

FCC Test Report

Report No.: PTCDQ06170101802E-FC01

FCC ID : 2AKI8-ONA008

APPLICATION PURPOSE: Original Equipment

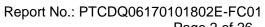
PRODUCT DESIGNATION: WIRELESS HEAPHONES WITH TRANSMITTER

BRAND NAME : ONN

MODEL NAME : 07R625,ONA17AA008

CLIENT: TOPWAY EM ENTERPRISE LTD.

DATE OF ISSUE : Jan.10,2017


STANDARD(S) : FCC Part 15.239

REPORT VERSION: V1.0

Dongguan Precise Testing & Certification Corp., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 26

Report Revise Record

Report Version	Revise Time	Issued Date Valid Version		Notes		
V1.0	/	Jan. 10, 2017	Valid	Original Report		

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
3. MEASUREMENT UNCERTAINTY	6
4. DESCRIPTION OF TEST MODES	6
5. SYSTEM TEST CONFIGURATION	6
5.1. EQUIPMENT USED IN EUT SYSTEM	6
5.2. SUMMARY OF TEST RESULTS	6
6. TEST FACILITY	7
7. LINE CONDUCTED EMISSION TEST	8
7.1. LIMITS OF LINE CONDUCTED EMISSION TEST	8
7.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	8
7.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	9
7.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	9
7.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	10
8. RADIATED EMISSION	12
8.1. MEASUREMENT PROCEDURE	12
8.2. TEST SETUP	13
8.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL	14
8.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION	14
8.5. TEST RESULT FOR SPURIOUS EMISSION	15
9. BANDWIDTH	17
9.1. MEASUREMENT PROCEDURE	17
9.2. TEST SETUP	17
9.3. TEST RESULT	18
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	20
APPENDIX B: PHOTOGRAPHS OF EUT	21

Report No.: PTCDQ06170101802E-FC01

Page 4 of 26

1. VERIFICATION OF CONFORMITY

TOPWAY EM ENTERPRISE LTD.
8F BLOCK B BUILDING 6 BAONENG S & T PARK LONG HUA SHENZHEN GD CHINA 518109
Jia Hua Li Dian Zi You Xian Gong Si
NO 101,201, BUILDING E, NEW INDUSTRIAL ZONE, SHENZHU ROAD, LIUYUE SHENKENG VILLAGE, HENGGANG, DISTRICT, SHENZHEN, CHINA.
WIRELESS HEAPHONES WITH TRANSMITTER
ONN
ONA17AA008
07R625
All are the same except the appearance and model name.
Jan. 09, 2017 to Jan. 10, 2017
None
Normal
AGCRT-US-BR/RF (2013-03-01)

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.239.

Testing Engineer

August Qiu

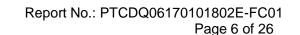
Technical Manager

Hack Ye

Authorized Signatory

Chris Du

August Qiu Hack Ye Cholin


2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Trinager teermieur decemption er Le Frie decembed de fellewing					
Operation Frequency	88.1MHz; 88.3MHz; 88.7MHz				
Field Strength(3m)	45.74dBuV/m(AV)@3m				
Modulation	FM				
Number of channels	3				
Hardware Version	V1				
Software Version	A1				
Antenna Designation	External antenna				
Power Supply	DC3V by battery or DC 5V by adapter				

NOTE: 1. About the EUT, please refer to User's Manual.

3. MEASUREMENT UNCERTAINTY

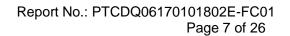
Conducted measurement: +/- 3.18dB Radiated measurement: +/- 3.91dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Transmitting mode(Low channel)
2	Transmitting mode(Middle channel)
3	Transmitting mode(High channel)

Note:

- 1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 2. All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level which set to the manufacturer's maximum rated input to the modulator.
- 3. Only the result of the worst case was recorded in the report, if no other cases.


5. SYSTEM TEST CONFIGURATION

5.1. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	WIRELESS HEAPHONES WITH TRANSMITTER	ONA17AA008	2AKI8-ONA008	EUT
2	Adapter	PA-5V550mA-005	N/A	Marketed

5.2. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.239	Field Strength of Fundamental and Spurious Emission	Compliant
15.215	Bandwidth	Compliant
15.209	Line Conducted Emission	Compliant

6. TEST FACILITY

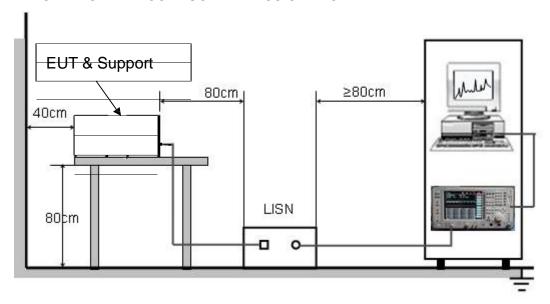
Site Dongguan Precise Testing Service Co., Ltd.						
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.					
FCC Registration No.	371540					
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.					

ALL TEST EQUIPMENT LIST

	Radiated Emission Test Site									
Name of Equipment	Manufacturer	Model Number Serial Number		Last Calibration	Due Calibration					
EMI Test Receiver	Rohde & Schwarz	FSCI 101417		July 3, 2016	July 2, 2017					
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017					
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017					
RF Cable	SCHWARZBECK	AK9515E 96221		July 3, 2016	July 2, 2017					
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 3, 2016	June 2, 2017					
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A					
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 3, 2016	June 2, 2017					
Spectrum analyzer	Agilent	E4407B	MY46185649	June 3, 2016	June 2, 2017					
Audio analyzer	HP	8920B	US35010161	June 3, 2016	June 2, 2017					

Conducted Emission Test Site									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration				
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017				
Artificial Mains Network	Narda	L2-16B	000WX31025	July 3, 2016	July 2, 2017				
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 3, 2016	July 2, 2017				
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017				
Shielded Room	CHENGYU	843	PTS-002	June 3, 2016	June 2, 2017				

7. LINE CONDUCTED EMISSION TEST


7.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Farmen	Maximum RF Line Voltage						
Frequency	Q.P.(dBuV)	Average(dBuV)					
150kHz~500kHz	66-56	56-46					
500kHz~5MHz	56	46					
5MHz~30MHz	60	50					

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

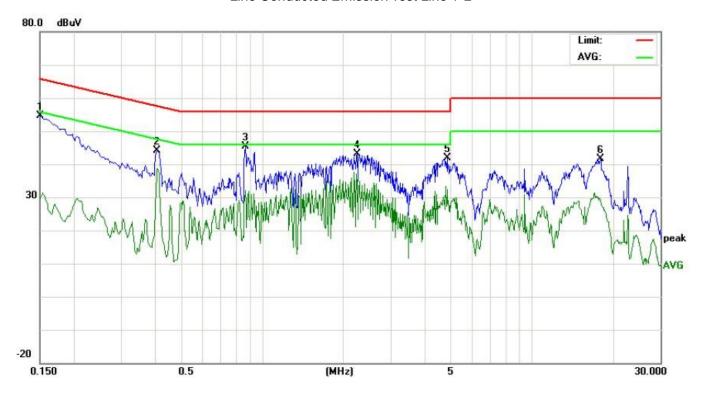
7.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Report No.: PTCDQ06170101802E-FC01 Page 9 of 26

7.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC5.0V charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

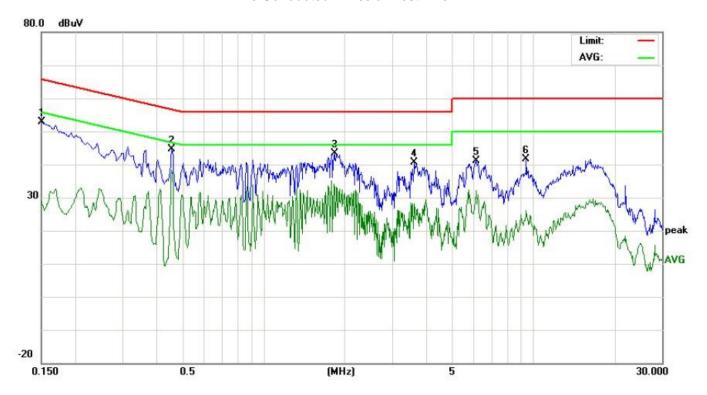
Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


7.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

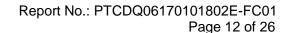
7.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L



	Freq.	1	ding_l (dBuV	22	Correct Factor		asurer (dBuV		33553300	mit ⊌uV)	262	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1499	44.45		19.55	10.16	54.61		29.71	66.00	56.00	-11.39	-26.29	Р	
2	0.4100	33.82		28.38	10.34	44.16		38.72	57.65	47.65	-13.49	-8.93	Р	
3	0.8700	34.96		21.72	10.37	45.33		32.09	56.00	46.00	-10.67	-13.91	Р	
4	2.2500	32.85		23.65	10.32	43.17		33.97	56.00	46.00	-12.83	-12.03	Р	
5	4.8539	31.67		22.03	10.23	41.90		32.26	56.00	46.00	-14.10	-13.74	Р	
6	17.9459	31.47		18.97	10.12	41.59		29.09	60.00	50.00	-18.41	-20.91	Р	

RESULT: PASS



Line Conducted Emission Test Line 2-N

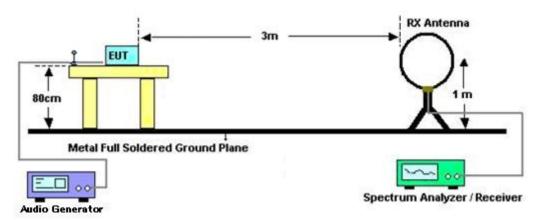
No.	Freq.	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1499	42.72		18.73	10.16	52.88		28.89	66.00	56.00	-13.12	-27.11	Р	
2	0.4580	34.36		27.98	10.37	44.73		38.35	56.73	46.73	-12.00	-8.38	Р	
3	1.8300	33.00		22.59	10.27	43.27		32.86	56.00	46.00	-12.73	-13.14	Р	
4	3.6260	30.24		13.06	10.49	40.73		23.55	56.00	46.00	-15.27	-22.45	Р	
5	6.1419	30.95		20.75	10.29	41.24		31.04	60.00	50.00	-18.76	-18.96	Р	
6	9.4259	31.20		15.76	10.35	41.55		26.11	60.00	50.00	-18.45	-23.89	Р	

RESULT: PASS

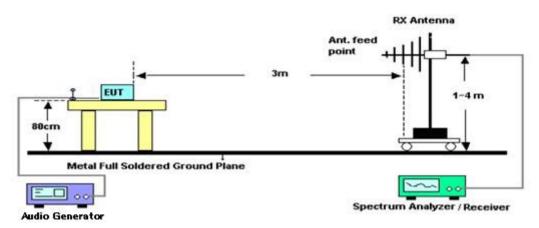
8. RADIATED EMISSION

8.1. MEASUREMENT PROCEDURE

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground and opposite the horn antenna. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 8. Only the worst case is reported.


The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP



8.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

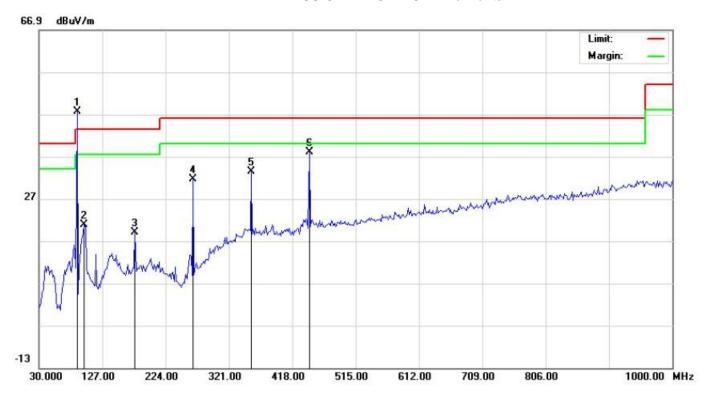
8.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL

Frequency MHz	Polarization	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB	Pass/Fail	Detector
88.100	Н	47.58	67.96	20.38	Pass	PK
88.100	V	46.33	67.96	21.63	Pass	PK
88.300	Н	47.12	67.96	20.84	Pass	PK
88.300	V	45.89	67.96	22.07	Pass	PK
88.700	Н	46.87	67.96	21.09	Pass	PK
88.700	V	45.38	67.96	22.58	Pass	PK
Frequency MHz	Polarization	Level dB(uV/m) AV	Limit dB(uV/m) AV	Margin dB	Pass/Fail	Detector
88.100	Н	45.74	47.96	2.22	Pass	AV
88.100	V	44.85	47.96	3.11	Pass	AV
88.300	Н	45.33	47.96	2.63	Pass	AV
88.300	V	44.27	47.96	3.69	Pass	AV
88.700	Н	45.06	47.96	2.90	Pass	AV
88.700	V	43.89	47.96	4.07	Pass	AV

8.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION

Frequency MHz	Polarization	Level dB(uV/m) QP	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Detector
88.000	Н	36.85	40.00	3.15	Pass	QP
88.000	V	35.31	40.00	4.69	Pass	QP
108.000	Н	24.35	43.50	19.15	Pass	QP
108.000	V	20.26	43.50	23.24	Pass	QP

Note: The above two frequencies are the worst case for the band edge emission test.

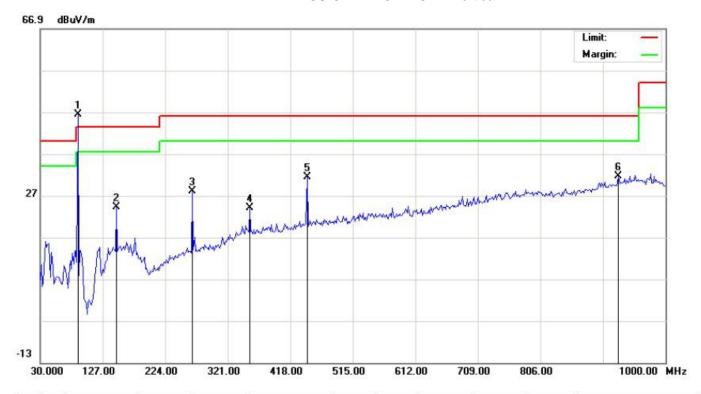


8.5. TEST RESULT FOR SPURIOUS EMISSION

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ-Horizontal



No.	Mk	Mk	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	24	MHz	dBuV	dB/m	dBuV/m	dBuV/m	030000		cm	degree			
1	*	88.2000	47.08	0.50	47.58					3 3			
2		99.5167	10.86	10.00	20.86	43.50	-22.64	peak					
3		177.1167	7.95	10.96	18.91	43.50	-24.59	peak					
4		266.0333	22.07	9.63	31.70	46.00	-14.30	peak					
5		354.9500	14.68	18.77	33.45	46.00	-12.55	peak					
6		443.8667	17.65	20.40	38.05	46.00	-7.95	peak		3			

RESULT: PASS

RADIATED EMISSION BELOW 1GHZ-Vertical

No.	No.	Freq.	Freq.	Freq.	Freq.	Freq.	Freq.	Freq.	Freq.	Reading	Reading Factor Measurement Limit Over Antenna Detector Height	N2505	Comment
	22	MHz	dBuV	ıV dB/m	dBuV/m	dBuV/m	dB		cm	degree			
1	*	88.1000	41.59	4.74	46.33								
2		148.0166	9.03	15.25	24.28	43.50	-19.22	peak					
3		266.0333	13.56	14.38	27.94	46.00	-18.06	peak					
4		354.9500	5.33	18.77	24.10	46.00	-21.90	peak		3			
5		443.8667	11.04	20.40	31.44	46.00	-14.56	peak					
6		927.2500	2.25	29.37	31.62	46.00	-14.38	peak					

RESULT: PASS

Note:

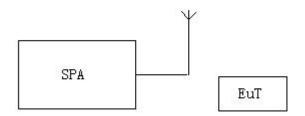
- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been tested. The Low channel is the worst case and recorded in the report.

Report No.: PTCDQ06170101802E-FC01 Page 17 of 26

9. BANDWIDTH

9.1. MEASUREMENT PROCEDURE

1. Set the parameters of SPA as below:


Centre frequency = Operation Frequency

RBW=10KHz VBW=30KHz

Span: 300kHz Sweep time: Auto

- 2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.

9.2. TEST SETUP



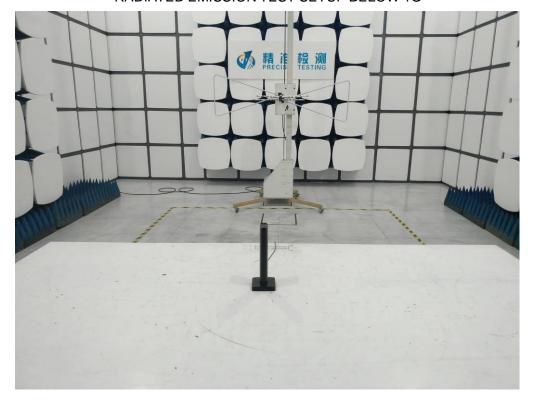
9.3. TEST RESULT

Channel	Channel Frequency(MHz)	-20dB bandwidth (kHz)	Limit(kHz)
Low	88.1	125.5	200
Middle	88.3	125.8	200
High	88.7	126.9	200

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



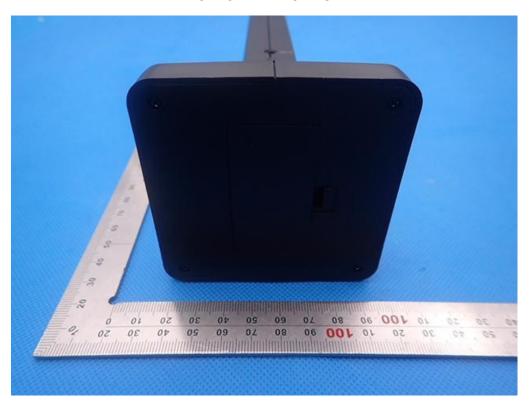
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST SETUP

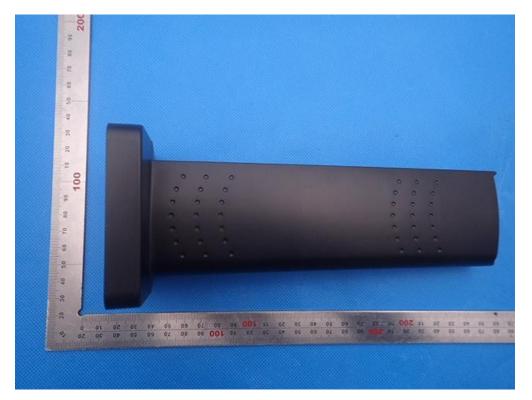
RADIATED EMISSION TEST SETUP BELOW 1G

APPENDIX B: PHOTOGRAPHS OF EUT

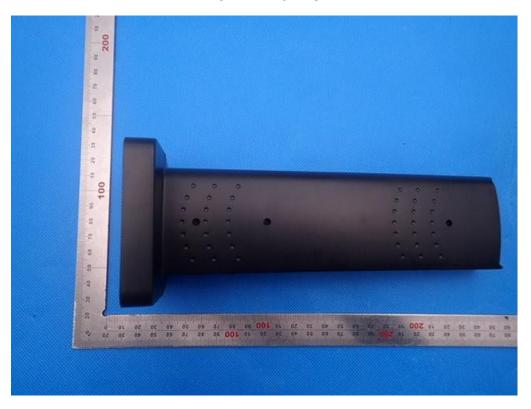
ALL VIEW OF EUT



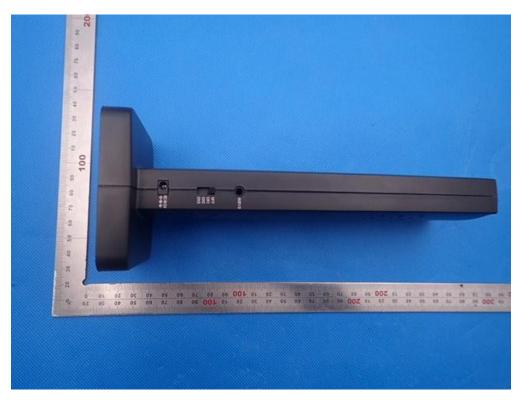
TOP VIEW OF EUT



BOTTOM VIEW OF EUT

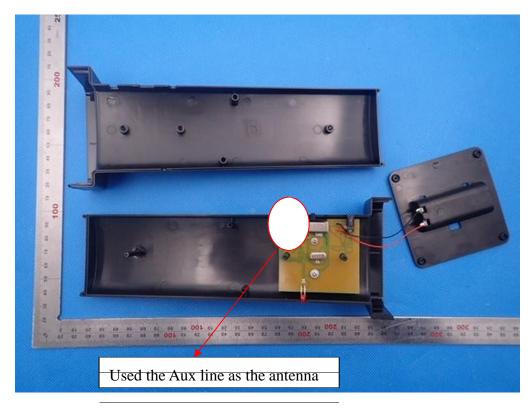


FRONT VIEW OF EUT

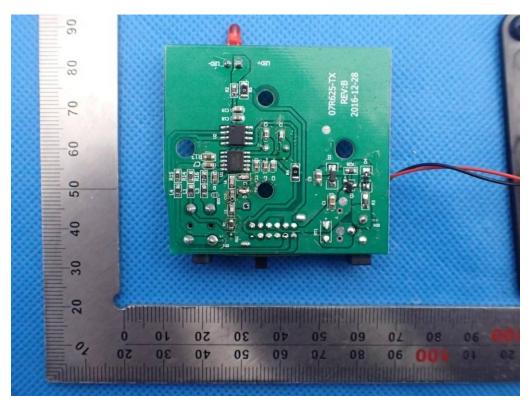


BACK VIEW OF EUT

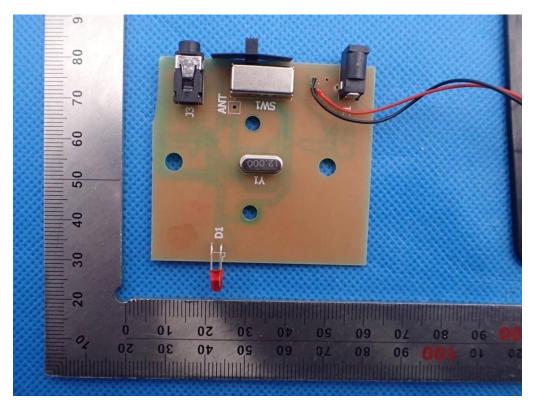
LEFT VIEW OF EUT



RIGHT VIEW OF EUT



OPEN VIEW OF EUT



INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

LABEL OF ADAPTOR

BATTERY COMPARTMENT

----END OF REPORT----