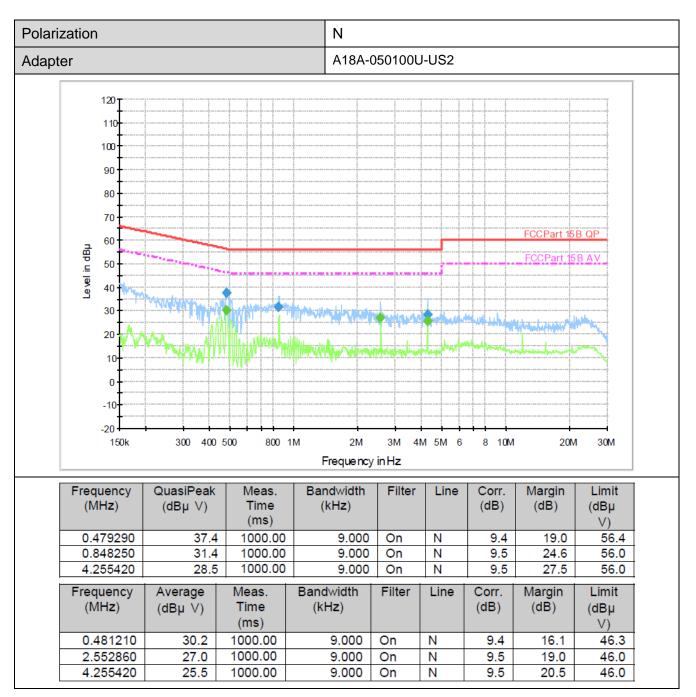
7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cncaic.cn</u>



Test Results





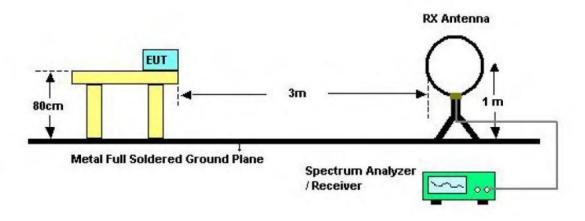
3.2. Radiated Emission

Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

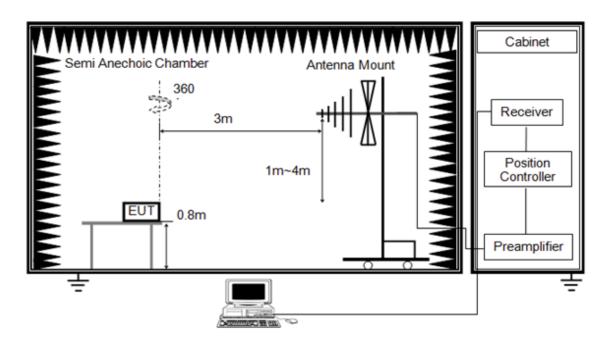
Radiated Emission Limit (Above 1000MHz)

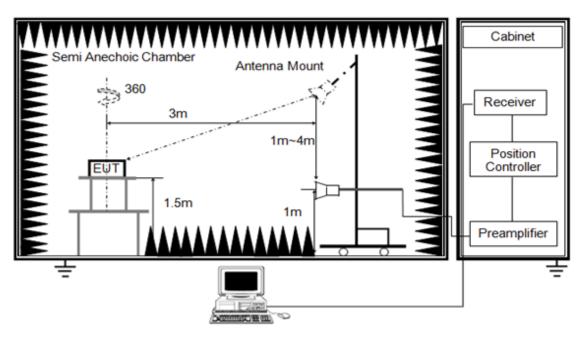

Frequency	Distance Meters(at 3m)						
(MHz)	Peak	Average					
Above 1000	74	54					

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration


Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 正认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cncaic.cn

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

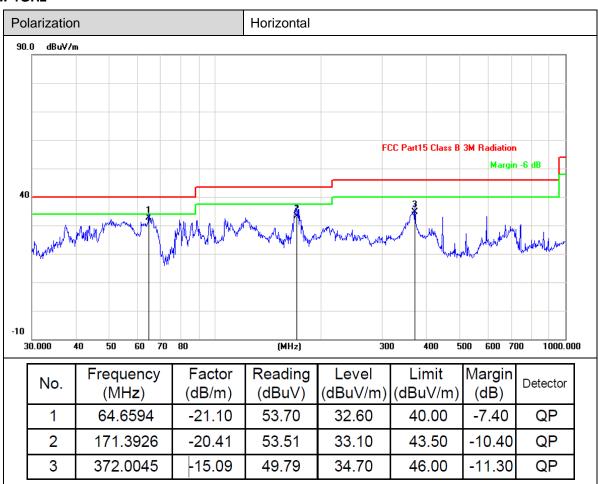
(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

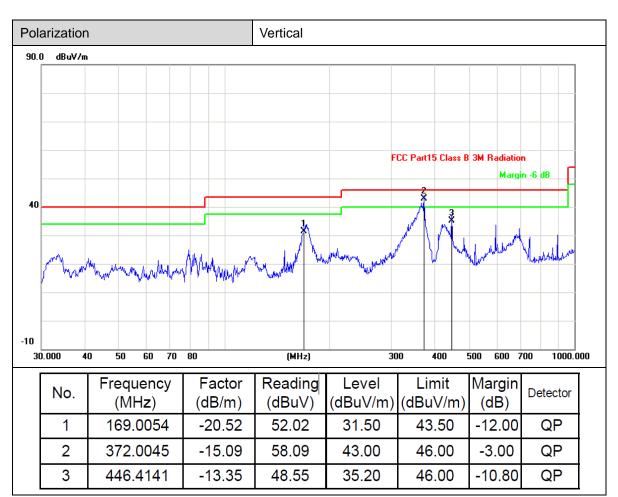
Please refer to the clause 2.3.


Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Horiz	ontal								
Tes	t Mod	e:	TX Z	igbee Mode	2405MHz							
Rer	nark:		No report for the emission which more than 10 dB below the prescribed limit.									
90.0) dBuV	/m										
						FCC Par	t15 Class C 3M Ab	ove-1G Peak				
					1	FCC	Part15 Class C 3M	Above-1G AV				
40												
					*							
-10	100.000		2000	3000	4000 (MHz)	6000 7000 8000			26000.000			
		Freedor		Factor	Deading		Limit	Margin				
	No.	Freque (MHz	z)	(dB/m)	Reading (dBuV)	Level (dBuV/m)	(dBuV/m)		Detector			
	1	4810.0	000	1.37	50.82	52.19	74.00	-21.81	peak			
	2	4810.0	000	1.37	35.98	37.35	54.00	-16.65	AVG			
Rer	nark:											
		dB/m) = A value = Le			8/m)+Cable I	Factor (dB)-I	Pre-amplifier	Factor				

Ant. Po	1	Verti												
Test Mo			Ligbee	Mode	211		⊔ ,							
Remark			eport f					nich r	nore	e tha	an	10 dB bel	ow the pr	escribed
90.0 dBu	ıV/m	1											1	
									FC	C Par	t15 (Class C 3M Abo	we-16 Peak	
							1			FCC I	Part1	5 Class C 3M A	\bove-1G AV	
40						ļ								
-10		2000		3000		000 (M		6000	7000	0000				26000.000
							, ,							
No.	Frequer (MHz	-	Fac (dB/	tor m)		ead dBu	_	L (dB	eve uV/		(d	Limit IBuV/m)	Margin (dB)	Detector
1	4810.0	00	1.:	37	5	50.4	1	5	1.78	3		74.00	-22.22	peak
2	4810.0	00	1.3	37	3	36.7	6	3	8.13	3		54.00	-15.87	AVG
	: r (dB/m) = A n value = Le				3/m)	+Ca	ble F	Facto	r (d	B)-F	Pre	-amplifier	Factor	

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cncaic.cn

Ant. Pol	. I	Horiz	zontal									
lest Mo	de:	TX Zigbee Mode 2440MHz										
Remark		No report for the emission which more than 10 dB below the prescribed limit.										
90.0 dBu												
					FCC Part	15 Class C 3M Abo	ve-1G Peak					
					FCC P	art15 Class C 3M A	bove-1G AV					
				×								
40				2								
				ſ.								
10		2000	3000	4000 (MHz)	6000 7000 8000			26000.00				
1000.000		2000	5000	4000 (0112)	0000 1000 0000			20000.00				
	Frequenc	y	Factor	Reading		Limit	Margin (dB)	Detecto				
No.			(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	· · /					
	(MHz)		1 56	50 86	52 12	74 00	11 68					
No. 1 2	4880.00	_	1.56 1.56	50.86 37.11	52.42 38.67	74.00 54.00	-21.58 -15.33	peak AVG				

2.Margin value = Level -Limit value

	•							
Ant. P	-	Verti						
Test N			igbee Mode					
Rema	rk:	limit.		emission wh	ich more tha	n 10 dB belo	w the pre	scribed
90.0	lBuV/m							
					FCC Part1	5 Class C 3M Abov	e-1G Peak	
					ECC P	nt15 Class C 3M At	www.16 AV	
				1 X			JUTC-TU AT	
40								
40				Ž				
-10)00	2000	3000	4000 (MHz)	6000 7000 8000			26000.000
	Freque	encv	Factor	Reading	Level	Limit	Margin	
No.	(MH	-	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)		Detector
1	4880.	000	1.56	50.20	51.76	74.00	-22.24	peak
2	4880.	000	1.56	35.69	37.25	54.00	-16.75	AVG
• 	!			•			I	4
Rema								
				/m)+Cable F	actor (dB)-P	re-amplifier F	actor	
2.Mar	gin value = L	evei -L	imit value					

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cncaic.cn

Ant. Po	l .	Horiz	zontal										
lest Mo	de:	TX Zigbee Mode 2480MHz											
Remark	•	No report for the emission which more than 10 dB below the prescribed limit.											
90.0 dBu	V/m												
								FC	C Part1	15 Class C 3M Abov	ve-1G Peak		
										art15 Class C 3M Al	10.49		
						¥				arti o classi ci om Al	DOVE-TG AV		
40						*							
						_							
						_							
1000.000		2000		3000	4000 (M	(Hz)	6000	7000	8000			26000.	.00
	Freque	ncv	Fac	tor	Read	dina	L	eve	əl	Limit	Margin		
No.	(MHz	-	(dB/		(dBı	-				(dBuV/m)		Detec	:to
1	4960.0	000	1.7	8	49.	41	5	1.1	9	74.00	-22.81	pea	ak
2	4960.0	000	1.7	8	36.	30	3	8.0	8	54.00	-15.92	AV	G
Remark										re-amplifier I			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

\	. Pol.		Vertical										
ſes	t Mod	e:	TX Zigbee Mode 2480MHz										
Ren	nark:		No report for the emission which more than 10 dB below the prescribed limit.										
90.0	dBuV∂	/m			1								
			_			FCC Par	t15 Class C 3M Ab	ove-1G Peak					
-													
						FCC I	Part15 Class C 3M	Above-1G AV					
					×								
40					2								
-													
-													
10	00.000		2000	3000	4000 (MHz)	6000 7000 8000			26000.0				
10	00.000		2000	3000	4000 (0112)	0000 1000 0000			20000.0				
—		_											
I	No.	Freque (MHz		Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
	1	4960.0	000	1.78	50.59	52.37	74.00	-21.63	peak				
	2	4960.0	000	1.78	35.84	37.62	54.00	-16.38	AVG				

2.Margin value = Level -Limit value

3.3. Band Edge Emissions

Limit

Restricted Frequency Band	(dBuV/m)(at 3m)						
(MHz)	Peak	Average					
2310 ~2390	74	54					
2483.5 ~2500	74	54					
Note: All restriction bands have	been tested, only the worst ca	se is reported.					

Test Configuration

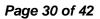
Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to 2. determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated 4. for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results


(1) Radiation Test

Ant. Pol		Horiz	zontal									
Test Mo	de:	TX Z	igbee Mode	2405MHz								
60	FCC Part15 Class B 3M Above-1G Peak											
0.0 2310.000				(MHz)				2410.000				
No.	Frequer (MHz	•	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
1	2390.0	000	30.01	20.40	50.41	74.00	-23.59	peak				
2	2390.0	000	30.01	9.00	39.01	54.00	-14.99	AVG				
3	2404.5	500	30.07	65.39	95.46	Fundamental I	Frequency	peak				
4	2404.5	500	30.07	56.87	86.94	Fundamental F	requency	AVG				
				/m)+Cable Fa	actor (dB)-Pr	e-amplifier F	actor					

Page 28 of 42

Ant. Po	nt. Pol. Vertical									
Test Mo	TX Zigbee Mode 2405MHz									
120.0 dB	W/m									
					FCC Part	15 Class B 3M Abo	ve-16 Peak	*		
60										
eyetti Mandaday										
0.0										
2310.000	I			(MHz)		· ·		2410.000		
No.	Frequer (MHz	-	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	2390.0	00	30.01	20.40	50.41	74.00	-23.59	peak		
2	2390.000 30.01 9.00 39.01 54.00 -14.99 AVG							AVG		
3	2404.500 30.07 65.39 95.46 Fundamental Frequency peak							peak		
4	2404.5	00	30.07	56.87	86.94	6.94 Fundamental Frequency AVG				
				B/m)+Cable F	Factor (dB)-P	re-amplifier	Factor			

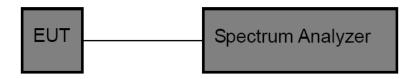
Ant. Pol	. Pol. Horizontal									
Test Mo	Test Mode: TX Zigbee Mode 2480MHz									
120.0 dBu	120.0 dBuV/m									
	1				FCC Part	15 Class B 3M Abor	ve-16 Peak			
60			3	n haan maa ka ka maa ma	FCC P	art15 Class B 3M A		wester		
			*							
0.0										
2477.000				(MHz)				2500.000		
No.	Frequer (MHz	•	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	2480.4	173	30.34	58.06	88.40	Fundamental F	requency	peak		
2	2 2480.473 30.34 45.76 76.10 Fundamental Frequency AVC					AVG				
3	2483.5	2483.500		25.58	55.93	74.00	-18.07	peak		
4	2483.5	500	30.35	15.75	46.10	54.00	-7.90	AVG		
				3/m)+Cable F	actor (dB)-P	re-amplifier l	Factor			

Nnt. Pol. Vertical								
TX Zigbee Mode 2480MHz								
20.0 dBu	₩/m							
	1							
	×							
	2 X	\sum			FCC Part	15 Class B 3M Abo	ve-1G Peak	
60			3			art15 Class B 3M A		
			4	de an an thair an tha	kanalarkar terdentek anger kenangar telak	laydert Anno Andrika an Adda an Adda an Adda	Analas and a second	and the second
0.0								
2477.000	I			(MHz)				2500.000
	Freque	ncy	Factor	Reading	Level	Limit	Margin	
No.	(MHz		(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	2479.7	714	30.34	57.49	87.83	Fundamental F	requency	peak
2	2479.7	714	30.34	44.86	75.20	Fundamental F	requency	AVG
3	2483.5	500	30.35	25.59	55.94	74.00	-18.06	peak
4	2483.5	500	30.35	16.36	46.71	54.00	-7.29	AVG
		I		1		1		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

(2) Conducted Test

Spect	rum	ſ									T
Ref L	evel	15.00 dBr	n Offset	1.00 dB	● RBW 100 kH	Ηz					
Att		25 d	B SWT	113.8 µs	VBW 300 kH	Hz Mode	Auto FFT				_
⊖1Pk V						M	4[1]			-61,40	dBm
10 dBm	·						1141		2.	3450 0	GHz
0 dBm-				_		M	1[1]			6.29 404850	dBm
10.10								1	2.	404430	GHZ
-10 dBr	n D	1 -13.710) dBm								
-20 dBr	n									+++	
-30 dBr	n									J M	
-40 dBr	n										
-50 dBr	n								N	13	$\left\{ - \right\}$
-60 dBr	n			M4				Ma	- Marcun	7	Mus
Jonan	mm	www.vu	Marken	of the loss	montheman	pulsonen	- month	mummer	and a		
-70 dBr	n- -										
-80 dBr	n										
CF 2.3		Iz		·	691	pts	·		Span	100.0 M	IHZ
Marker		Tur	¥	- 1	v	-	*ian	-	tion P-1		
Type M1	кет	Trc 1	X-valu 2.404	485 GHz	Y-value 6.29 dB	m Funct	cion	Fund	ction Resu	n	
M2 M3		1		.39 GHz 2.4 GHz	-59.85 dB -57.81 dB						
M3 M4		1		2.4 GHZ 508 GHZ	-57.81 dB -61.40 dB						_
		20								_	
Date: 2		.2019 1	1:31:38			Mea	suring		-	24.04.2019 11:31:38	
Spect Ref L	rum	15.00 dBr	n Offset		• RBW 100 kt	Hz				24.04.2019 11:31:38	
 Spect Ref L Att	rum evel		n Offset		 RBW 100 kł VBW 300 kł 	Hz	Auto FFT			24.04.2019 11:31:38	
 Spect Ref L Att	rum evel	15.00 dBr	n Offset			Hz Hz Mode				-61.23 (
Spect Ref L • Att • 1Pk V 10 dBm	evel	15.00 dBr	n Offset			Hz Hz Mode	Auto FFT 4[1]			-61.23 (dBm GHz
 Spect Ref L Att	evel	15.00 dBr	n Offset			Hz Hz Mode	Auto FFT		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
 Spect Ref L • Att • 1Pk V 10 dBm	evel	15.00 dBr	n Offset			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370	dBm GHz dBm
Spect Ref L Att IV dBm 0 dBm -10 dBr	evel	15.00 dBr	n Offset			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
Spect Ref L Att 1Pk V 10 dBm	evel	15.00 dBr	n Offset B SWT			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
 Spect Ref L Att IV dBm 0 dBm -10 dBr	iew	15.00 dBr 25 d	n Offset B SWT			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
 Spect Ref L • Att • 1Pk V 10 dBm -10 dBm -20 dBr -30 dBr	rum evel iew 11	15.00 dBr 25 d	n Offset B SWT			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
Spect Ref L • Att • 1Pk V 10 dBm - 10 dBm - 10 dBm - 30 dBr - 30 dBr - 40 dBr	rum evel iew 11	15.00 dBr 25 d	n Offset B SWT			Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
Spect Ref L • Att • 1Pk V 10 dBm -10 dBm -20 dBr -30 dBr	rum evel iew 11	15.00 dBr 25 d	n Offset B SWT	113.8 µs		Hz Hz Mode	Auto FFT 4[1]		2.	-61.23 (.507370 -2.57 (dBm GHz dBm
Spect Ref L • Att • 1Pk V 10 dBm - 10 dBm - 10 dBm - 30 dBm - 30 dBm - 40 dBm	rum evel iew 11 n n n n v	15.00 dBr 25 d	n Offset B SWT	113.8 µs	VBW 300 kH	Hz Mode	Auto FFT 4[1] 1[1]		2.	-61.23 507370 -2.57 479870	dBm GHz dBm GHz
Spect Ref L • Att • 1Pk V 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 40 dBm - 50 dBm		15.00 dBr 25 d	n Offset 8 SWT	113.8 µs	VBW 300 kH	Hz Mode	Auto FFT 4[1] 1[1]		2.	-61.23 507370 -2.57 479870	dBm GHz dBm GHz
Spect Ref L Att 10 dBm -10 dBm -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr -70 dBr		15.00 dBr 25 d	n Offset B SWT	113.8 µs	VBW 300 kH	Hz Mode	Auto FFT 4[1] 1[1]		2.	-61.23 507370 -2.57 479870	dBm GHz dBm GHz
Spect Ref L Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm		15.00 dBr 25 d	n Offset B SWT	113.8 µs	• VBW 300 kH	12 12 Mode M	Auto FFT 4[1] 1[1]		2. 2.	-61.23 (507370 -2.57 (479870 	BBm GHz dBm GHz
Spect Ref L Att 1Pk V 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm		15.00 dBr 25 d	n Offset B SWT	113.8 µs	VBW 300 kH	12 12 Mode M	Auto FFT 4[1] 1[1]		2. 2.	-61.23 507370 -2.57 479870	BBm GHz dBm GHz
Spect Ref L • 1Pk V 10 dBm - 10 dBm - 10 dBm - 10 dBm - 20 dBr - 30 dBr - 40 dBr - 50 dBr - 50 dBr - 50 dBr - 70 dBr - 70 dBr - 70 dBr - 70 dBr		15.00 dBr 25 d 1 -22.57(n Offset B SWT	113.8 µs	• VBW 300 kH	12 12 Mode M	Auto FFT 4[1] 1[1]		2. 2.	-61.23 507370 -2.57 479870	BBm GHz dBm GHz
Spect Ref L Att 1Pk V 10 dBm -10 dB -20 dBm -10 dB -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -70	rum evel iew 11 n n D n n 23 GH	15.00 dBr 25 d 1 -22.57(1 -22.57(1 -22.57(1 -22.57(1 -22.57(1 -22.57(n Offset 8 SWT	113.8 µs	• VBW 300 kH	12 12 Mode M M M M M M M M M M M M M	Auto FFT 4[1] 1[1]		2. 2. 	-61.23 507370 -2.57 479870	BBm GHz dBm GHz
Spect Ref L • 1Pk V 10 dBm - 10 dBm - 10 dBm - 20 dBr - 20 dBr - 30 dBr - 30 dBr - 40 dBr - 50 dBr - 50 dBr - 50 dBr - 70 d	rum evel iew 11 n n D n n 23 GH	15.00 dBr 25 d 1 -22.57(1 -22.57(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 5 4 2 5 7 4 2 5 4 2 5 4 2 5 7 2 5 7 2 5 2 5 2 2 5 2 2 2 5 7 2 2 2 5 7 2 2 2 2	n Offset 8 SWT	113.8 µs	• VBW 300 kH	12 Mode 12 Mode M M M M M M M M M M M M M	Auto FFT 4[1] 1[1]		2. 2. 	-61.23 507370 -2.57 479870	BBm GHz dBm GHz
Spect Ref L Att 1Pk V 10 dBm -10 dB -20 dBm -10 dB -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -70	rum evel iew n n n n 23 GF	15.00 dBr 25 d 1 -22.57(1 -22.57(1 -22.57(1 -22.57(1 -22.57(1 -22.57(n Offset 8 SWT	113.8 µs	• VBW 300 kH	12 Mode 12 Mode M M M M M M M M M M M M M	Auto FFT 4[1] 1[1]		2. 2. 	-61.23 507370 -2.57 479870	BBm GHz dBm GHz



3.4. Bandwidth

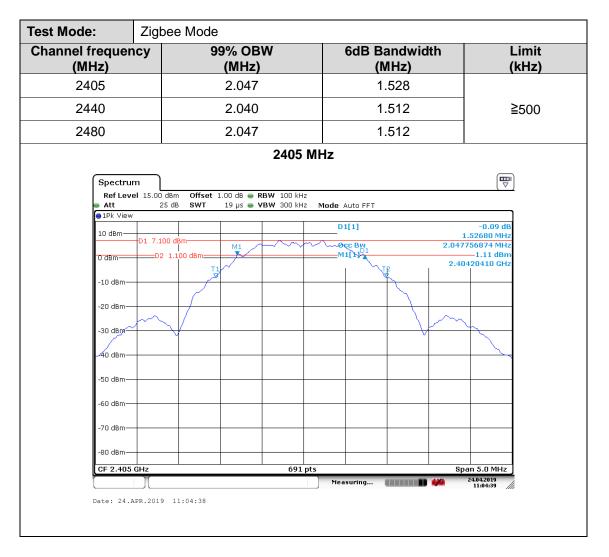
<u>Limit</u>

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:


For 6dB Occupied Bandwidth Set RBW = 100 kHz. For 99% Occupied Bandwidth Set RBW =1% to 5% of the occupied bandwidth Set the video bandwidth (VBW) ≥ 3 RBW. Detector = Peak. Trace mode = Max hold. Sweep = Auto couple. NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.3.

Test Results



3.5. Peak Output Power

<u>Limit</u>

	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC			
15.247(b)(3) ISED RSS-247 5.4	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW. Sweep time=Auto. Detector= Peak. Trace mode= Maxhold. Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

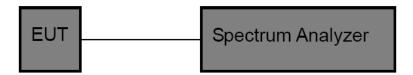
Test Mode

Please refer to the clause 2.3

Test Result

Fest Mode:	Zigbee Mo	ode						
Channel frequence	hannel frequency (MHz)			Maximum conducted output power (dBm)				
2405			9.66			12.46		
2440			9.57				12.37	
2480			0.80				3.60	
		2	405 MHz					
Spectrum Ref Level : Att	L5.00 dBm Offs 25 dB SWT	et 1.00 dB ● RBW 1.3 µs ● VBW		uto FFT				
●1Pk Max			M1 M	1[1]			9.66 dBm	
10 dBm						2.40	154520 GHz	
-10 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
			691 pts				n 8.0 MHz	
-80 dBm								

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>



3.6. Power Spectral Density

Limit

FCC Part 15 Subpart C(15.247)							
Test Item	Limit	Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5					

Test Configuration

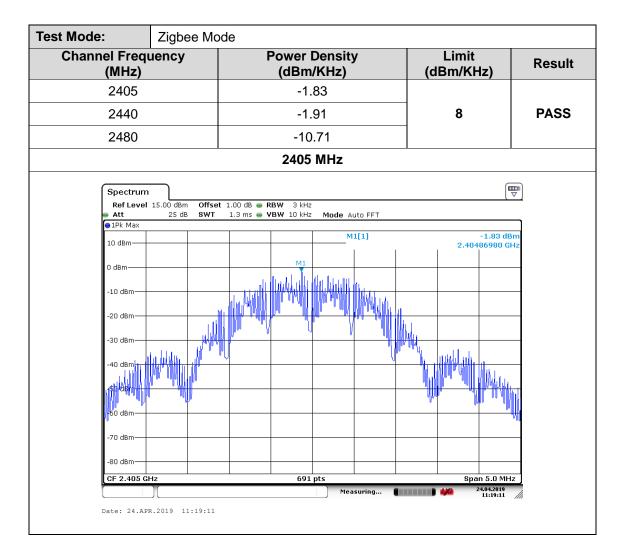
Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

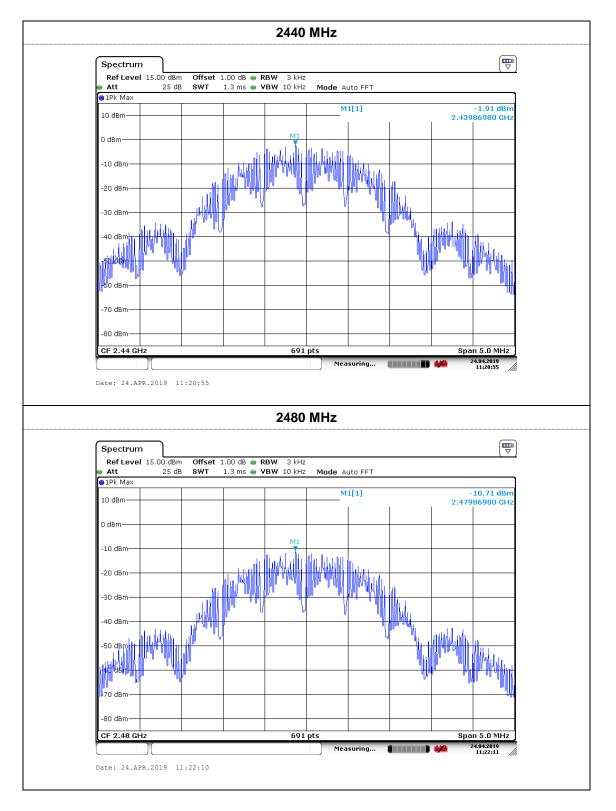
The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block 2. diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance.

Spectrum Setting: 3.

Set analyser center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to: 10 kHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


Test Mode

Please refer to the clause 2.3


Test Result

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下ax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>

3.7. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

Complies

Note: The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.