

Test Report

Page 1 of 47

Verified code: 326579

Report No.: E20230128179401-5

Customer:

Lumi United Technology Co., Ltd

Address:

B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential District,

Nanshan District, Shenzhen, China

Sample Name:

Door and Window Sensor P2

Sample Model:

DW-S02E

Receive Sample

Test Date:

Jan.30,2023

Test Date:

Jan.31,2023 ~ Feb.21,2023

Reference

CFR 47 FCC Part 15 Subpart C

Document:

RADIO FREQUENCY DEVICES: Subpart C—Intentional Radiators

Test Result:

Pass

Prepared by:

Chen Xiaolong Reviewed by:

GUANGZHOU GRG METROLOG

GUANGZHOU GRG METROLOGY & TEST CO., LTD

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com Report No.: E20230128179401-5 Page 2 of 47

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.

- 2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.
- 3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.
- 4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.
- 5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

	The	following	g blanks	
--	-----	-----------	----------	--

TABLE OF CONTENTS

Ι.	Ti	EST RESULT SUMMARY	6
2.	G	ENERAL DESCRIPTION OF EUT	7
	2.1	APPLICANT	7
	2.2	MANUFACTURER	7
	2.3	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	7
	2.4	CHANNEL LIST	8
	2.5	TEST OPERATION MODE	8
	2.6	LOCAL SUPPORTIVE	8
	2.7	CONFIGURATION OF SYSTEM UNDER TEST	8
	2.8	DUTY CYCLE	9
3.	L	ABORATORY	10
4.	A	CCREDITATIONS	10
5.	M	IEASUREMENT UNCERTAINTY	11
6.	Ll	IST OF USED TEST EQUIPMENT AT GRGT	12
7.	R.	ADIATED SPURIOUS EMISSIONS	13
	7.1	LIMITS	13
,	7.2	TEST PROCEDURES	13
	7.3	TEST SETUP	16
,	7.4	DATA SAMPLE	17
,	7.5	TEST RESULTS	18
8.	6I	DB BANDWIDTH	26
	8.1	LIMITS	26
	8.2	TEST PROCEDURES	26
	8.3	TEST SETUP	26
	8.4	TEST RESULTS	26
9.	M	IAXIMUM PEAK OUTPUT POWER	29
	9.1	LIMITS	29
	9.2	TEST PROCEDURES	29
	9.3	TEST SETUP	29
(9.4	TEST RESULTS	29
10.	P	OWER SPECTRAL DENSITY	30
	10.1	LIMITS	30
	10.2	TEST PROCEDURES	30
	10.3	TEST SETUP	30
	10.4	TEST RESULTS	30
11.	C	ONDUCTED BAND EDGES AND SPURIOUS EMISSIONS	33
	11.1	LIMITS	33
	11.2	TEST PROCEDURES	33

11.3	TEST SETUP	33
11.4	TEST RESULTS	33
12. RES	TRICTED BANDS OF OPERATION	40
12.1	LIMITS	40
12.2	TEST PROCEDURES	41
12.3	TEST SETUP	41
12.4	TEST RESULTS	42
APPEND	IX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM	47
APPEND1	IX B. PHOTOGRAPH OF THE EUT	47

Report No.: E20230128179401-5 Page 5 of 47

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E20230128179401-5	Original Issue	2023-02-22

Report No.: E20230128179401-5 Page 6 of 47

1. TEST RESULT SUMMARY

Technical Requirements

CFR 47 FCC Part 15 Subpart C (§15.247)

ANSI C63.10-2013

KDB 558074 D01 15.247 measurement guidance v05r02

Limit / Severity	Item	Result
§15.247(b)(3)	Maximum peak output power	Pass
§15.207 (a)	Conducted Emissions	N/A ¹⁾
§15.247(e)	Power spectral density	Pass
§15.247(a)(2)	6dB bandwidth	Pass
§15.247(d)&§15.205& §15.209	Restricted bands of operation	Pass
§15.247(d)	Conducted band edges and spurious emissions	Pass
§15.247(d) & §15.209 & §15.205	Radiated spurious emissions	Pass
§15.203	Antenna requirement	Pass

Note:

¹⁾Test is not applicable to this Equipment. This EUT is no AC mains power ports.

²⁾ The EUT has one antenna. The antenna is PIFA antenna.

³⁾The max gain of antenna is 1dBi.which accordance 15.203.is considered sufficient to comply with the provisions of this section.

Report No.: E20230128179401-5 Page 7 of 47

2. GENERAL DESCRIPTION OF EUT

2.1 **APPLICANT**

Name: Lumi United Technology Co., Ltd

B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential Address:

District, Nanshan District, Shenzhen, China

2.2 **MANUFACTURER**

Lumi United Technology Co., Ltd Name:

B1, Chongwen Park, Nanshan iPark, Liuxian Avenue, Taoyuan Residential Address:

District, Nanshan District, Shenzhen, China

2.3 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment: Door and Window Sensor P2

Model No .: DW-S02E

Adding Model: DW-S02D

Models Difference: DW-S02E&DW-S02D are the same on the board, schematic, hardware version,

software version, structure and internal photos are same, only the model name is

different.

Trade Name: Aqara

FCC ID: 2AKIT-DW-S02

Power Supply: DC 3V power supplied by battery

Model:CR123A **Battery**

Nominal Voltage:3.0Vdc Specification:

Rated Capacity: 1400mAh

Frequency Range: 2405MHz-2480MHz

Transmit Power: 7.66dBm

Modulation type: O-QPSK

Antenna

PIFA antenna 1dBi gain (Max.) Specification:

Temperature Range: $-10^{\circ}\text{C} \sim 50^{\circ}\text{C}$

Hardware Version: X0

Software Version: 0.0.0.1

Sample No: E20230128179401-0002, E20230128179401-0004

Note: All the tests were performed on the model DW-S02E. Report No.: E20230128179401-5 Page 8 of 47

2.4 CHANNEL LIST

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
*11	2405	12	2410	13	2415	14	2420
15	2425	16	2430	17	2435	*18	2440
19	2445	20	2450	21	2455	22	2460
23	2465	24	2470	25	2475	*26	2480

^{*} is the test frequency

2.5 TEST OPERATION MODE

Mode No.	Description of the modes
1	Threadfixed frequency transmitting

2.6 LOCAL SUPPORTIVE

Name of Equipment	Manufacturer	Model	Serial Number	Note
Notebook	LENOVO	TianYi 310-14ISK	MP18DLC6	/
Test board	/	/	/	/

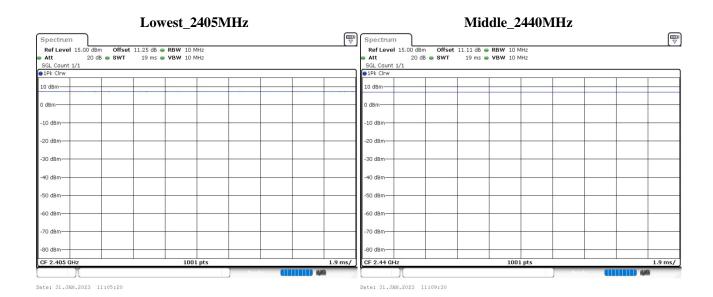
No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
1	DC cable	1	No	0	0.5m
2	DC cable	1	No	0	0.2m

Note: The notebook is just used to produce fixed frequency transmitting.

2.7 CONFIGURATION OF SYSTEM UNDER TEST

Test software:

Software version	Test level
QCOM_V1.0	2405MHz: 8 2440MHz: 8 2480MHz: 8


Report No.: E20230128179401-5 Page 9 of 47

2.8 DUTY CYCLE

Environment: 23.8°C/47% RH/101.0kPa Voltage: DC 3V

Tested By: Yang Zhaoyun Date: 2023-01-31 to 2023-02-21

Test Mode	Antenna	Frequency (MHz)	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
		2405	1.00	1.00	100
Thread	Ant1	2440	1.00	1.00	100
		2480	1.00	1.00	100

Date: 21.FEB.2023 11:05:55

Report No.: E20230128179401-5 Page 10 of 47

3. LABORATORY

Add

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co., Ltd.

Address: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua

District Shenzhen, 518110, People's Republic of China

P.C. : 518110

Tel : 0755-61180008

Fax : 0755-61180008

4. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:2017.

USA A2LA(Certificate #2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number: CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.grgtest.com

5. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Page 11 of 47

Measurement		Frequency	Uncertainty
		9kHz~30MHz	5.1dB ¹⁾
		30MHz~200MHz	4.5dB ¹⁾
	Horizontal	200MHz~1000MHz	4.4dB ¹⁾
		1GHz∼18GHz	5.6dB ¹⁾
Radiated Emission		18GHz∼26.5GHz	3.7dB ¹⁾
Radiated Emission	Vertical	9kHz~30MHz	5.1dB ¹⁾
		30MHz~200MHz	4.4dB ¹⁾
		200MHz~1000MHz	4.5dB ¹⁾
		1GHz∼18GHz	5.6dB ¹⁾
		18GHz∼26.5GHz	$3.7dB^{1)}$
Conduction Emission		$150 \mathrm{kHz}{\sim}30 \mathrm{MHz}$	3.4dB ¹⁾

Measurement	Uncertainty				
RF frequency	6.0×10 ⁻⁶				
RF power conducted	0.8dB				
Power spectral density conducted	0.8dB				
Occupied channel bandwidth	0.4dB				
Unwanted emission, conducted	0.7dB				
Humidity	6%				
Temperature	2°C				

Report No.: E20230128179401-5 Page 12 of 47

6. LIST OF USED TEST EQUIPMENT AT GRGT

Manufacturer	Model	Serial Number	Calibration Due
on&Restricted bar	nds of operation		
EZ	CCS-03A1		
R&S	ESR7	102444	2023-09-02
EMEC	EM330	I00426	2023-03-05
Schwarzbeck	CBL6143A	26039	2024-10-23
TESEQ	HLA6121	52599	2023-04-02
KEYSIGHT	N9010A	MY52221469	2023-06-29
Schwarzbeck	BBHA9120D	02143	2023-10-15
Schwarzbeck	BBHA 9170	BBHA9170-497	2023-10-14
Tonscend	TAP01018048 AP20E8060075		2023-05-05
Tonscend	TAP184050	AP20E806071	2023-05-05
SHIRONG ELECTRONIC	DLNA-1G18G-G4 0	20200928005	2023-05-08
Tonscend	JS36-RE/2.5.1.5		
ed band edges and	Spurious Emission	&Power Spectral D	Pensity
R&S	LESV30		2023-11-17
Tonscend	JS0806		
ower			
Anritsu	MA2411B	1126150	2023-03-01
Anritsu	ML2495A	1204003	2023-02-28
Anritsu	MA2411B	1126150	2024-02-12
Anritsu	ML2495A	1204003	2024-02-12
	EZ R&S EMEC Schwarzbeck TESEQ KEYSIGHT Schwarzbeck Schwarzbeck Tonscend Tonscend SHIRONG ELECTRONIC Tonscend ed band edges and R&S Tonscend	R&S ESR7 EMEC EM330 Schwarzbeck CBL6143A TESEQ HLA6121 KEYSIGHT N9010A Schwarzbeck BBHA9120D Schwarzbeck BBHA 9170 Tonscend TAP01018048 Tonscend TAP184050 SHIRONG DLNA-1G18G-G4 0 Tonscend JS36-RE/2.5.1.5 ed band edges and Spurious Emission R&S FSV30 Tonscend JS0806 Ower Anritsu MA2411B Anritsu ML2495A Anritsu ML2495A	EZ CCS-03A1 R&S ESR7 102444 EMEC EM330 100426 Schwarzbeck CBL6143A 26039 TESEQ HLA6121 52599 KEYSIGHT N9010A MY52221469 Schwarzbeck BBHA9120D 02143 Schwarzbeck BBHA 9170 BBHA9170-497 Tonscend TAP01018048 AP20E8060075 Tonscend TAP184050 AP20E806071 SHIRONG ELECTRONIC DLNA-1G18G-G4 0 20200928005 Tonscend JS36-RE/2.5.1.5 ed band edges and Spurious Emission&Power Spectral Edges E

Note: The calibration cycle of the above instruments is 12 months except for the Bi-log Antenna which is 24 months.

Report No.: E20230128179401-5 Page 13 of 47

7. RADIATED SPURIOUS EMISSIONS

7.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30~88	100	3	40
88~216	150	3	43.5
216~960	200	3	46
Above 960	500	3	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Above 18GHz test distance is 1m, so the Peak Limit=74+20*log(3/1)=83.54 (dB μ V/m). The Avg Limit=54+20*log(3/1)=63.54 (dB μ V/m).

7.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 360° .
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest

Report No.: E20230128179401-5 Page 14 of 47

emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 360° .
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1GHz to 18GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Report No.: E20230128179401-5 Page 15 of 47

Pre measurement:

- --- The turntable rotates from 0° to 360° .
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the pre measurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

NOTE:

- (a). The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).
- (b). The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).
- (c). The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.
- (d). The frequency above 1GHz, for Avg detector: Set RBW=1MHz, the EUT is configured to transmit with duty cycle≥98%, set VBW≤RBW/100 (i.e.,10kHz) but not less than 10 Hz.

7.3 TEST SETUP

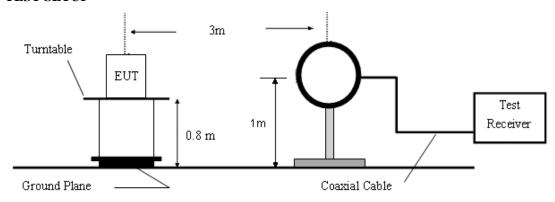


Figure 1. 9kHz to 30MHz radiated emissions test configuration

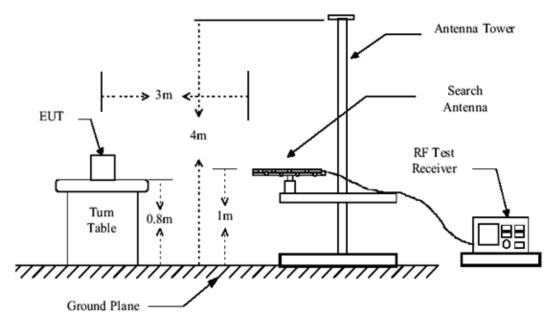


Figure 2. 30MHz to 1GHz radiated emissions test configuration

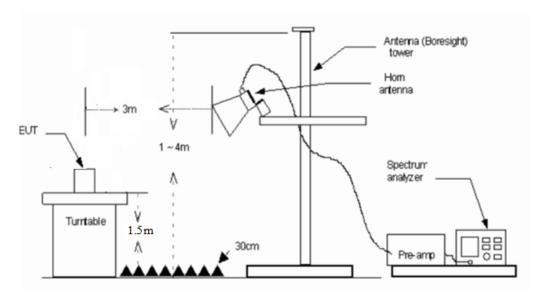


Figure 3. 1GHz-18GHz radiated emissions test configuration

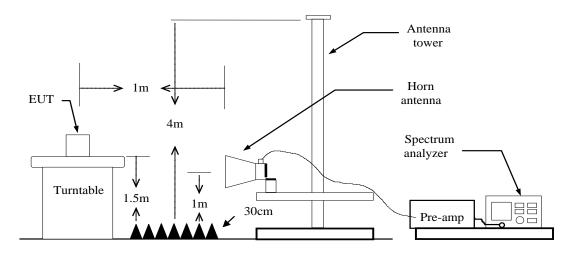


Figure 4. 18GHz-26.5GHz radiated emissions test configuration

7.4 DATA SAMPLE

30MHz to 1GHz

No.	Frequency	Reading	Correct	Result	Result Limit Mar		Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

1GHz to 18GHz

No.	Frequency	Reading	Correct	Result	Result Limit		Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	65.45	-11.12	54.33	74.00	-19.67	Peak	Vertical
XXX	XXX	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
XXX	XXX	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical

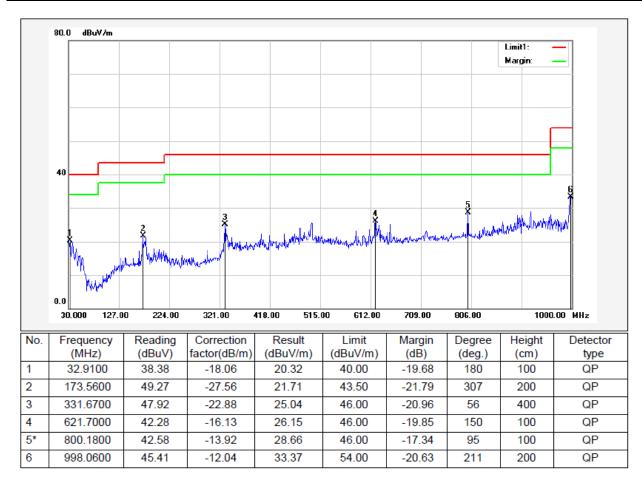
Frequency (MHz) = Emission frequency in MHz

Ant.Pol. (H/V) = Antenna polarization

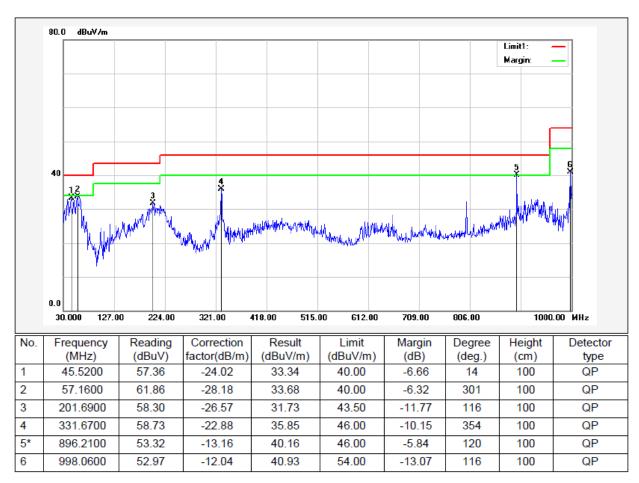
 $\begin{array}{ll} Reading \ (dBuV) & = Uncorrected \ Analyzer \ / \ Receiver \ reading \\ Correction \ Factor \ (dB/m) & = Antenna \ factor + Cable \ loss - Amplifier \ gain \\ Result \ (dBuV/m) & = Reading \ (dBuV) + Correction \ Factor \ (dB/m) \\ \end{array}$

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Remark Result (dBuV/m) – Limit (dBuV/m)


Peak = Peak Reading

QP = Quasi-peak Reading AVG = Average Reading


7.5 TEST RESULTS

Below 1GHzOnly the worst mode and channel were recorded in this report. Lowest channel (2405MHz)

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	23.8°C/58%RH/101.0kPa
Test Engineer:	Huang Xinlong	Test Date:	2023-02-03
Channel	Lowest channel (2405MHz)	Polarity:	Horizontal

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1	
Model:	DW-S02E	Sample No:	E20230128179401-0004	
Power supply:	DC 3V	Environmental Conditions:	23.8°C/58%RH/101.0kPa	
Test Engineer:	Huang Xinlong	Test Date:	2023-02-03	
Channel	Lowest channel (2405MHz)	Polarity:	Vertical	

Remark:

- No emission found between lowest internal used/generated frequency to 30MHz.
- Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.

Report No.: E20230128179401-5 Page 20 of 47

1GHz-18GHz:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	25.0°C/60%RH/101.0kPa
Test Engineer:	Zhang Zishan	Test Date:	2023-02-02
Channel	Lowest channel (2405MHz)	/	/

Suspect	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	1299.7875	65.07	42.31	-22.76	74.00	31.69	100	71	Horizontal		
2	1990.1238	62.92	41.74	-21.18	74.00	32.26	100	169	Horizontal		
3	2662.9579	61.65	43.23	-18.42	74.00	30.77	100	285	Horizontal		
4	3401.3002	64.39	47.14	-17.25	74.00	26.86	200	241	Horizontal		
5	4807.726	59.00	46.41	-12.59	74.00	27.59	200	251	Horizontal		
6	7213.6517	58.93	55.75	-3.18	74.00	18.25	200	241	Horizontal		

AV Fin	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBμV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle [°]	Polarity
1	7215.5254	-3.18	46.09	42.91	54.00	11.09	200	330	Horizontal

Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1660.0825	65.85	43.30	-22.55	74.00	30.70	200	266	Vertical
2	2654.4568	69.28	51.49	-17.79	74.00	22.51	100	110	Vertical
3	3401.3002	64.82	47.75	-17.07	74.00	26.25	100	161	Vertical
4	4800.225	60.15	47.24	-12.91	74.00	26.76	100	122	Vertical
5	5810.9764	58.67	48.92	-9.75	74.00	25.08	100	73	Vertical
6	7213.6517	56.21	53.88	-2.33	74.00	20.12	200	183	Vertical

AV Fin	AV Final Data List											
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	2666.6815	-17.79	51.68	33.89	54.00	20.11	100	112.3	Vertical			
2	5781.9505	-9.75	41.09	31.34	54.00	22.66	177	305.4	Vertical			
3	7215.5254	-2.33	42.67	40.34	54.00	13.66	193	217.3	Vertical			

Report No.: E20230128179401-5 Page 21 of 47

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	25.0°C/60%RH/101.0kPa
Test Engineer:	Zhang Zishan	Test Date:	2023-02-02
Channel	Middle channel (2440MHz)	/	/

Suspec	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	1166.5208	66.32	41.72	-24.60	74.00	32.28	100	120	Horizontal			
2	1197.5247	64.85	40.87	-23.98	74.00	33.13	100	120	Horizontal			
3	1997.8747	63.34	42.17	-21.17	74.00	31.83	100	344	Horizontal			
4	2825.2282	60.67	43.79	-16.88	74.00	30.21	100	187	Horizontal			
5	4878.9849	58.18	46.54	-11.64	74.00	27.46	200	124	Horizontal			
6	7318.6648	57.46	54.44	-3.02	74.00	19.56	200	281	Horizontal			

AV Fin	AV Final Data List											
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBμV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	7320.5655	-3.02	44.97	41.95	54.00	12.05	200	303.9	Horizontal			

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	1197.7747	68.26	43.28	-24.98	74.00	30.72	200	111	Vertical			
2	1798.0998	69.13	46.73	-22.40	74.00	27.27	100	120	Vertical			
3	1991.624	66.86	46.13	-20.73	74.00	27.87	100	110	Vertical			
4	2666.4583	69.68	52.03	-17.65	74.00	21.97	100	110	Vertical			
5	3990.1238	60.30	45.23	-15.07	74.00	28.77	100	25	Vertical			
6	7534.3168	54.63	52.35	-2.28	74.00	21.65	200	338	Vertical			

AV Fina	AV Final Data List											
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBμV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	2663.794	-17.65	54.09	36.44	54.00	17.56	100	118.6	Vertical			
2	7503.0052	-2.28	40.78	38.50	54.00	15.50	200	179.5	Vertical			

Report No.: E20230128179401-5 Page 22 of 47

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	24.8°C/57%RH/101.0kPa
Test Engineer:	Zhang Zishan	Test Date:	2023-02-20
Channel	Highest channel (2480MHz)	/	/

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	1111.5139	68.29	42.88	-25.41	74.00	31.12	100	143	Horizontal			
2	1683.8355	62.53	39.62	-22.91	74.00	34.38	200	259	Horizontal			
3	1950.1188	60.51	39.29	-21.22	74.00	34.71	100	113	Horizontal			
4	3283.1604	61.47	44.62	-16.85	74.00	29.38	100	110	Horizontal			
5	4957.7447	59.61	48.07	-11.54	74.00	25.93	200	129	Horizontal			
6	7438.6798	56.63	53.62	-3.01	74.00	20.38	200	257	Horizontal			

AV Final Data List										
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBμV/m]	AV Limit [dBμV/m]	AV Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	7441.9064	-3.01	42.03	39.02	54.00	14.98	200	16.7	Horizontal	

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	1118.5148	69.13	46.26	-22.87	74.00	27.74	200	211	Vertical			
2	2794.7243	61.91	43.74	-18.17	74.00	30.26	100	172	Vertical			
3	4250.7813	57.63	43.27	-14.36	74.00	30.73	100	151	Vertical			
4	4959.62	56.27	45.06	-11.21	74.00	28.94	200	111	Vertical			
5	6379.1724	54.54	47.43	-7.11	74.00	26.57	100	229	Vertical			
6	9778.9724	48.19	52.54	4.35	74.00	21.46	200	238	Vertical			

Report No.: E20230128179401-5 Page 23 of 47

18GHz-26.5GHz:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	24.8°C/57%RH/101.0kPa
Test Engineer:	Zhang Zishan	Test Date:	2023-02-20
Channel	Lowest channel (2405MHz)	/	/

Suspect	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	19327.7	52.66	41.11	-11.55	83.54	42.43	100	48	Horizontal		
2	20554.25	51.30	40.85	-10.45	83.54	42.69	100	32	Horizontal		
3	22111.025	50.09	40.43	-9.66	83.54	43.11	100	158	Horizontal		
4	23750.675	48.31	39.69	-8.62	83.54	43.85	100	16	Horizontal		
5	24936.85	47.70	40.34	-7.36	83.54	43.20	100	78	Horizontal		
6	26420.95	46.31	39.15	-7.16	83.54	44.39	100	173	Horizontal		

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	18430.525	53.25	41.05	-12.20	83.54	42.49	100	14	Vertical			
2	19769.7	51.39	40.29	-11.10	83.54	43.25	100	297	Vertical			
3	21282.7	50.16	40.27	-9.89	83.54	43.27	100	157	Vertical			
4	22876.45	48.67	39.98	-8.69	83.54	43.56	100	14	Vertical			
5	24328.25	47.86	39.87	-7.99	83.54	43.67	100	172	Vertical			
6	25434.525	48.49	41.21	-7.28	83.54	42.33	100	78	Vertical			

Report No.: E20230128179401-5 Page 24 of 47

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	24.5°C/59%RH/101.0kPa
Test Engineer:	Zhang Zishan	Test Date:	2023-02-04
Channel	Middle channel (2440MHz)	/	/

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	18718.675	52.57	40.59	-11.98	83.54	42.95	100	256	Horizontal			
2	19648.15	52.20	40.92	-11.28	83.54	42.62	100	191	Horizontal			
3	20570.825	50.58	40.15	-10.43	83.54	43.39	100	160	Horizontal			
4	22582.35	48.96	39.92	-9.04	83.54	43.62	100	49	Horizontal			
5	23749.4	48.91	40.29	-8.62	83.54	43.25	100	64	Horizontal			
6	26360.175	46.93	39.69	-7.24	83.54	43.85	100	80	Horizontal			

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	18592.025	51.62	39.57	-12.05	83.54	43.97	100	204	Vertical			
2	19406.75	52.32	40.83	-11.49	83.54	42.71	100	111	Vertical			
3	20218.5	51.88	41.13	-10.75	83.54	42.41	100	298	Vertical			
4	21349.85	50.17	40.32	-9.85	83.54	43.22	100	189	Vertical			
5	24306.15	48.38	40.37	-8.01	83.54	43.17	100	345	Vertical			
6	26329.15	46.38	39.21	-7.17	83.54	44.33	100	204	Vertical			

Report No.: E20230128179401-5 Page 25 of 47

EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Power supply:	DC 3V	Environmental Conditions:	24.8°C/57%RH/101.0kPa
Test Engineer:	Huang Lifang	Test Date:	2023-02-20
Channel	Highest channel (2480MHz)	/	/

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	18305.15	52.88	40.55	-12.33	83.54	42.99	100	16	Horizontal			
2	20188.75	52.58	41.70	-10.88	83.54	41.84	100	31	Horizontal			
3	21270.375	51.17	41.17	-10.00	83.54	42.37	100	143	Horizontal			
4	22557.275	48.48	39.40	-9.08	83.54	44.14	100	221	Horizontal			
5	24355.875	48.60	40.59	-8.01	83.54	42.95	100	267	Horizontal			
6	26279	46.65	39.25	-7.40	83.54	44.29	100	283	Horizontal			

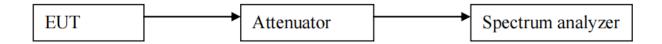
Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	18242.675	51.94	39.58	-12.36	83.54	43.96	100	124	Vertical			
2	19310.7	52.79	41.23	-11.56	83.54	42.31	100	31	Vertical			
3	20828.375	50.77	40.73	-10.04	83.54	42.81	100	187	Vertical			
4	22862.85	49.08	40.38	-8.70	83.54	43.16	100	171	Vertical			
5	23724.75	48.10	39.57	-8.53	83.54	43.97	100	344	Vertical			
6	25637.25	46.96	39.43	-7.53	83.54	44.11	100	124	Vertical			

Remark:

- 1 Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- Above 18G test distance is 1m, so the Peak Limit=74+20*log(3/1)=83.54 (dB μ V/m), The limits are relaxed.

Report No.: E20230128179401-5 Page 26 of 47

8. 6dB BANDWIDTH

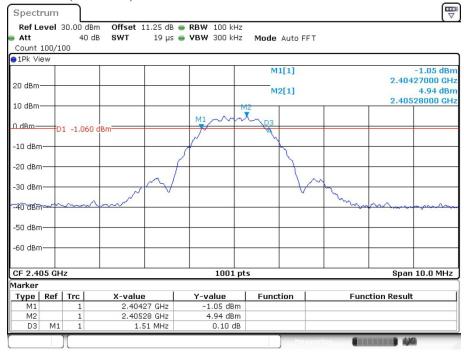

8.1 LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 TEST PROCEDURES

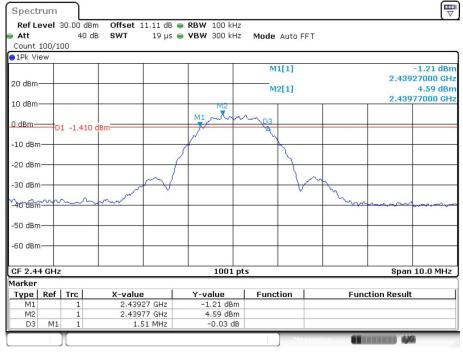
- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set resolution bandwidth (RBW) = 100 kHz. Set the video bandwidth (VBW) $\geq 3 \times \text{RBW}$. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- 3) Repeat above procedures until all frequencies measured were complete.

8.3 TEST SETUP

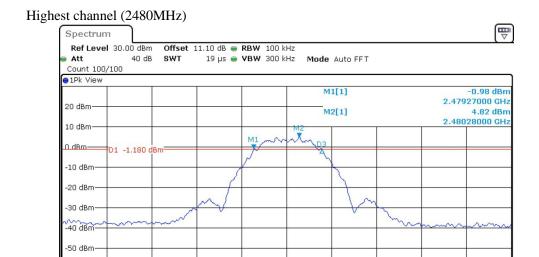

8.4 TEST RESULTS

Environment: 23.8°C/47%RH/101.0kPa Voltage: DC 3V Tested By: Yang Zhaoyun Date: 2023-01-31 to 2023-02-21

Ch Name	Frequency (MHz)	Bandwidth [kHz]	Limit[kHz]	Verdict
Lowest	2405	1510		PASS
Middle	2440	1510	≥500	PASS
Highest	2480	1520		PASS


Report No.: E20230128179401-5 Page 27 of 47

Lowest channel (2405MHz)



Date: 31.JAN.2023 11:05:29

Middle channel (2440 MHz)

Date: 31.JAN.2023 11:09:38

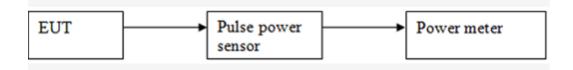
CF 2.48 GHz 1001 pts Span 10							10.0 MHz			
Marker	1arker									
Type	Ref	Trc	X-value	Y-value	Funct	ion	Func	tion Result		
M1		1	2.47927 GHz	-0.98 dBm						
M2		1	2.48028 GHz	4.82 dBm						
D3	M1	1	1.52 MHz	-0.14 dB						
	Measuring									

Date: 21.FEB.2023 11:06:04

-60 dBm-

Report No.: E20230128179401-5 Page 29 of 47

9. MAXIMUM PEAK OUTPUT POWER


9.1 LIMITS

The maximum Peak output power measurement is 1W

9.2 TEST PROCEDURES

- 1) According to the test mode, the channel requirements set EUT to continuous transmission mode.
- 2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

9.3 TEST SETUP

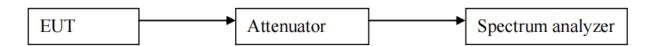
9.4 TEST RESULTS

Environment: 23.8°C/47%RH/101.0kPa Voltage: DC 3V Tested By: Yang Zhaoyun Date: 2023-01-31 to 2023-02-21

ChName	Frequency (MHz)	Measured Channel Power (dBm)	Limit	Peak/ Average	Result
Lowest	2405	7.66	1337		Pass
Middle	2440	7.51	1W (30dBm)	Peak	Pass
Highest	2480	7.24	(30dDill)		Pass

Report No.: E20230128179401-5 Page 30 of 47

10. POWER SPECTRAL DENSITY

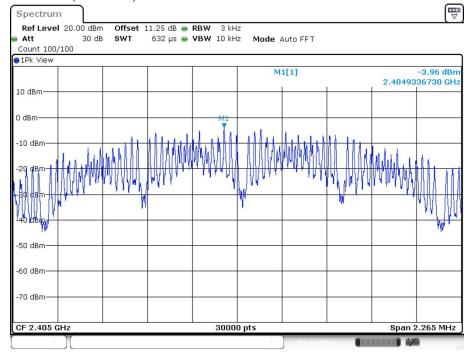

10.1 LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 TEST PROCEDURES

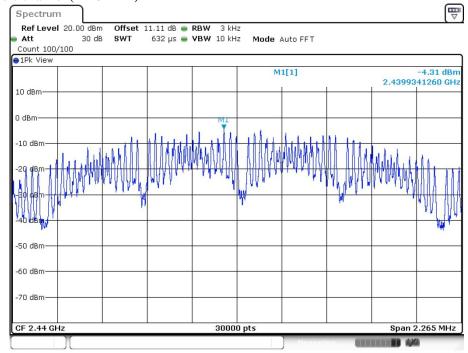
- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3) The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span to 1.5 times the DTS bandwidth.
 - c) Set the RBW to $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum amplitude level within the RBW.
 - j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- 4) Repeat above procedures until all frequencies measured were complete.

10.3 TEST SETUP

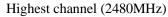


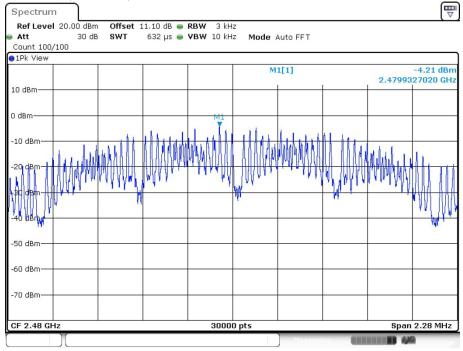
10.4 TEST RESULTS

Environment: 23.8°C/47%RH/101.0kPa Voltage: DC 3V Tested By: Yang Zhaoyun Date: 2023-01-31 to 2023-02-21


Ch Name	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	2405	-3.96	8.00	Pass
Middle	2440	-4.31	8.00	Pass
Highest	2480	-4.21	8.00	Pass

Lowest channel (2405MHz)




Date: 31.JAN.2023 11:05:50

Middle channel (2440 MHz)

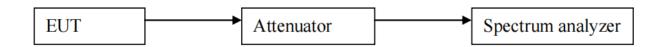
Date: 31.JAN.2023 11:09:59

Date: 21.FEB.2023 11:06:25

Report No.: E20230128179401-5 Page 33 of 47

11. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

11.1 LIMITS


(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

11.2 TEST PROCEDURES

Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

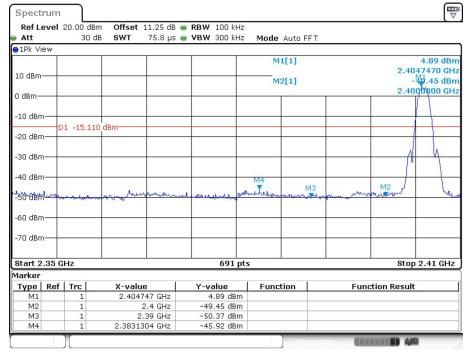
- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW=100kHz; VBW=300kHz, Span=10MHz to 26.5GHz;Sweep=auto; Detector Function=Peak. Trace=Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 5) Measurements are made from 30MHz to 26.5GHz with the transmitter set to the lowest, middle, and highest channels.

11.3 TEST SETUP

11.4 TEST RESULTS

Environment: 23.8°C/47% RH/101.0kPa Voltage: DC 3V

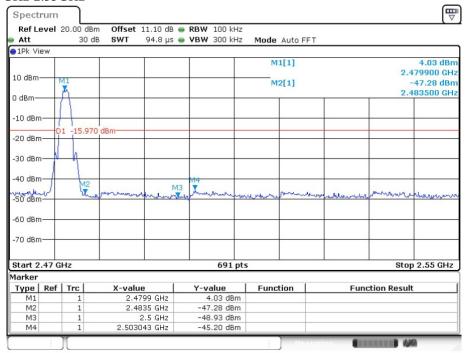
Tested By: Yang Zhaoyun Date: 2023-01-31 to 2023-02-21


Band edge

Test Mode	Antenna	Ch Name	Frequency [MHz]	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
Thread	Ant1	Lowest	2405	4.89	-45.92	≤-15.11	PASS
		Highest	2480	4.83	-45.20	≤-15.58	PASS

Report No.: E20230128179401-5 Page 34 of 47

Lowest channel (2405MHz)


2.30GHz-2.41GHz

Date: 31.JAN.2023 11:06:00

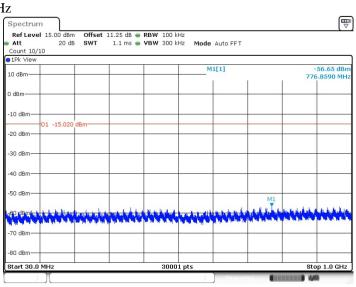
Highest channel (2480MHz)

2.47GHz-2.55GHz

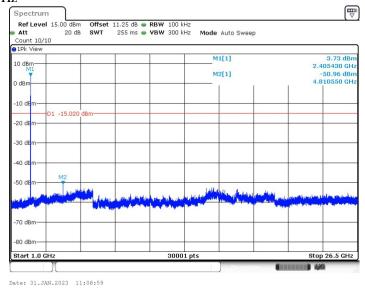
Date: 21.FEB.2023 11:06:35

Report No.: E20230128179401-5 Page 35 of 47

Conducted Spurious Emission


Test Mode	Antenna	Frequency [MHz]	Freq Range [MHz]	Ref Level [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	4.98	4.98		PASS
		2405	30~1000	4.98	-56.65	≤-15.02	PASS
		1000~26500		4.98	-50.96	≤-15.02	PASS
	Ant1	2440	Reference	4.65	4.65		PASS
Thread			30~1000	4.65	-56.76	≤-15.35	PASS
			1000~26500	4.65	-48.42	≤-15.35	PASS PASS PASS PASS PASS PASS PASS
			Reference	4.83	4.83		PASS
		2480	30~1000	4.83	-55.96	≤-15.17	PASS
			1000~26500	4.83	-48.35	≤-15.17	PASS

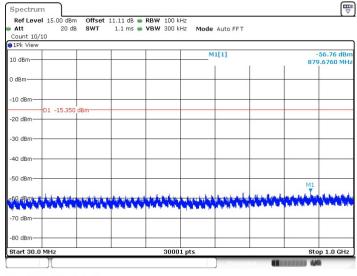
Lowest channel (2405MHz)


Date: 31.JAN.2023 11:06:08

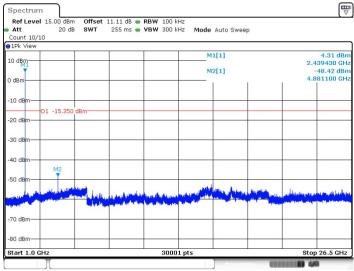
0.03GHz-1GHz

Date: 31.JAN.2023 11:06:20

1GHz-26.5GHz



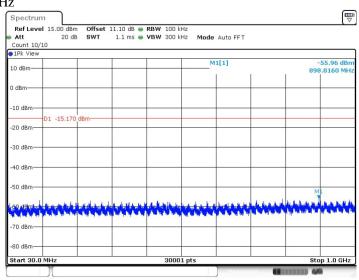
Middle channel (2440MHz)


Date: 31.JAN.2023 11:10:08

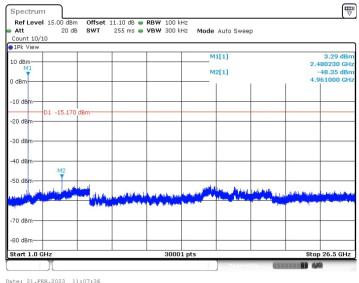
0.03GHz-1GHz


Date: 31.JAN.2023 11:10:20

1GHz-26.5GHz


Date: 31.JAN.2023 11:10:58

Highest channel (2480MHz)


Date: 21.FEB.2023 11:06:45

0.03 GHz - 1GHz

Date: 21.FEB.2023 11:06:57

1GHz-26.5GHz

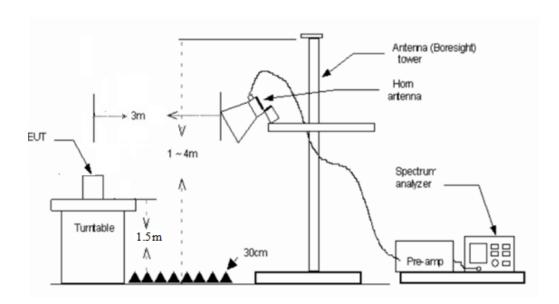
Report No.: E20230128179401-5 Page 40 of 47

12. RESTRICTED BANDS OF OPERATION

12.1 LIMITS

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a),

must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

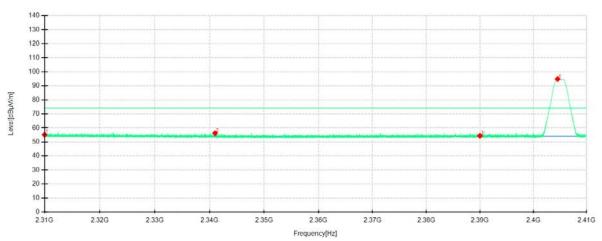

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBμV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

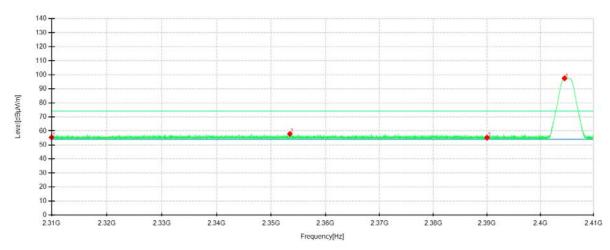
12.2 TEST PROCEDURES

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - a) For Peak detector: Set RBW=1MHz, RBW=3MHz, Sweep=AUTO.
 - b) For Avg detector: Set RBW=1MHz, Sweep=AUTO, the EUT is configured to transmit with duty cycle≥98%, set VBW≤RBW/100 (i.e.,10kHz) but not less than 10 Hz.
- 5) Repeat the procedures until all the PEAK and AVERAGE versus polarization are measured.

12.3 TEST SETUP


Report No.: E20230128179401-5 Page 42 of 47

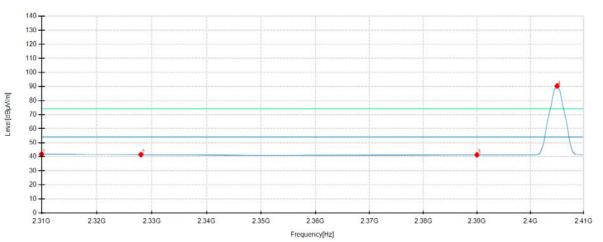
12.4 TEST RESULTS


EUT Name:	Door and Window Sensor P2	Test Mode:	Mode 1
Model:	DW-S02E	Sample No:	E20230128179401-0004
Test Engineer:	ZhangZishan	Test Voltage:	DC 3V
Environmental Conditions:	25.0°C/60%RH/101.0kPa	Test Date:	2023-02-02~2023-02-20

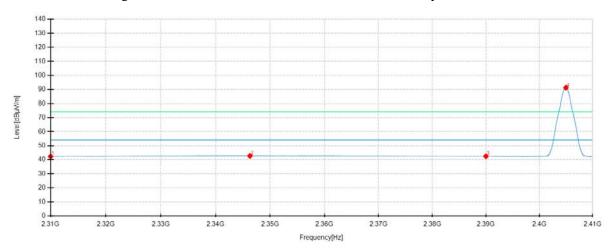
Lowest Channel

Frequency: 2405MHz
Detector mode: Peak
Polarity: Horizontal

Detector mode: Peak Polarity: Vertical

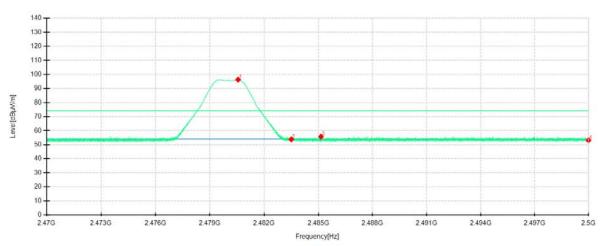

Report No.: E20230128179401-5 Page 43 of 47

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2310	45.72	55.07	9.35	74.00	18.93	100	182	Horizontal	/
2	2341.0021	47.46	56.17	8.71	74.00	17.83	100	195	Horizontal	/
3	2390	45.41	54.34	8.93	74.00	19.66	200	167	Horizontal	
4	2404.5596	85.77	94.82	9.05	74.00	-20.82	100	150	Horizontal	No limit
1	2310	45.39	55.32	9.93	74.00	18.68	100	238	Vertical	/
2	2353.4429	47.61	57.82	10.21	74.00	16.18	200	289	Vertical	/
3	2390	45.05	55.12	10.07	74.00	18.88	200	74	Vertical	/
4	2404.5463	87.57	97.52	9.95	74.00	-23.52	100	138	Vertical	No limit

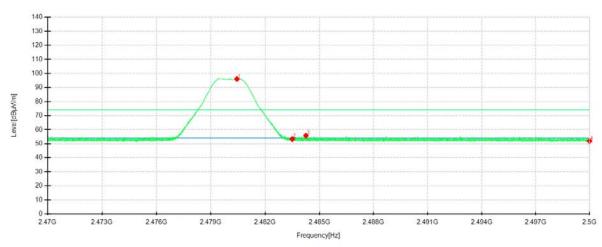

Polarity: Horizontal

Lowest Channel

Frequency: 2405MHz Detector mode: Average

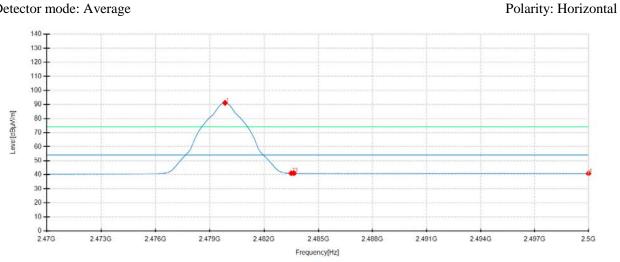


Detector mode: Average Polarity: Vertical



No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2310	32.48	41.83	9.35	54.00	12.17	200	169	Horizontal	/
2	2328.0212	32.56	41.53	8.97	54.00	12.47	100	225	Horizontal	/
3	2390	32.45	41.38	8.93	54.00	12.62	100	148	Horizontal	/
4	2405.033	81.29	90.34	9.05	54.00	-36.34	100	181	Horizontal	No limit
1	2310	32.43	42.36	9.93	54.00	11.64	100	192	Vertical	/
2	2346.2958	32.54	42.74	10.20	54.00	11.26	200	343	Vertical	/
3	2390	32.40	42.47	10.07	54.00	11.53	100	148	Vertical	/
4	2404.993	81.31	91.25	9.94	54.00	-37.25	100	181	Vertical	No limit

Highest Channel Frequency: 2480MHz Detector mode: Peak Polarity: Horizontal


Detector mode: Peak Polarity: Vertical

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2480.5607	86.46	96.32	9.86	74.00	-22.32	100	246	Horizontal	No limit
2	2483.5	43.85	53.77	9.92	74.00	20.23	200	344	Horizontal	/
3	2485.143	45.73	55.68	9.95	74.00	18.32	200	91	Horizontal	/
4	2500	42.87	53.12	10.25	74.00	20.88	200	158	Horizontal	/
1	2480.4407	86.80	96.07	9.27	74.00	-22.07	200	220	Vertical	No limit
2	2483.5	44.00	53.28	9.28	74.00	20.72	200	87	Vertical	/
3	2484.255	46.40	55.68	9.28	74.00	18.32	200	55	Vertical	/
4	2500	42.53	51.88	9.35	74.00	22.12	200	1	Vertical	/

Highest Channel

Frequency: 2480MHz Detector mode: Average

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Comment
	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2479.8407	81.26	91.11	9.85	54.00	-37.11	100	193	Horizontal	No limit
2	2483.5	31.16	41.08	9.92	54.00	12.92	100	205	Horizontal	/
3	2483.6509	31.14	41.06	9.92	54.00	12.94	100	205	Horizontal	/
4	2500	30.66	40.91	10.25	54.00	13.09	200	344	Horizontal	/
1	2479.8387	83.11	92.38	9.27	54.00	-38.38	100	196	Vertical	No limit
2	2483.5	31.15	40.43	9.28	54.00	13.57	100	208	Vertical	/
3	2483.7269	31.13	40.41	9.28	54.00	13.59	100	208	Vertical	/
4	2500	30.66	40.01	9.35	54.00	13.99	100	342	Vertical	/

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

Report No.: E20230128179401-5 Page 47 of 47

APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM

Please refer to the attached document E20230128179401-13-Test photo.

APPENDIX B. PHOTOGRAPH OF THE EUT

Please refer to the attached document E20230128179401-14-EUT photo.

----- End of Report -----