

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180891

Page: 1 of 92

FCC Radio Test Report FCC ID: 2AKI8-20526

Original Grant

Report No. TB-FCC180891

TOPWAY EM ENTERPRISE LTD. **Applicant**

Equipment Under Test (EUT)

EUT Name Pro True Wireless Earbuds

Model No. 21TW06

Series Model No. 20526

Brand Name N/A

Sample ID TBBJ-20210602-08-1#& TBBJ-20210602-08-2#

Receipt Date 2021-06-08

Test Date 2021-06-08 to 2021-07-02

Issue Date 2021-07-02

Standards FCC Part 15, Subpart C 15.247

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

: INAN SV : fay Lai. **Engineer Supervisor**

Engineer Manager

Ivan Su

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COr	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	12
5.	CONDUCTED EMISSION TEST	13
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Mode	14
	5.6 Test Data	14
6.	RADIATED EMISSION TEST	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	16
	6.3 Test Procedure	17
	6.4 Deviation From Test Standard	17
	6.4 EUT Operating Condition	17
	6.5 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Condition	
	7.6 Test Data	20
8.	NUMBER OF HOPPING CHANNEL	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 Deviation From Test Standard	21
	8.5 EUT Operating Condition	21

Report No.: TB-FCC180891 Page: 3 of 92

	8.6 Test Data	21
9.	AVERAGE TIME OF OCCUPANCY	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.4 Deviation From Test Standard	23
	9.5 EUT Operating Condition	23
	9.6 Test Data	23
10.	CHANNEL SEPARATION AND BANDWIDTH TEST	24
	10.1 Test Standard and Limit	24
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	25
	10.5 EUT Operating Condition	
	10.6 Test Data	
11.	PEAK OUTPUT POWER TEST	26
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	26
	11.5 EUT Operating Condition	
	11.6 Test Data	
12.	ANTENNA REQUIREMENT	27
	12.1 Standard Requirement	
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDGE TE	
	ACHWENT C RESTRICTED BANDS REQUIREMENT AND BAND EDGE TE	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	
	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
AIT	ACHMENT G PEAK OUTPUT POWER TEST DATA	86

Report No.: TB-FCC180891 Page: 4 of 92

Revision History

Report No.	Version	Description	Issued Date
TB-FCC180891	Rev.01	Initial issue of report	2021-07-02
	- CO		
	000	COLUMN TO THE	(M)
0000	M Million		0.0037
			1033
Emily and		OBI	THE PROPERTY OF
mil li	MOBIL	Ellins III	
(1003)	100		3
	000	The same of the sa	(OB)
TO THE	21 111	mon mon	Ton.
THE PERSON NAMED IN	mm 3	TODY OF	
Anna Carlo	3	1033	

Page: 5 of 92

1. General Information about EUT

1.1 Client Information

Applicant	:(TOPWAY EM ENTERPRISE LTD.	
Address	:	8F BLOCK B BUILDING 6 BAONENG S & T PARK LONG HUA SHENZHEN GD China	
Manufacturer : Shenzhen Jia Hua Li Dian Zi You Xian Gong Si			
Address		NO 101, 201, BUILDING E, NEW INDUSTRIAL ZONE, SHENZHU ROAD, LIUYUE SHENKENG VILLAGE, HENGGANG, LONGGANG DISTRICT, SHENZHEN CHINA	

1.2 General Description of EUT (Equipment Under Test)

FUT No.		D T ME I F I I					
EUT Name		Pro True Wireless Earbuds					
Models No.	:	21TW06, 20526					
Model Difference):		All these models are in the same PCB, layout and circuit, the only difference is the model and color.				
		Operation Frequency:	Bluetooth V5.0(BT): 2402~2480 MHz				
The state of the s	W.	Number of Channel:	Bluetooth: 79 Channels see Note 2				
Product		Max Peak Output Power:	Bluetooth: -0.252 dBm(GFSK)				
Description		Antenna Gain:	0.8 dBi Ceramic Antenna				
TOBY		Modulation Type:	GFSK π /4-DQPSK 8-DPSK				
Power Supply (Earphone)		Input: Output DC 5V DC 3.7V by 50mAh Li-ion	battery				
Power Supply (Charger Box)		Input: Output DC 5V DC 3.7V by 300mAh Li-ior	battery				
Software Version		v5.0					
Hardware Version	:	v1.0					
Connecting I/O Port(S)		Please refer to the User's Manual					

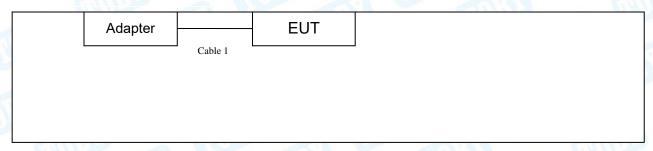
Note:

(1) This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v05or02.

Page: 6 of 92

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. Channel List:

		Bluetooth	Channel List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		


(3) The Antenna information about the equipment is provided by the applicant.

Page: 7 of 92

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

TX Mode

471111	E (11/13/20)		AND AND THE	A IN		9.10
		l E	UT			

1.4 Description of Support Units

	Equipment Information								
Name Model FCC ID/VOC Manufacturer Use									
Adapter			HUAWEI	$\sqrt{}$					
	Cable Information								
Number	Number Shielded Type Ferrite Core Length Note								
110		M (1)							

Page: 8 of 92

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	Charging + TX Mode Channel 00				
	For Radiated Test				
Final Test Mode	Description				
Mode 1	TX GFSK Mode Channel 00				
Mode 2	TX Mode(GFSK) Channel 00/39/78				
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78				
Mode 4	TX Mode(8-DPSK) Channel 00/39/78				
Mode 5	Hopping Mode(GFSK)				
Mode 6	Hopping Mode(π /4-DQPSK)				
Mode 7	Hopping Mode(8-DPSK)				

Note: (1)The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

(2)All test with left and right earphone, and only show the worst case(right earphone)

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 92

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	China Contraction of the Contrac	Bluetooth MP Tool	
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number:CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 11 of 92

2. Test Summary

	FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2							
Standard Se	ction	T	To a 1 O a see a la (a)	1 1	D 1			
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark			
15.203		Antenna Requirement	TBBJ-20210602-08-2#	PASS	N/A			
15.207	RSS-GEN 7.2.2	Conducted Emission	TBBJ-20210602-08-1#	PASS	N/A			
15.205	RSS-Gen 7.2.3	Restricted Bands	TBBJ-20210602-08-2#	PASS	N/A			
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	TBBJ-20210602-08-1#	PASS	N/A			
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	TBBJ-20210602-08-2#	PASS	N/A			
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	TBBJ-20210602-08-1#	PASS	N/A			
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	TBBJ-20210602-08-2#	PASS	N/A			
15.247(d)	RSS 247 5.5	Band Edge	TBBJ-20210602-08-1#	PASS	N/A			
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	TBBJ-20210602-08-2#	PASS	N/A			
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	TBBJ-20210602-08-1#	PASS	N/A			

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC180891 Page: 12 of 92

4. Test Equipment

Conducted Emission	Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021	
THURS	Compliance		MIN S	~ CHILL		
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021	
Radiation Emission T	est					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021 Jul. 05, 2021	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	3117 00143207 BBHA 9170 BBHA9170582 FMZB 1519 B 1519B-059	00143207	Mar.01, 2020	Feb. 28, 2022 Feb. 28, 2022 Jul. 06, 2021	
Horn Antenna	ETS-LINDGREN		BBHA9170582	Mar.01, 2020		
Loop Antenna	SCHWARZBECK		1519B-059	B-059 Jul. 07, 2020		
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021	
Pre-amplifier	HP	8449B	3008A00849	Feb.25, 2021	Feb. 24, 2022	
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb.25, 2021	Feb. 24, 2022	
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb.25, 2021	Feb. 24, 2022	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducted I	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021	
MAG	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021	
DE Dower Senser	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021	

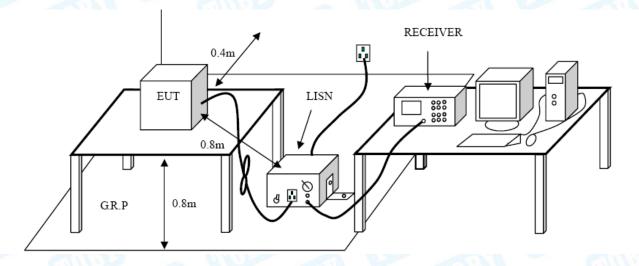
Page: 13 of 92

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguanov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 14 of 92

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 15 of 92

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209

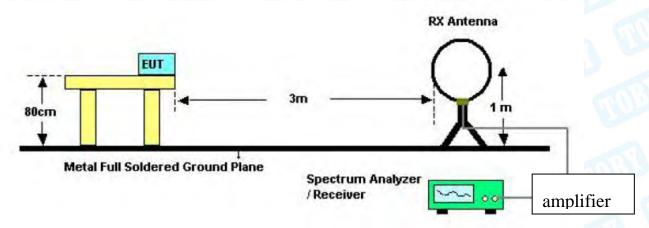
6.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

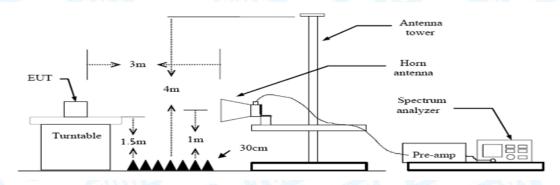
Frequency	Distance of 3m	(dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 16 of 92


6.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Page: 17 of 92

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

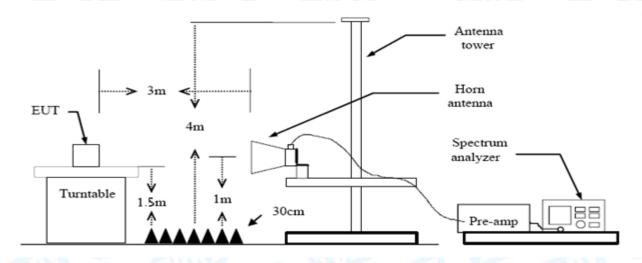
Please refer to the Attachment B.

Page: 18 of 92

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.209 FCC Part 15.205


7.1.2 Test Limit

F	Radiated measurement	
Restricted Frequency	leters(at 3m)	
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54
Co	onducted measurement	
(1)	Peak (dBm) _{see 7.3 e)}	Average (dBm) see 7.3 e
2310 ~2390	-41.20	-21.20
2483.5 ~2500	-41.20	-21.20

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 19 of 92

7.3 Test Procedure

---Radiated measurement

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

Page: 20 of 92

E is the electric field strength in dBuV/m EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

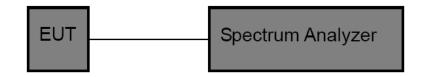
The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. Please refer to the Attachment C.

Page: 21 of 92

8. Number of Hopping Channel


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

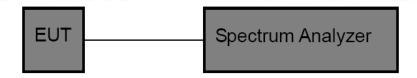
The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment D.

Page: 22 of 92

9. Average Time of Occupancy


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (a)(1)

9.1.2 Test Limit

Section	Test Item	Limit		
15 247(a)(1)	Average Time of	0.4 sec		
15.247(a)(1)	Occupancy	0.4 Sec		

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the centre frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

Page: 23 of 92

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

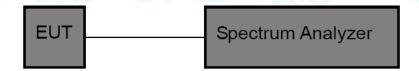
The EUT was set to the Hopping Mode by the Customer.

9.6 Test Data

Please refer to the Attachment E.

Page: 24 of 92

10. Channel Separation and Bandwidth Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Test item	<=1 MHz	Trequency runge(mn2)
Bandwidth	(20dB bandwidth)	2400~2483.5
	>25KHz or >two-thirds of	
Channel Separation	the 20 dB bandwidth	2400~2483.5
	Which is greater	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

Page: 25 of 92

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

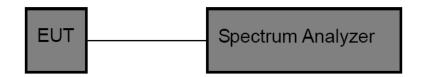
The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

10.6 Test Data

Please refer to the Attachment F.

Page: 26 of 92

11. Peak Output Power Test


11.1 Test Standard and Limit

11.1.1 Test Standard FCC Part 15.247 (b) (1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz.

RBW=3 MHz, VBW ≥ RBW for bandwidth more than 1MHz.

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment G.

Page: 27 of 92

12. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard FCC Part 15.203

12.1.2 Requirement

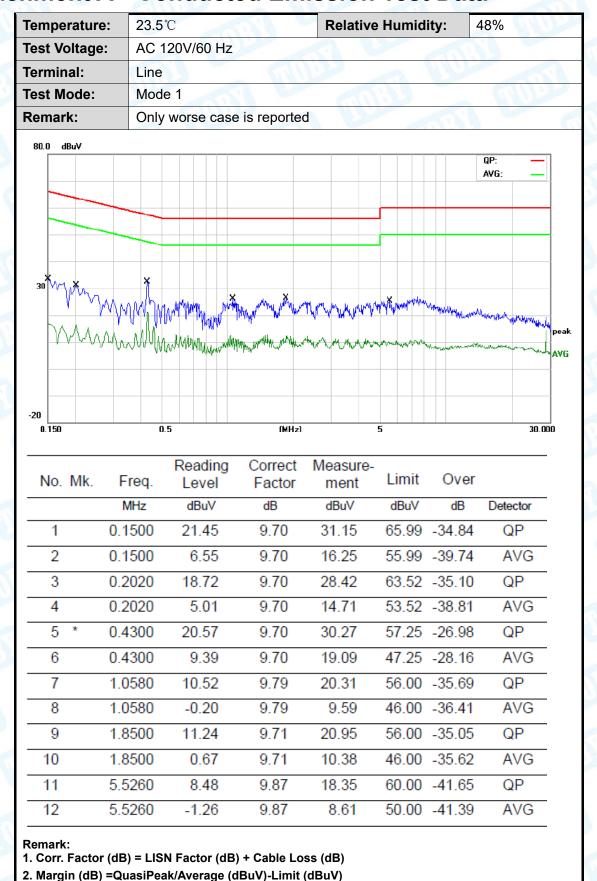
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is -1 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.


12.4 Result

The EUT antenna is a Ceramic Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached antenna	
☐Unique connector antenna	-
☐Professional installation antenna	

Attachment A-- Conducted Emission Test Data

Report No.: TB-FCC180891 Page: 29 of 92

					A A A A			
Те	mperature	: 23.5°C		2 ILA	Relative Hu	ımidity:	48%	
Те	est Voltage:	AC 120)V/60 Hz					AHA
Те	erminal:	Neutra	HAGE				TRIS.	
Те	est Mode:	Mode 1		CHIF.				
Re	emark:	Only w	orse case is	reported				Militar
8	0.0 dBuV						0.00	
							QP: AVG:	
1								
	*							
3	30 MMX	a) A (X)		v				
			Mark And Andrew Andrew Programmer	Mary Mary	ty Myrapu minina	W. Walnut V	lander propher which is	hadrande Vinderan
Ę.	AAAAA	4 <u>0,,</u> ,,\\ ^y \\\\\			Www	Walter Complete	Market State of the State of th	peak
1			. Lift Mark 11 Item					AVG
-20	n							
	0.150	0.5		(MHz)	5			30.000
	No. Mk.	Freq.	Reading Level	Correct	Measure-	Limit	Over	
-	INO. IVIK.			Factor	ment			Detector
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
_	1	0.1500	21.95	9.80	31.75		-34.24	QP
	2	0.1500	8.14	9.80	17.94	55.99	-38.05	AVG
	3	0.2180	17.17	9.80	26.97	62.89	-35.92	QP
1	4	0.2180	2.95	9.80	12.75	52.89	-40.14	AVG
-	5	0.4340	19.43	9.80	29.23	57.18	-27.95	QP
-	6 *	0.4340	15.47	9.80	25.27	47.18	-21.91	AVG
-	7	1.0420	11.05	9.80	20.85	56.00	-35.15	QP
-	8	1.0420	5.36	9.80	15.16		-30.84	AVG
-	9		11.04					QP
_		2.2780		9.80	20.84		-35.16	
_	10	2.2780	5.25	9.80	15.05		-30.95	AVG
	11	5.0380	6.71	9.80	16.51	60.00	-43.49	QP
	12	5.0380	0.09	9.80	9.89	50.00	-40.11	AVG
-								

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TB-FCC180891 Page:

30 of 92

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

em	pera	atur	e:		23.	5 ℃						Relativ	e H	umidit	y:	439	%	9
est	t Vol	tag	e:		AC	120	0V6	60HZ	7	AHU			1	1				13
nt.	. Pol				Hor	izo	nta	AS			6	MO	150			167	N. Ass	
est	t Mo	de:			Mode 1 2402MHz													
len	nark	:			Onl	y w	ors	e ca	se	is reporte	ed	1	16			K		
80.0) dBu	V/m											,					
														(RF)FC	C 15C			
																Ma	rgin -6	
30	_															-	مهجيها	mlum
	1 M	2 X	3			4 ×			5 %			6 X.,	بهي	MAN THA	Manuel	~~~~		
	W W	1		South Mr.	- 200	\triangle	WALV	hum	Jan J	whome	~^^	My when	·					
			·	· Wally														
20																		
L.	0.000	40	Ę	50	60	70				(MHz)			300	400	500	600	700	1000.0
							Rea	adin	a	Correc	t	Measur	e-					
Ν	lo. I	Mk.		Fre	q.			evel		Facto		ment		Limit		O۷	er	
				MHz	Z		dl	BuV		dB/m		dBuV/n	n	dBuV	m	dE	3	Detect
1			31	.50	94		34	1.89		-14.08		20.81		40.0	0	-19	.19	pea
2	18		38	3.34	62		39	9.06		-18.23		20.83	}	40.0	0	-19	.17	pea
3			49	.35	94		37	7.87	1	-22.83		15.04		40.0	0	-24	.96	pea
4			72	2.08	41		40	0.07		-23.20		16.87	,	40.0	0	-23	.13	pea
5			119	9.43	360		40).26		-22.17		18.09)	43.5	0	-25	.41	pea
6			220	6.09	994		37	7.35		-18.53		18.82)	46.0	0	-27	.18	pea

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

en	npera	ature): 	23	3.5°C	\mathbb{C}				" RA	Rela	tive F	łumi	dity	/ :	439	%	4	E D
Гes	t Vol	tage	:	AC	2 12	20\	/60	HZ				MI				M	N		
۱nt	. Pol			Ve	ertic	al		11/1			57	1			T	N			
Гes	t Mo	de:		Mo	Mode 1 2402MHz														
Rer	nark			Or	าly v	WOI	rse	case	e is r	reported	611	611	3				11/1		
80.	0 dBu	V/m																	_
													(BI	FJFCC	150 :		diation		
																Ma	rgin -6	dB	H
							ᅟ											++	4
30	1								_							6		- who	₩
	<u>*</u>		. Á						3 X M		4		5 X	~w~	N. A. V. W.	X.	M		
	W	Mymy	V "	M	MA	Andr	un M	munh	h /	Wyw.	· manak	www	,,,,,						
					VQN	,,,,	" "												
				_															1
-20 31	L D. 000	40	50	60	0 7	70 8	B0			(MHz)		300	40)0	500	600	700	100)0.00
_							Re	ading	n	Correct	Meas	ure-							
	No.	Mk.	F	rec	q.			evel	9	Factor	me		Lin	nit		O۷	er		
_			1	MHz			d	BuV		dB/m	dBu\	V/m	dB	uV/r	n	dE	3	Dete	ecto
_	1	*	30.	853	35		38	3.05		-13.58	24.	47	40	0.00)	-15	.53	p(eak
- 1					68		45	5.26		-22.95	22.	31	40	0.00)	-17	.69		eak
_)		-	1 111	_											-21			eak
2					61		4/	1 30		-99 17	22	.).)							*(11)
3	}		119	.43				4.39		-22.17	22.			3.50					
3	}		119 256	.43 .52	211		33	3.22		-17.11	16.	11	46	6.00)	-29	.89	pe	eak
3	}		119	.43 .52	211		33					11	46)	-29		pe	

Page: 32 of 92

Above 1GHz(Only worse case is reported)

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	ann's	A A A A A A A A A A A A A A A A A A A
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2402MHz		

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.688	42.38	13.01	55.39	74.00	-18.61	peak
2	*	4803.896	29.01	13.01	42.02	54.00	-11.98	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	TUU	100
Ant. Pol.	Vertical	WURT I	L. L.
Test Mode:	TX GFSK Mode 2402MHz		

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.884	42.56	13.01	55.57	74.00	-18.43	peak
2	*	4804.248	29.10	13.02	42.12	54.00	-11.88	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

33 of 92

•	$\Gamma \cap$	RV	
-		ПТ	j

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		MU
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode	2441MHz	

No	. Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.868	42.52	13.59	56.11	74.00	-17.89	peak
2	*	4881.996	28.80	13.59	42.39	54.00	-11.61	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		MIDE
Ant. Pol.	Vertical		STORY.
Test Mode:	TX GFSK Mode 2441MHz		

No.	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.140	42.46	13.59	56.05	74.00	-17.95	peak
2	*	4882.252	28.92	13.59	42.51	54.00	-11.49	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 34 of 92

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	COUNTY OF	A PHOTO
Ant. Pol.	Horizontal		133
Test Mode:	TX GFSK Mode 2480MHz		

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.412	42.69	14.16	56.85	74.00	-17.15	peak
2	*	4960.432	28.93	14.16	43.09	54.00	-10.91	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	William	
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2480MHz	W. A.	

No	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.092	28.79	14.15	42.94	54.00	-11.06	AVG
2		4960.164	42.88	14.15	57.03	74.00	-16.97	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 35 of 92

		201					
Temperature:	23.3℃	Relative Humidity:	43%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mo	ode 2402MHz					

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.156	42.47	13.02	55.49	74.00	-18.51	peak
2	*	4804.156	28.65	13.02	41.67	54.00	-12.33	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	NU.	
Ant. Pol.	Vertical	201177	MULL
Test Mode: ΤΧ π /4-DQPSK Mode 240		2MHz	

No	. Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.812	42.69	13.01	55.70	74.00	-18.30	peak
2	*	4804.308	28.83	13.02	41.85	54.00	-12.15	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2441	MHz					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.978	43.00	13.59	56.59	74.00	-17.41	peak
2	*	4882.440	28.94	13.59	42.53	54.00	-11.47	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.790	42.29	13.59	55.88	74.00	-18.12	peak
2	*	4882.068	28.83	13.59	42.42	54.00	-11.58	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 37 of 92

Temperature:	23.3°C	Relative Humidity:	43%
Test Voltage:	DC 3.7V	WW Pro	A A A A A A A A A A A A A A A A A A A
Ant. Pol.	Horizontal		
Test Mode:	TX π /4-DQPSK Mode 2480MI	Hz	

No	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	4959.699	33.97	14.15	48.12	54.00	-5.88	AVG
2		4960.400	47.04	14.16	61.20	74.00	-12.80	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	U D	
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.880	42.07	14.15	56.22	74.00	-17.78	peak
2	*	4960.022	28.94	14.15	43.09	54.00	-10.91	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

38 of 92

		THE RESERVE OF THE PERSON OF T				
Temperature:	23.3℃	Relative Humidity:	43%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal		13.13			
Test Mode:	TX 8-DPSK Mode	2402MHz				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.898	42.26	13.01	55.27	74.00	-18.73	peak
2	*	4804.156	29.14	13.02	42.16	54.00	-11.84	AVG

Remark:

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	201377				
Test Mode:	TX 8-DPSK Mode 2402MHz					

No	o. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.668	28.97	13.01	41.98	54.00	-12.02	AVG
2		4803.672	43.27	13.01	56.28	74.00	-17.72	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 8-DPSK Mode	e 2441MHz				

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4881.948	28.83	13.59	42.42	54.00	-11.58	AVG
2			4882.330	42.66	13.59	56.25	74.00	-17.75	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical	1011	William .		
Test Mode:	TX 8-DPSK Mode 2441MHz				

N	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.226	28.65	13.59	42.24	54.00	-11.76	AVG
2		4882.278	42.48	13.59	56.07	74.00	-17.93	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 92

		1 100 100	
Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V	WILLIAM STATE	AMOUNT
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2480MHz		T.

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.534	43.75	14.15	57.90	74.00	-16.10	peak
2	*	4959.658	28.95	14.15	43.10	54.00	-10.90	AVG

Remark:

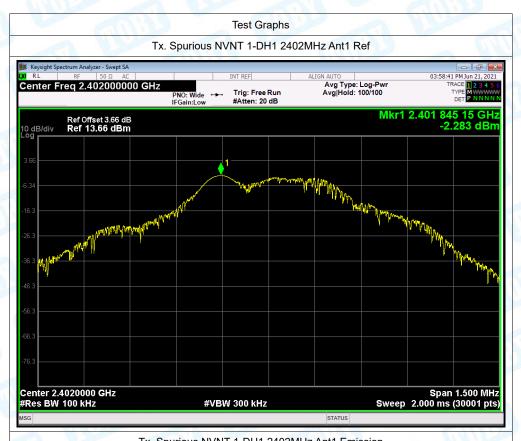
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

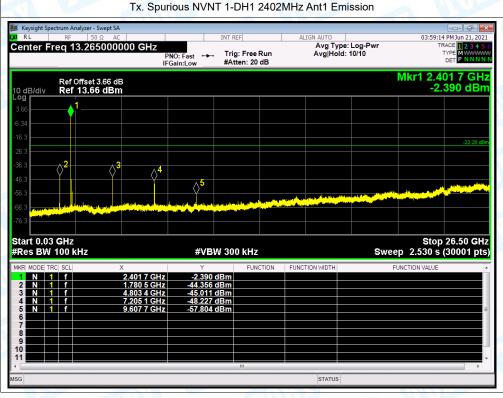
Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 8-DPSK Mode 2480MHz		

N	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.822	43.07	14.15	57.22	74.00	-16.78	peak
2	*	4960.050	28.88	14.15	43.03	54.00	-10.97	AVG

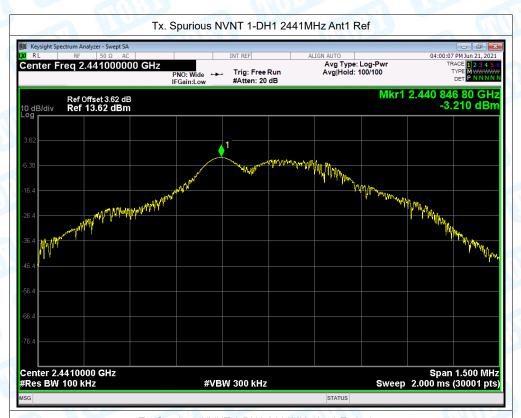
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

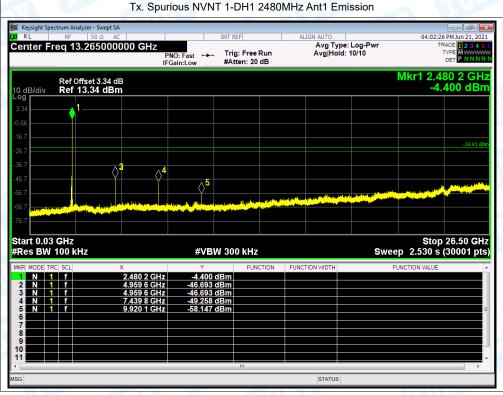

Report No.: TB-FCC180891 Page: 41 of 92


---Conducted Unwanted Emissions

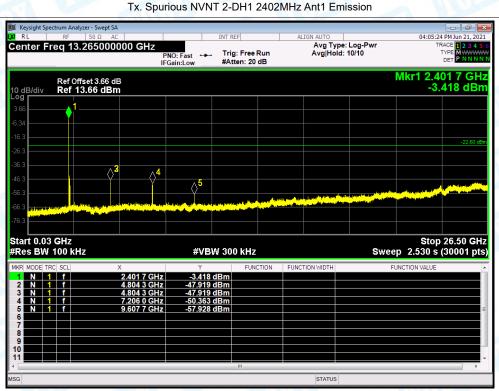
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-42.07	-20	Pass
NVNT	1-DH1	2441	-41.95	-20	Pass
NVNT	1-DH1	2480	-42.26	-20	Pass
NVNT	2-DH1	2402	-45.31	-20	Pass
NVNT	2-DH1	2441	-44.6	-20	Pass
NVNT	2-DH1	2480	-44	-20	Pass
NVNT	3-DH1	2402	-42.4	-20	Pass
NVNT	3-DH1	2441	-45.04	-20	Pass
NVNT	3-DH1	2480	-44.44	-20	Pass


Page: 42 of 92

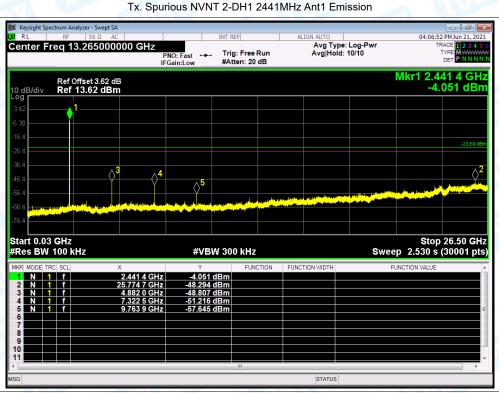
Page: 43 of 92


Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission

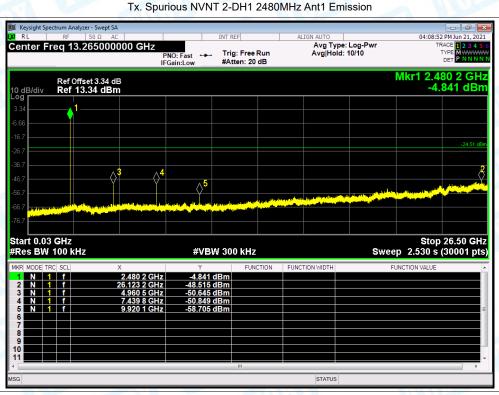
Report No.: TB-FCC180891
Page: 44 of 92

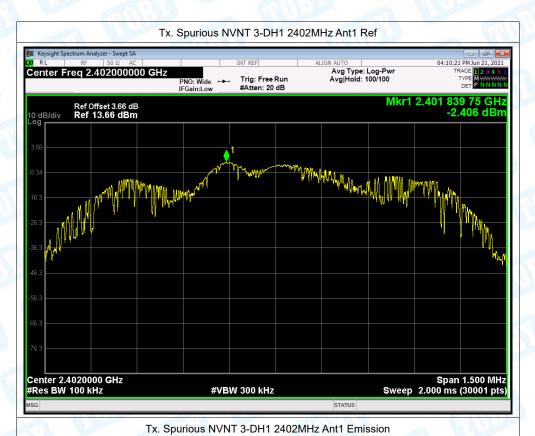


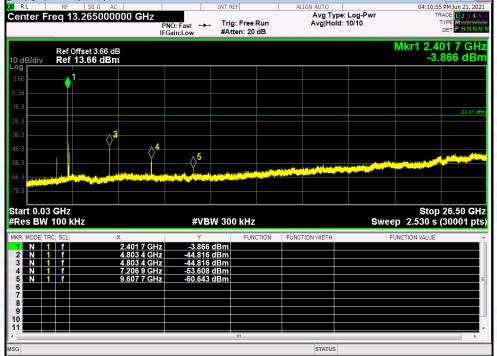
Page: 45 of 92



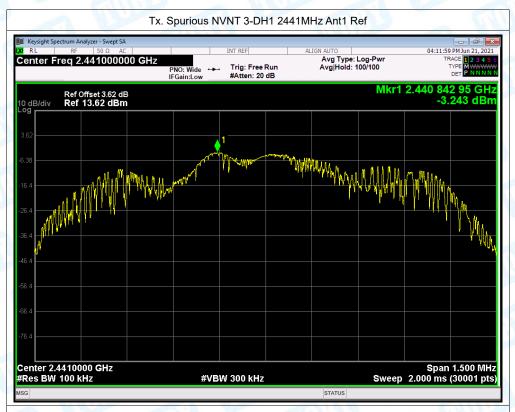
Page: 46 of 92

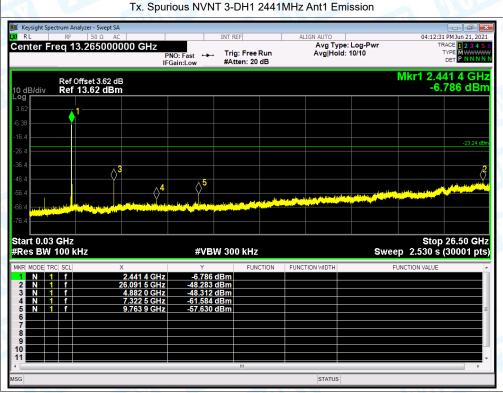



Page: 47 of 92

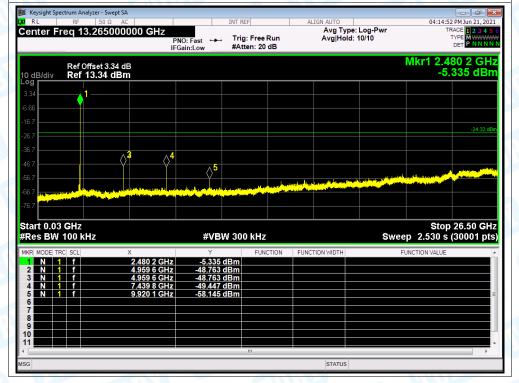


Page: 48 of 92




Keysight Spectrum Analyzer - Swept SA

Page: 49 of 92

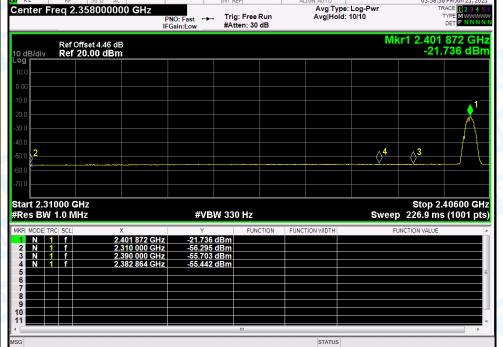


Report No.: TB-FCC180891 Page: 50 of 92

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Emission

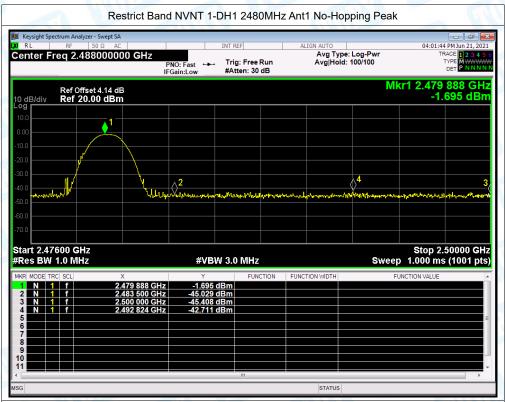
Page: 51 of 92

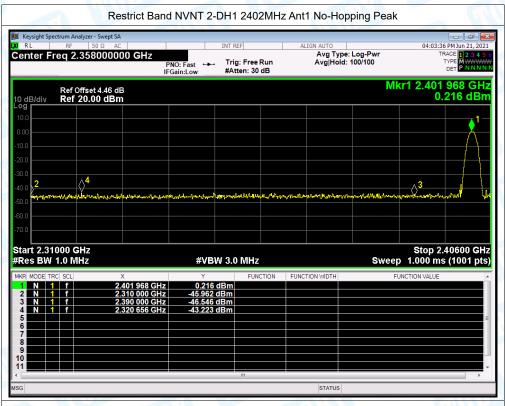
Attachment C-- Restricted Bands Requirement and Band **Edge Test Data**

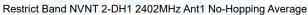

Condition	Mode	Frequency	Hopping	Spur Freq	Power	Gain	Е	Detector	Limit	Verdict
		(MHz)	Mode	(MHz)	(dBm)	(dBi)	(dBuV/m)		(dBuV/m)	
NVNT	1-DH1	2402	No-Hopping	2310	-46.53	2	50.73	Peak	74	Pass
NVNT	1-DH1	2402	No-Hopping	2310	-56.28	2	40.98	Average	54	Pass
NVNT	1-DH1	2402	No-Hopping	2345.808	-43.45	2	53.81	Peak	74	Pass
NVNT	1-DH1	2402	No-Hopping	2382.864	-55.44	2	41.82	Average	54	Pass
NVNT	1-DH1	2402	No-Hopping	2390	-46.54	2	50.72	Peak	74	Pass
NVNT	1-DH1	2402	No-Hopping	2390	-55.62	2	41.64	Average	54	Pass
NVNT	1-DH1	2480	No-Hopping	2483.5	-45.02	2	52.24	Peak	74	Pass
NVNT	1-DH1	2480	No-Hopping	2483.5	-55.42	2	41.84	Average	54	Pass
NVNT	1-DH1	2480	No-Hopping	2492.824	-42.71	2	54.55	Peak	74	Pass
NVNT	1-DH1	2480	No-Hopping	2483.8	-55.12	2	42.14	Average	54	Pass
NVNT	1-DH1	2480	No-Hopping	2500	-45.4	2	51.86	Peak	74	Pass
NVNT	1-DH1	2480	No-Hopping	2500	-55.36	2	41.9	Average	54	Pass
NVNT	2-DH1	2402	No-Hopping	2310	-44.82	2	52.44	Peak	74	Pass
NVNT	2-DH1	2402	No-Hopping	2310	-56.21	2	41.05	Average	54	Pass
NVNT	2-DH1	2402	No-Hopping	2320.656	-43.22	2	54.04	Peak	74	Pass
NVNT	2-DH1	2402	No-Hopping	2379.6	-55.47	2	41.79	Average	54	Pass
NVNT	2-DH1	2402	No-Hopping	2390	-44.55	2	52.71	Peak	74	Pass
NVNT	2-DH1	2402	No-Hopping	2390	-55.59	2	41.67	Average	54	Pass
NVNT	2-DH1	2480	No-Hopping	2483.5	-45.21	2	52.05	Peak	74	Pass
NVNT	2-DH1	2480	No-Hopping	2483.5	-55.56	2	41.7	Average	54	Pass
NVNT	2-DH1	2480	No-Hopping	2494.528	-42.57	2	54.69	Peak	74	Pass
NVNT	2-DH1	2480	No-Hopping	2497.744	-55.19	2	42.07	Average	54	Pass
NVNT	2-DH1	2480	No-Hopping	2500	-46.09	2	51.17	Peak	74	Pass
NVNT	2-DH1	2480	No-Hopping	2500	-55.46	2	41.8	Average	54	Pass
NVNT	3-DH1	2402	No-Hopping	2310	-46.85	2	50.41	Peak	74	Pass
NVNT	3-DH1	2402	No-Hopping	2310	-56.25	2	41.01	Average	54	Pass
NVNT	3-DH1	2402	No-Hopping	2382.48	-42.18	2	55.08	Peak	74	Pass
NVNT	3-DH1	2402	No-Hopping	2382.672	-55.47	2	41.79	Average	54	Pass
NVNT	3-DH1	2402	No-Hopping	2390	-45.05	2	52.21	Peak	74	Pass
NVNT	3-DH1	2402	No-Hopping	2390	-55.72	2	41.54	Average	54	Pass
NVNT	3-DH1	2480	No-Hopping	2483.5	-45.54	2	51.72	Peak	74	Pass
NVNT	3-DH1	2480	No-Hopping	2483.5	-55.45	2	41.81	Average	54	Pass
NVNT	3-DH1	2480	No-Hopping	2493.232	-42.61	2	54.65	Peak	74	Pass
NVNT	3-DH1	2480	No-Hopping	2499.544	-55.13	2	42.13	Average	54	Pass
NVNT	3-DH1	2480	No-Hopping	2500	-46.01	2	51.25	Peak	74	Pass
NVNT	3-DH1	2480	No-Hopping	2500	-55.33	2	41.93	Average	54	Pass

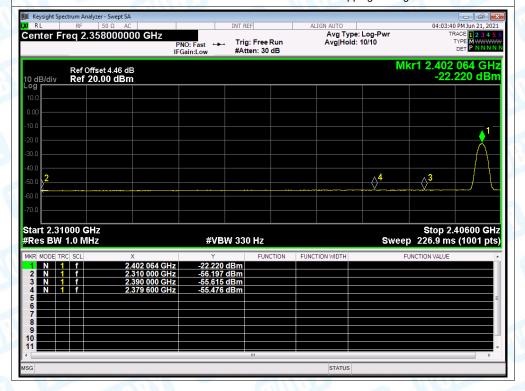
TOBY

Page: 52 of 92

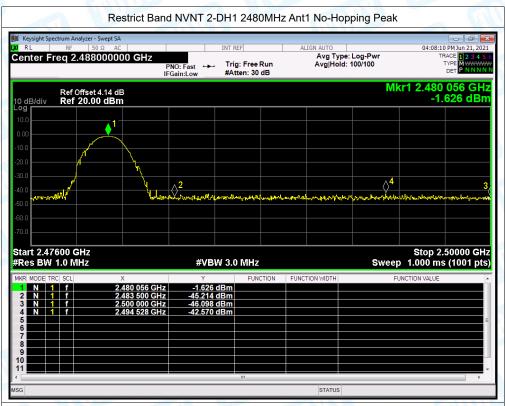


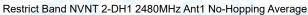

Page: 53 of 92

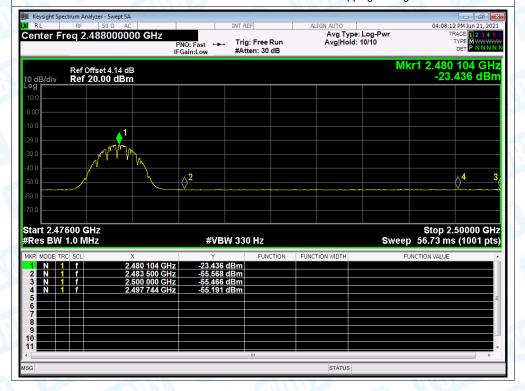




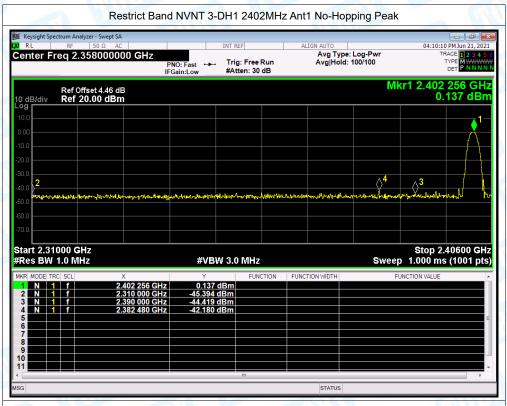
Page: 54 of 92

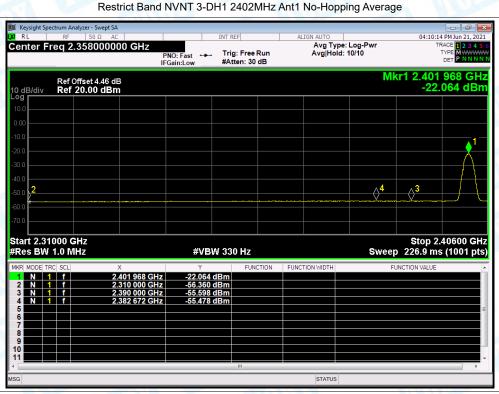


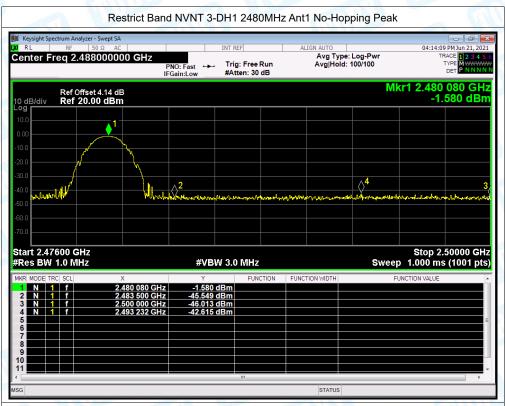


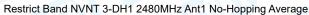


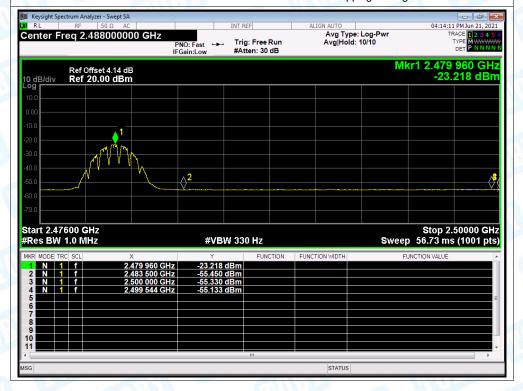
Page: 55 of 92



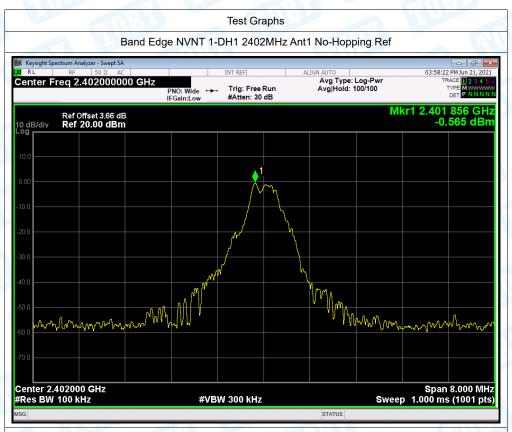


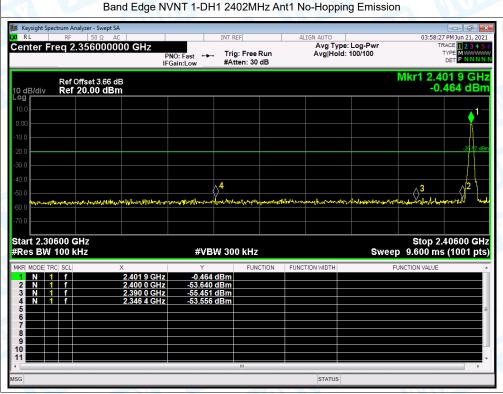

Page: 56 of 92



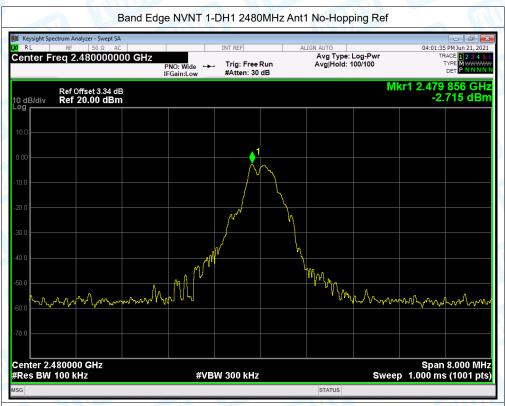


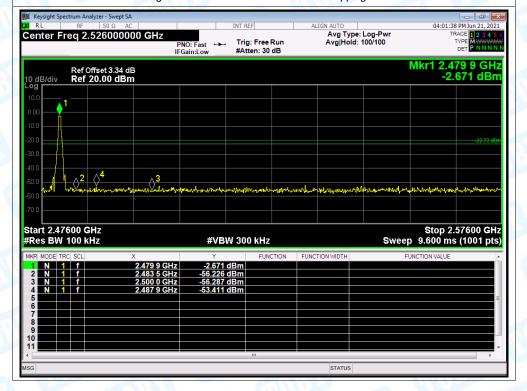
Page: 57 of 92


Report No.: TB-FCC180891 Page: 58 of 92

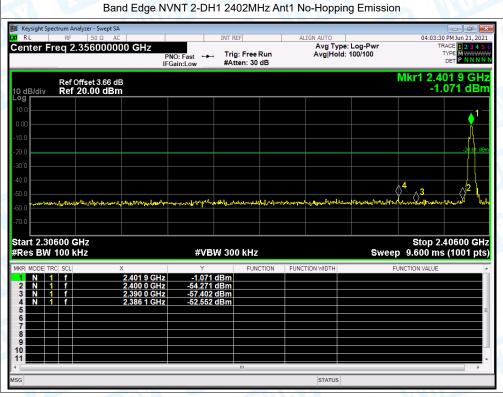

(2) Conducted Test

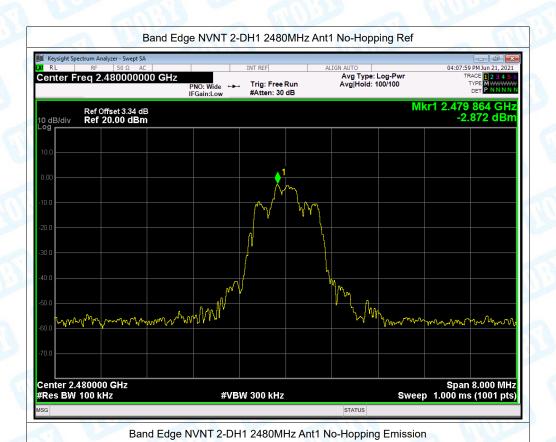
						70.00
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-52.99	-20	Pass
NVNT	1-DH1	2441	No-Hopping	0	-20	Fail
NVNT	1-DH1	2480	No-Hopping	-50.7	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-51.74	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-50.4	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-52.69	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-50.44	-20	Pass

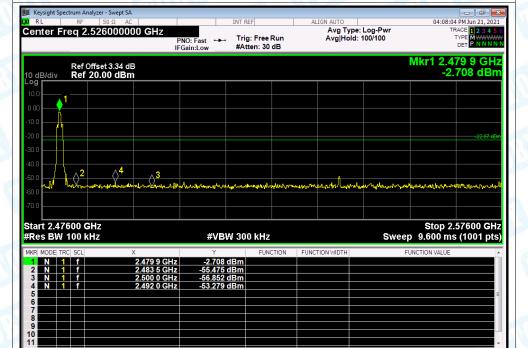

Page: 59 of 92



Page: 60 of 92

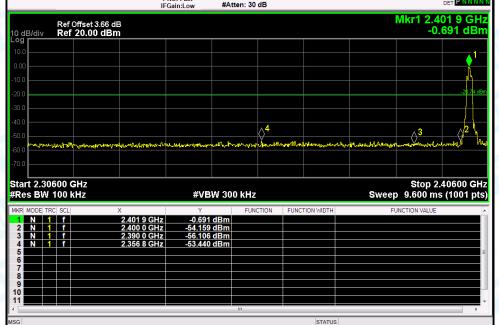

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission


Page: 61 of 92

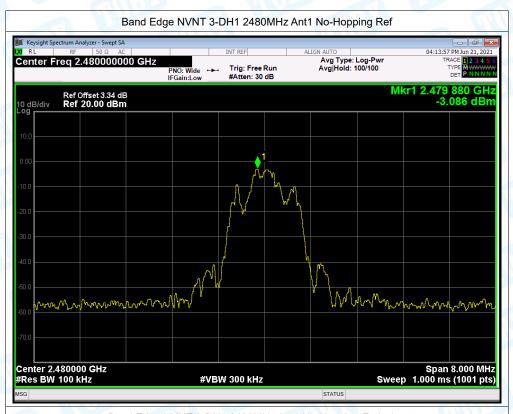


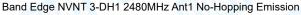
Report No.: TB-FCC180891 Page: 62 of 92

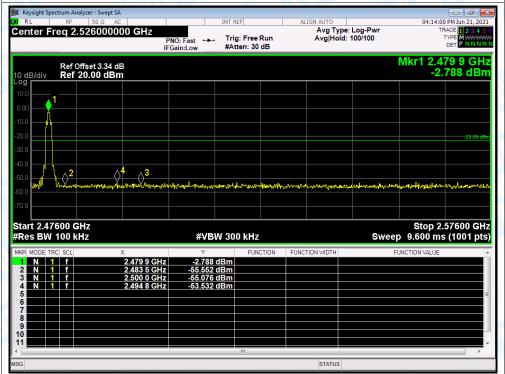

TOBY



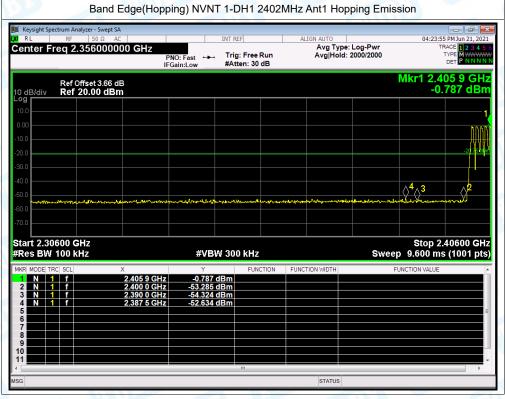
Page: 63 of 92







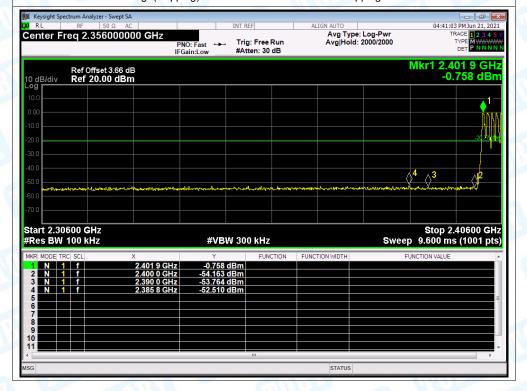
Page: 64 of 92


Report No.: TB-FCC180891 Page: 65 of 92

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-51.88	-20	Pass
NVNT	1-DH1	2480	Hopping	-49.76	-20	Pass
NVNT	2-DH1	2402	Hopping	-51.73	-20	Pass
NVNT	2-DH1	2480	Hopping	-49.55	-20	Pass
NVNT	3-DH1	2402	Hopping	-51.78	-20	Pass
NVNT	3-DH1	2480	Hopping	-50.2	-20	Pass

Page: 66 of 92

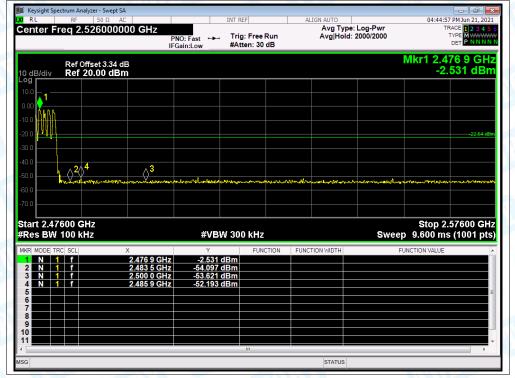
Page: 67 of 92



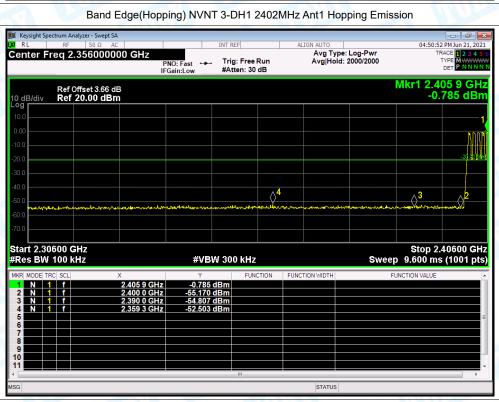
Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Emission Keysight Spectrum Analyzer - Swept SA Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freq 2.526000000 GHz PNO: Fast → Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.477 9 GHz -2.610 dBm Ref Offset 3.34 dB Ref 20.00 dBm $\Diamond^4 \quad \Diamond^3$ Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz

Report No.: TB-FCC180891 Page: 68 of 92

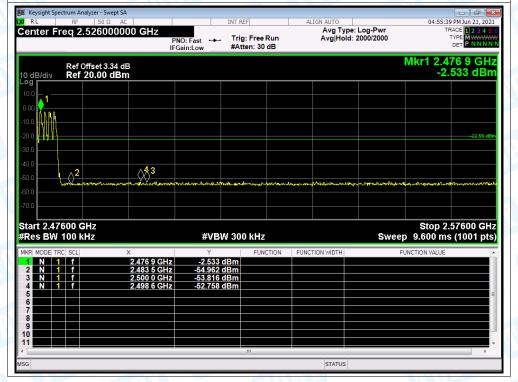
Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Emission



Page: 69 of 92

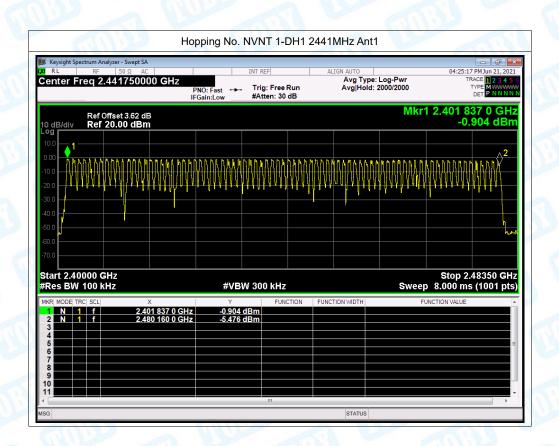

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Emission

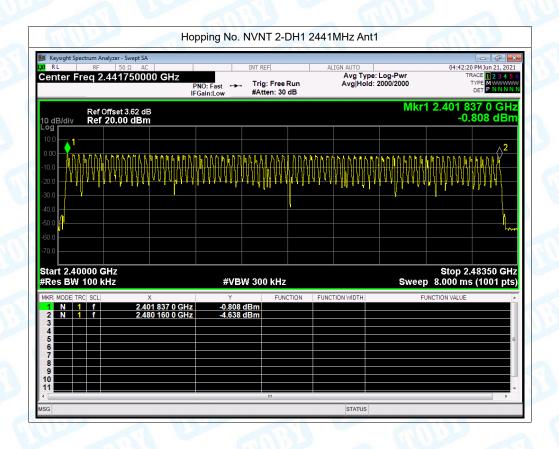
Report No.: TB-FCC180891 Page: 70 of 92

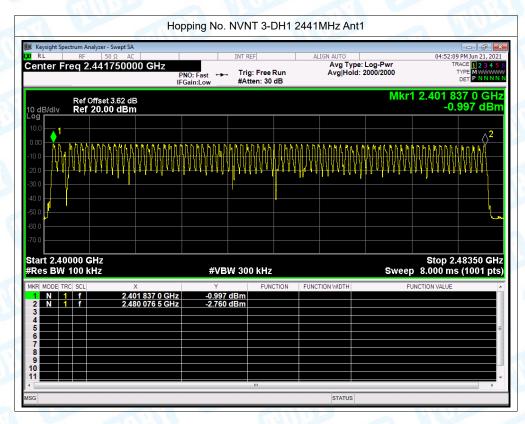


TOBY

Page: 71 of 92

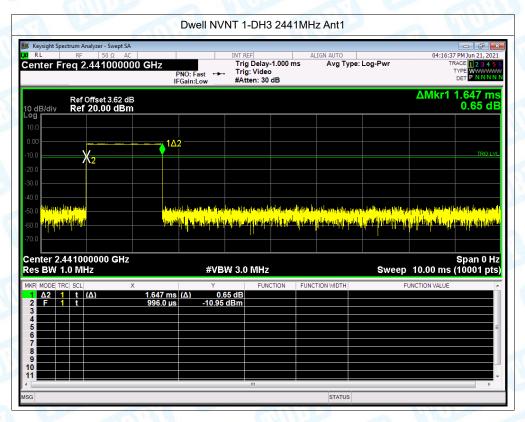



Page: 72 of 92


Attachment D-- Number of Hopping Channel Test Data

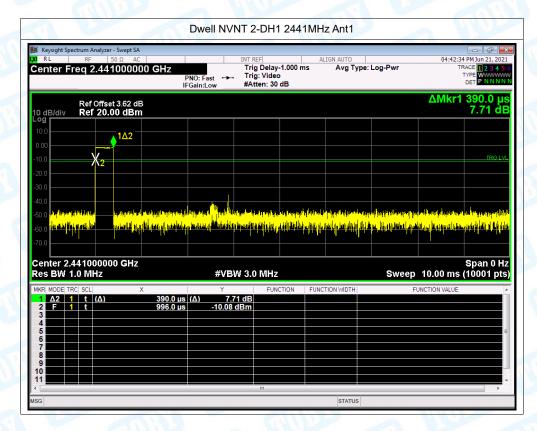
Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

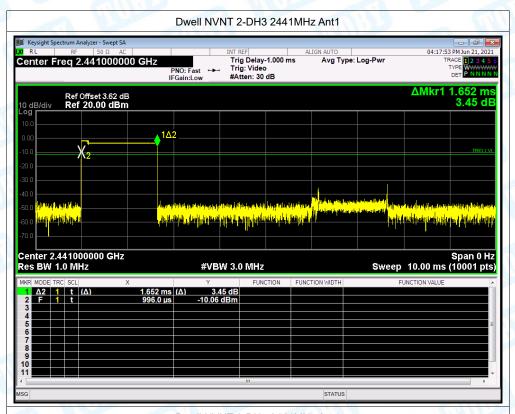
Report No.: TB-FCC180891 Page: 73 of 92

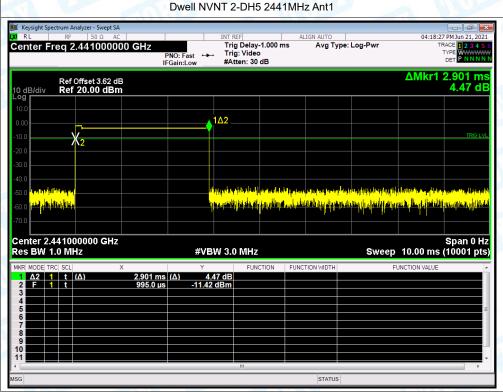

Page: 74 of 92

Attachment E-- Average Time of Occupancy Test Data

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.391	125.12	31600	400	Pass
NVNT	1-DH3	2441	1.647	263.52	31600	400	Pass
NVNT	1-DH5	2441	2.894	308.693	31600	400	Pass
NVNT	2-DH1	2441	0.39	124.8	31600	400	Pass
NVNT	2-DH3	2441	1.652	264.32	31600	400	Pass
NVNT	2-DH5	2441	2.901	309.44	31600	400	Pass
NVNT	3-DH1	2441	0.39	124.8	31600	400	Pass
NVNT	3-DH3	2441	1.653	264.48	31600	400	Pass
NVNT	3-DH5	2441	2.903	309.653	31600	400	Pass

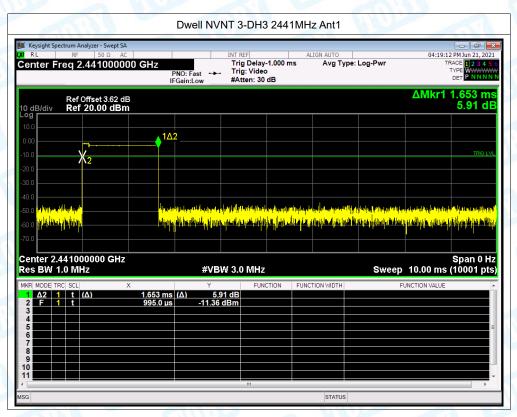

Report No.: TB-FCC180891 Page: 75 of 92


Report No.: TB-FCC180891 Page: 76 of 92

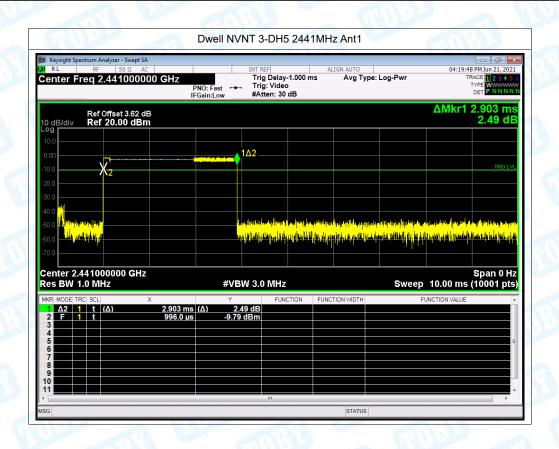


Report No.: TB-FCC180891 **TOBY**

Page: 77 of 92



Report No.: TB-FCC180891


Page: 78 of 92

Report No.: TB-FCC180891

Page: 79 of 92

Report No.: TB-FCC180891 Page: 80 of 92

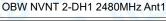
Attachment F-- Channel Separation and Bandwidth Test Data

Condition	Mode	Frequency (MHz)	99% OBW (MHz)
NVNT	1-DH1	2402	0.76916
NVNT	1-DH1	2441	0.75935
NVNT	1-DH1	2480	0.77001
NVNT	2-DH1	2402	1.0576
NVNT	2-DH1	2441	1.0500
NVNT	2-DH1	2480	1.0311
NVNT	3-DH1	2402	1.0871
NVNT	3-DH1	2441	1.0519
NVNT	3-DH1	2480	1.0861

Report No.: TB-FCC180891 Page: 81 of 92

TOBY

Page: 82 of 92



TOBY

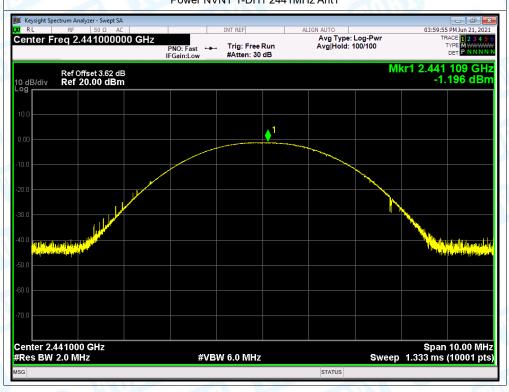
Page: 83 of 92

84 of 92 Page:

Report No.: TB-FCC180891

Page: 85 of 92


Report No.: TB-FCC180891 Page: 86 of 92

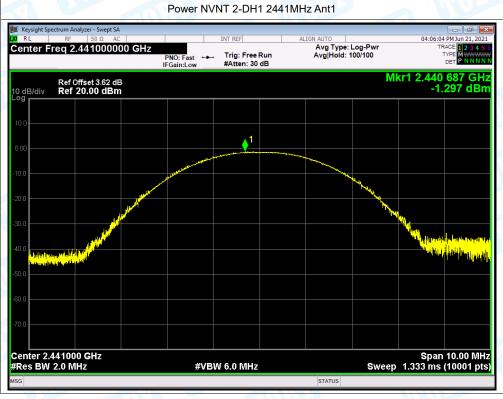

Attachment G-- Peak Output Power Test Data

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-0.324	0	-0.324	21	Pass
NVNT	1-DH1	2441	-1.196	0	-1.196	21	Pass
NVNT	1-DH1	2480	-2.475	0	-2.475	21	Pass
NVNT	2-DH1	2402	-0.252	0	-0.252	21	Pass
NVNT	2-DH1	2441	-1.297	0	-1.297	21	Pass
NVNT	2-DH1	2480	-2.229	0	-2.229	21	Pass
NVNT	3-DH1	2402	-0.262	0	-0.262	21	Pass
NVNT	3-DH1	2441	-0.975	0	-0.975	21	Pass
NVNT	3-DH1	2480	-2.152	0	-2.152	21	Pass

Report No.: TB-FCC180891 Page: 87 of 92

TOBY Page:

Report No.: TB-FCC180891


Page: 88 of 92

TOBY

Page: 89 of 92

Report No.: TB-FCC180891


Page: 90 of 92

Report No.: TB-FCC180891 Page: 91 of 92

TOBY

Report No.: TB-FCC180891

Page: 92 of 92

----END OF REPORT-----