

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Germany Tel.: +49 9421 56868-0 Fax: +49 9421 56868-100 Email: info@emv-testhaus.com

Accreditation:

FCC facility registration number: 221458 Test Firm Type "2.948 listed": Valid until 2017-04-22 Test Firm Type "accredited": Valid until 2017-06-09 MRA US-EU, FCC designation number: DE0010 BnetzA-CAB-02/21-02/04 Valid until 2018-11-27

Industry Canada test site numbers with registration expiry date: 3472A-1, expiring 2018-11-09 3472A-2, expiring 2018-11-12

Test Laboratory:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of the EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 2 of 47

Table of contents

1	Test regulations	5
2	Summary of test results	6
3	Equipment under Test (EUT)	7
4	AC power line conducted emissions	10
5	Radiated emission measurement (<1 GHz)	20
6	Radiated emission measurement (>1 GHz)	33
7	Carrier frequency stability	34
8	Bandwidths	38
9	Estimation of RF radiation exposure for mobile devices	42
10	Equipment calibration status	45
11	Measurement uncertainty	46
12	Revision History	47

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 3 of 47

List of pictures

Picture 1: Outline of conducted emission test setup11
Picture 2: Graphic - Conducted emission on mains, phase 1 (without termination)12
Picture 3: Table - Conducted emission on mains, phase 1 (without termination)13
Picture 4: Graphic - Conducted emission on mains, neutral (without termination)14
Picture 5: Table - Conducted emission on mains, neutral (without termination)15
Picture 6: Graphic - Conducted emission on mains, phase 1 (with termination 50 Ω)16
Picture 7: Table - Conducted emission on mains, phase 1 (with termination 50 Ω)17
Picture 8: Graphic - Conducted emission on mains, neutral (with termination 50 Ω)18
Picture 9: Table - Conducted emission on mains, neutral (with termination 50 Ω)
Picture 10: Test setup for radiated emission measurement (< 30 MHz)23
Picture 11: Test setup for radiated emission measurement (< 1 GHz)23
Picture 12: Radiated emission 9 kHz – 30 MHz @ 3m distance25
Picture 13: Radiated emission 30 MHz - 1000MHz @ 3m distance
Picture 14: Spectrum mask for 13.56 MHz @ 3m distance31
Picture 15: Test setup for carrier frequency stability measurement35
Picture 16: Occupied bandwidth (99 %)40
Picture 17: -20 dB emission bandwidth41

List of tables

Table 1: Limits for maximum permissible exposure (MPE) according to table 1 of §1.1310(e) .	. 42
Table 2: RF field strength limits according to table 4 of RSS-102	. 43
Table 3: Calculated results @ 13.56 MHz compared to RF field strength limits	. 44
Table 4: Equipment calibration status	. 45
Table 5: Measurement uncertainty	. 46

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

1 Test regulations

47 CFR Part 2: 10-2015	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
47 CFR Part 15: 10-2015	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10:2013-06	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC KDB 174176 D01 June 3, 2015	AC power-line conducted emissions Frequently Asked Questions
FCC KDB 447498 D01 February 7, 2014	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
ICES-003 Issue 6, January 2016	Spectrum Management and Telecommunications Interference-Causing Equipment Standard Information Technology Equipment (ITE) – Limits and methods of measurement
RSS-Gen Issue 4, November 2014	Spectrum Management and Telecommunications Radio Standards Specification General Requirements and Information for the Certification of Radiocommunication Equimpment
RSS-102 Issue 5, March 2015	Spectrum Management and Telecommunications Radio Standards Specification Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
RSS-210 Issue 9, August 2016	Spectrum Management and Telecommunications Radio Standards Specification Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 5 of 47

2 Summary of test results

Standard

47 CFR Part 15, sections 15.207 and 15.225

Test result

Passed

RSS-210 Issue 9 Section 4.3 and Annex B6 (with appropriate references to RSS-Gen Issue 4)

Passed

Straubing, December 6, 2016

Martin Müller
Test engineer
EMV TESTHAUS GmbH

Samer feller

Rainer Heller Head of EMC/Radio department EMV TESTHAUS GmbH

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 6 of 47

3 Equipment under Test (EUT)

Product type:	13.56 MHz Multi Standard - Multi Antenna Reader/Writer
Model Name:	SANGOMA-MSMA 2V3
Applicant:	GMMC GmbH
Manufacturer:	GMMC GmbH
Serial number:	#1
FCC ID:	2AKHW-SANGMSMA1
IC certification number:	22202-SANGMSMA1
Application frequency band:	13.110 to 14.010 MHz
Frequency range:	13.560 MHz
Operating frequency:	13.560 MHz
Number of RF-channels:	1
Modulation:	ASK
Antenna types:	PCB antenna
	\boxtimes detachable \square not detachable
Power supply:	USB powered nominal: 5.0 VDC ± 15 %
Temperature range:	0°C to +65°C

Remark: The tests were performed with 120V AC / 60Hz.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 7 of 47

3.1 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. For photos taken during testing and including EUT-positions see annex A.

3.2 Short description of the EUT

EUT is a RFID reader/writer operating at the frequency of 13.56 MHz.

3.3 Operation mode

During the pre-tests it was observed that the "continuous-wave-mode" is the respective worstcase. Therefore this mode was selected for final testing.

The EUT was tested in 3 orthogonal positions. This is documented in annex A.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 8 of 47

3.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	Serial or inventory no.
13.56 MHz Multi Standard - Multi Antenna Reader/Writer	SANGOMA-MSMA 2V3	#1
RFID antenna	Jay	
Notebook	Lifebook A531	E00521
Power supply notebook	ADP-65JH AD	S26113-E557-V55-01
DC power supply ¹	Statron 3231.1	E00017
AC power supply (120V / 60Hz)	61602	ABP000000730

Note1: Used for test "carrier frequency stability" only.

3.5 Used cables

Count	Description (type / lengths / remarks)	Serial no.
1	USB cable (shielded / 0.3 m)	
2	DC power supply cable (unshielded / 1.5 m) 2	

Note2: Used for test "carrier frequency stability" only.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

4 AC power line conducted emissions

according to 47 CFR Part 15, section 15.207, and RSS-210, section 3.1 with RSS-Gen, section 8.8

4.1 Test location

Description	Manufacturer	Inventory No.
Shielded room	Siemens - Matsushita	E00107

4.2 Test instruments

	Description	Manufacturer	Inventory No.
\boxtimes	ESCS 30	Rohde & Schwarz	E00003
	ESU 26	Rohde & Schwarz	W00002
	ESCI	Rohde & Schwarz	E00001
	ESH3-Z2	Rohde & Schwarz	E00028
\boxtimes	ESH2-Z5	Rohde & Schwarz	E00004
	ESH2-Z5	Rohde & Schwarz	E00005
\boxtimes	Cable set shielded room	Huber + Suhner	E00424

4.3 Limits

Frequency [MHz]	Quasi-peak [dBµV]	Avarage [dBµV]
0.15 – 0.5	66 – 56	56 – 46
0.5 – 5.0	56	46
5 – 30	60	50

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 10 of 47

4.4 Test procedure

- 1. The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50 μ H/50 Ohms and an EMI test receiver.
- 2. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9 kHz in the frequency range from 0.15 MHz to 30 MHz.
- 3. The EUT was placed on a wooden table and connected to the LISN.
- 4. To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range form 0.15 MHz to 30 MHz was scanned.
- 5. After that all peaks values with less margin than 10 dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector.
- 6. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit then these values were re-measured with average detector.
- 7. These measurements were done on all power lines.

According to ANSI C63.10, section 6.2.2 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.

Shielded room EMI receiver EUT 0 Wooden LISN table Picture 1: Outline of conducted emission test setup All peripheral devices were additionally decoupled by means of a line stabilization Comments: network. GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna EMV TESTHAUS GmbH EMV TESTHAUS Reader/Writer Gustav-Hertz-Straße 35 SANGOMA-MSMA 2V3 94315 Straubing Germany

160826-AU01+W02

Page 11 of 47

4.5 Test setup

EMV TESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 12 of 47

Freq.		Limit	delta_U rdB1	U_AV MBw0	Limit	delta_U raei	Corr. rabi	Rema	ark
0,16	56,8	65,2	8,4	38,3	55,2	16,9	0,0	StoSp	-L1Without Lermination-E10
0,17	58,5	65,1	6,5	44,1	55,1	11,0	0,0		
0,18	53,4	64,7	11,2	37,6	54,7	17,1	0,0		
0,21	53,4	63,1	9,7	38,9	53,1	14,2	0,0		
0,25	44,3	61,8	17,5	23,7	51,8	28,1	0,0		
0,26	44,1	61,4	17,3	27,9	51,4	23,5	0,0		
0,30	41,8	60,3 CO O	18,4	19,3	50,3	31,0	0,0		
0.24		59,9 50.4	21,3	10,0	49,9	01,0 05.4	0,0		
0,34	37.1	58,9	20,0	21,3	48,9	27.7	0,0		
0.43	32.9	57.2	24.3	20.9	47.2	26.3	0.0		
0,52	30,6	56,0	25,4	19,6	46,0	26,4	0,0		
0,56	30,8	56,0	25,2	20,8	46,0	25,2	0,0		
0,61	34,1	56,0	21,9	28,4	46,0	17,6	0,0		
13,35	33,0	60,0	27,0	17,1	50,0	32,9	0,0		
13,56	58,3	60,0	1,7	56,2	50,0	-6,2	0,0		
25,22	31,1	60,0	28,9	14,6	50,0	35,4	0,0		
26,06	35,5	60,0	24,5	20,1	50,0	29,9	0,0		
26,91	44,4	60,0	15,6	22,4	50,0	27,6	0,0		
27,20	42,4	60,0	17,6	20,8	50,0	29,2	0,0		
I							I		
Р	icture 3: Ta	ble - Co	onducted	emission	on mai	ns, phase	e 1 (with	nout te	ermination)
								01414	
			EOTUANO	Cmbli		13	56 MHz N	iviivi0 ulti St/	andard - Multi Antenna
ESTH	AUS	EMV 1 Guete	V-Hortz Str	GmbH		13.		Read	er/Writer
		94 92	315 Straub	ina			SA	NGOM	A-MSMA 2V3
		5	Germany	.9	F				
			1						

160826-AU01+W02

Page 14 of 47

Freq.		Limit	delta_U rasi	U_AV MBW0	Limit	delta_U raei	Corr. rabi	Remark
0,15	52,9	66,0	13,1	24,2	56,0	31,8	0,0	StoSp-Nwithout lermination-E10
0,17	58,7	65,1	6,4	44,3	55,1	10,9	0,0	
0,21	49,2	63,4	14,2	28,8	53,4	24,6	0,0	
0,21	51,8	63,3	11,5	34,7	53,3	18,6	0,0	
0,23	44,5	62,6	18,1	16,1	52,6	36,5	0,0	
0,25	48,8	61,6	12,8	34,8	51,6	16,8	0,0	
0,25	48,7	61,7	12,9	33,2	51,7	18,5	0,0	
0,29	39,3	60,4	21,1	13,3	50,4	37,1	0,0	
0.25	43,9 20 5	50,2 50,0	16,3	30,1 De o	50,2 40.0	20,1	0,0	
0,35	38,5 34.4	58,0 58,2	23.8	20,9	49,0	22,1	0,0	
0,30	33.4	57.4	23,0	22.0	40,2	25.4	0,0	
0,46	31.1	56.6	25.6	15.7	46.6	30.9	0,0	
0.51	31.4	56.0	24,7	22.7	46.0	23.3	0,0	
0,55	32,9	56.0	23.1	28.4	46.0	17.7	0.0	
0,60	34,1	56,0	22,0	28,4	46,0	17,6	0,0	
13,56	51,2	60,0	8,8	46,2	50,0	3,8	0,0	
25,22	31,8	60,0	28,2	15,3	50,0	34,7	0,0	
26,06	35,8	60,0	24,2	20,6	50,0	29,5	0,0	
27,12	49,6	60,0	10,4	47,6	50,0	2,4	0,0	
						,		
ESTH /	AUS	EMV 1 Gusta	ESTHAUS	GmbH aße 35		13.	56 MHz N مع	GMMC GmbH /ulti Standard - Multi Anten Reader/Writer NGOMA-MSMA 2V3

160826-AU01+W02

Page 16 of 47

Interference Voltage Test									
Freq.	U_CISPR	Limit	delta_U	U_AV	Limit	delta_U	Corr.	Rem	ark
[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]	[dB]	StöSp	L1-withTermination.E10
0,16 0.47	52,0	65,2	13,3	30,4	55,2	24,9	0,0		
U,17 0.24	57,5 52.0	64,9 63.1	7,3	42,7 27.9	54,9 53.1	12,1	0,0		
0.22	50,0 49,5	63.0	10,0	37,0 34.0	53,1 53,0	10,0	0,0		
0,22	49,5	61.7	13,5	34,2 32.6	53,0 51,7	19,7	0,0		
0,29	40.4	60.5	20.1	22.5	50.5	28.0	0.0		
0.29	43.4	60,4	17.0	26.2	50.4	24.3	0.0		
0,31	38,4	60,1	21,6	14,8	50,1	35,3	0,0		
0,33	37,8	59,3	21,6	18,5	49,3	30,8	0,0		
0,39	35,0	58,0	23,0	22,1	48,0	25,9	0,0		
0,48	30,9	56,4	25,4	16,7	46,4	29,7	0,0		
0,56	30,3	56,0	25,8	20,4	46,0	25,6	0,0		
0,60	32,0	56,0	24,0	22,7	46,0	23,3	0,0		
13,56	30,9	60,0	29,2	27,0	50,0	23,0	0,0		
27,12	28,7	60,0	31,3	25,2	50,0	24,8	0,0		
					-				
Pic	cture 7: Tab	le - Con	iducted e	mission o	on main	s, phase	1 (with	termi	nation 50 Ω)
					<u>.</u>				
		_			ſ		_	GMM	C GmbH
		EMV T	ESTHAUS	GmbH		13.	56 MHz N	Multi St	andard - Multi Antenna
V TESTH	AUS	Gusta	v-Hertz-Str	aße 35			~	Read	der/Writer
-		94	315 Straub	oing	L		SA	NGON	
			Germany			160006	ALIO1 - \A	102	Dago 17 of 17
_						100020-		02	1 aye 17 0147

Г

L

160826-AU01+W02

Page 18 of 47

(iv)(2) (iv)(2) <t< th=""><th>Item Item 13,0 24,1 6,6 44,3 7,3 43,4 15,5 19,4 10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8</th><th>56,0 55,0 55,1 54,3 53,1 53,1 53,0 52,6 51,6</th><th>31,9 10,7 11,6 34,9 14,6 14,5 17,6 37,0</th><th>0,0 0,0 0,0 0,0 0,0 0,0 0,0</th><th>StoSp N with Termination £10</th></t<>	Item Item 13,0 24,1 6,6 44,3 7,3 43,4 15,5 19,4 10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	56,0 55,0 55,1 54,3 53,1 53,1 53,0 52,6 51,6	31,9 10,7 11,6 34,9 14,6 14,5 17,6 37,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0	StoSp N with Termination £10
0,17 58,4 65,0 0,17 57,7 65,1 0,19 48,8 64,3 0,21 52,9 63,1 0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	6,6 44,3 7,3 43,4 15,5 19,4 10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	55,0 55,1 54,3 53,1 53,1 53,0 52,6 51,6	10,7 11,6 34,9 14,6 14,5 17,6 37.0	0,0 0,0 0,0 0,0 0,0	
0,17 57,7 65,1 0,19 48,8 64,3 0,21 52,9 63,1 0,21 52,8 63,1 0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	7,3 43,4 15,5 19,4 10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	55,1 54,3 53,1 53,1 53,0 52,6 51,6	11,6 34,9 14,6 14,5 17,6 37.0	0,0 0,0 0,0 0,0	
0,19 48,8 64,3 0,21 52,9 63,1 0,21 52,8 63,1 0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	15,5 19,4 10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	54,3 53,1 53,1 53,0 52,6 51,6	34,9 14,6 14,5 17,6 37.0	0,0 0,0 0,0	
0,21 52,9 63,1 0,21 52,8 63,1 0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	10,2 38,5 10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	53,1 53,1 53,0 52,6 51,6	14,6 14,5 17,6 27.0	0,0 0,0 0.0	
0,21 52,8 63,1 0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	10,3 38,6 12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	53,1 53,0 52,6 51,6	14,5 17,6 27.0	0,0 n n	
0,22 50,6 63,0 0,23 44,5 62,6 0,25 44,5 61,6 0,26 47,3 61,5	12,3 35,4 18,1 15,6 17,2 27,3 14,2 32,8	53,0 52,6 51,6	17,6		
0,25 44,5 61,6 0,26 47,3 61,5	17,2 27,3 14,2 32,8	52,6 51,6	the second	0,0	
0,26 47,3 61,5	14,2 32,8	0,10	24.3	0,0	
		51.5	18.8	0.0	
0.26 47.6 61.4	13.8 33.2	51,4	18,2	0.0	
0,30 41,7 60,3	18,6 25,5	50,3	24,8	0,0	
0,34 37,1 59,3	22,3 10,3	49,3	39,0	0,0	
0,33 36,9 59,4	22,5 9,8	49,4	39,5	0,0	
0,38 34,1 58,2	24,1 17,4	48,2	30,8	0,0	
0,43 32,4 57,2	24,8 20,1	47,2	27,0	0,0	
0,47 30,3 56,4	26,1 17,6	46,4	28,9	0,0	
0,59 32,9 56,0	23,1 28,6	46,0	17,4	0,0	
0,68 24,3 56,0	31,7 19,6	46,0 50.0	26,4	0,0	
13,50 30,5 60,0 2712 291 60.0	29,5 26,9	50,0 50,0	23,1	0,0	
	20,0	00,0	21,0	0,0	
Disture 0: Table Condu	usted omission	on moir	no noutro	l (with ta	\mathbf{r}
Picture 9. Table - Condi		on mair	is, neutra		
			40.4		GMMC GmbH
ESTHAUS EMV TES	THAUS GmbH		13.5	o ivitz îv	Reader/Writer
Gustav-H	Iertz-Straße 35			SAN	NGOMA-MSMA 2V3
9431:	ermany	┝			
	- ······		160826-	AU01+W	02 Page 10 of 47

5 Radiated emission measurement (<1 GHz)

according to 47 CFR Part 15, section 15.205(a), 15.209(a), 15.225(a) to (e), and RSS-210, section 4.3 and Annex B6 with RSS-Gen, sections 8.10 and 8.9

5.1 Test Location

- \boxtimes Scan with peak detector in 3 m CDC.
- Final CISPR measurement with quasi peak detector on 3 m open area test site.

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open area test site (OATS)	EMV TESTHAUS GmbH	E00354

5.2 Test instruments

	Description	Manufacturer	Inventory No.
\boxtimes	ESCI (OATS)	Rohde & Schwarz	E00552
	ESU 26	Rohde & Schwarz	W00002
\boxtimes	ESCI (CDC)	Rohde & Schwarz	E00001
\boxtimes	VULB 9163 (OATS)	Schwarzbeck	E00013
\boxtimes	VULB 9160 (CDC)	Schwarzbeck	E00011
\boxtimes	HFH2-Z2	Rohde & Schwarz	E00060
\boxtimes	Cable set CDC	Huber + Suhner	E00459, E00460
	Cable set OATS 3 m	Huber + Suhner	E00453, E00456, E00458
	Cable set OATS 10 m	Huber + Suhner	E00453, E00455, E00458

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 20 of 47

5.3 Limits

The field strength of any emissions appearing outside of the 13.110 to 14.010 MHz band including spurious emissions falling into restricted bands as specified in 15.205(a) shall not exceed the general radiated emission limits as specified in 15.209.

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
0.009 - 0.490	266.6 - 4.9	48.5 – 13.8	300
0.490 – 1.705	48.98 – 14.08	33.8 – 22.97	30
1.705 – 30.0	30	29.54	30
30 - 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

As noted in 15.205(d)(7) devices according to 15.225 are exempt from complying with restricted band requirements for the 13.36 to 13.41 MHz band. Instead they have to comply with the limits as specified in 15.225 (a) to (d):

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dBµV/m]	Measurement distance d [m]			
13.553 - 13.567	15,848	84	30			
13.410 - 13.553	334	50.47	30			
13.567 - 13.710	334	50.47	30			
13.110 - 13.410	106	40.51	30			
13.710 - 14.010	106	40.51	30			
f < 13.110		andia a ta linaita in 645.00	0			
f > 14.010	acc	according to limits in §15.209				

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 21 of 47

5.4 Test procedure

- 1. EUT was configured according to ANSI C63.10. It was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a compact diagnostic chamber.
- 2. EUT and all peripherals were powered on.
- 3. The broadband antenna was set to vertical polarization.
- 4. The EMI receiver performed a scan from 30 MHz to 1000 MHz with peak detector peak and measurement bandwidth set to 120 kHz.
- 5. The turn table was rotated to 6 different positions (360° / 6) and the antenna polarization was changed to horizontal.
- 6. Test procedure at step 4 and 5 was repeated.
- 7. The test setup was then placed in an OATS at 3 m distance and all peak values over or with less margin to the limit than 6dB were marked and re-measured with a quasi-peak detector.
- 8. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 9. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization. The highest value was recorded.
- 10. For emissions below 30 MHz measurements were done using a loop antenna. Prescan was performed with peak detector and final measurements with quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 k Hz where average detector applies. Antenna height was not changed during this test. Appropriate CISPR bandwidths of 200 Hz for frequencies up to 150 kHz and 9 or 10 kHz for frequencies above were used.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 22 of 47

5.7 Test results

Temperature:	20°C	Humidity:	41%
Tested by:	Martin Müller	Test date:	2016-12-02

Radiated Emission Measurement 9 kHz - 30 MHz

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$, or

f_{MHz}

= 47.77 / $d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

f _{MHz} (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
f _{MHz} (3 m)	≈ 15.923 MHz

For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz: Recalculation factor = -40 log(d_{limit} / d_{measure})

For 159 kHz < f \leq 490 kHz and 1.592 MHz < f \leq 15.923 MHz:

Recalculation factor = -40 $\log(d_{\text{near field}} / d_{\text{measure}})$ - 20 $\log(d_{\text{limit}} / d_{\text{near field}})$

For f > 15.923 MHz:

Recalculation factor = -20 $\log(d_{limit} / d_{near field})$

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Frequency range	Step	IF	Detector		Measurer	Preamplifier	
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 90 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
90 kHz – 110 kHz	80 Hz	200 Hz	PK	QPK	1 ms	1 s	off
110 kHz – 150 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
150 kHz – 490 kHz	4 kHz	9 kHz	PK	AV	1 ms	1 s	off
490 kHz – 30 MHz	4 kHz	9 kHz	PK	QPK	1 ms	1 s	off

The following picture shows the worst-case-emissions for the spurious emissions at EUT-position 1, antenna parallel.

Picture 12: Radiated emission 9 kHz - 30 MHz @ 3m distance

Frequency [MHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result
13.560	59.35	QPK	-21.40	37.95			Carrier
27.120	47.99	QPK	-24.63	23.36	29.54	-6.18	Pass

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 25 of 47

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$

Recalculation factor = -40 $\log(d_{\text{near field}} / d_{\text{measure}})$ - 20 $\log(d_{\text{limit}} / d_{\text{near field}})$

f _{мнz}	d _{near field}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	[m]	factor [dB]
13.560	3.523	3.000	30.000	-21.40

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$

Recalculation factor = $-20 \log(d_{\text{limit}} / d_{\text{nearfield}})$

f _{мнz}	d _{near field}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	[m]	factor [dB]
27.120	1.761	3.000	30.000	-24.63

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 26 of 47

Radiated Emission Measurement 30 MHz - 1000 MHz

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 27 of 47

f [MHz]	E _{final} [dBV/m]	Limit [dBµV/m]	Height [cm]	TT [°]	Polarisation	Result
30.54	25.65	40.00	100	301.0	V	Pass
31.80	23.13	40.00	100	282.2	V	Pass
32.58	21.15	40.00	100	201.2	V	Pass
33.90	20.73	40.00	100	281.6	V	Pass
40.68	28.46	40.00	250	350.2	Н	Pass
54.24	37.07	40.00	261	330.6	Н	Pass
67.80	21.90	40.00	100	252.8	V	Pass
81.36	35.92	40.00	109	262.8	V	Pass
94.92	24.92	43.52	100	291.9	V	Pass
108.48	34.18	43.52	100	282.4	V	Pass
135.60	30.69	43.52	100	301.0	V	Pass
162.72	40.34	43.52	117	271.8	V	Pass
189.84	26.08	43.52	250	39.5	Н	Pass

Picture 13: Radiated emission 30 MHz - 1000MHz @ 3m distance

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 28 of 47

Spectrum Mask

Test procedure

The EUT was placed in a fully anechoic chamber and the testing was performed in accordance with ANSI C63.10 and 47 CFR Part 15, section 15.225 (a) to (d). The measurement distance was 3 m. To find the closest margin of the spectrum to the limit mask adapted to the test distance the EUT was rotated by 360 degrees with detector of the test receiver set to peak. The loop antenna placed in a fixed height of 1 meter was rotated by 360 degrees to get the maximum of emission. In case of exceeding the limits the detector is switched to quasi peak for final testing in position of maximum emission.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 29 of 47

Test result

Temperature:	20°C	Humidity:	41%
Tested by:	Martin Müller	Test date:	2016-12-01

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}, \text{ or}$

 $\mathbf{f}_{\mathsf{MHz}}$

 $= 47.77 / d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

f _{MHz} (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
f _{MHz} (3 m)	≈ 15.923 MHz

For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz:

Recalculation factor = -40 log(d_{limit} / d_{measure})

For 159 kHz < f ≤ 490 kHz and 1.592 MHz < f ≤ 15.923 MHz: Recalculation factor = -40 log($d_{near field}$ / $d_{measure}$) - 20 log(d_{limit} / $d_{near field}$)

For f > 15.923 MHz:

Recalculation factor = -20 $\log(d_{\text{limit}} / d_{\text{near field}})$

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 30 of 47

r	I				r		1 1
Frequency range	Step	IF	Detector		Detector Measurement Time		Preamplifier
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
490 kHz – 30 MHz	4 kHz	9 kHz	PK	QPK	1 ms	1 s	off

The following picture shows the worst-case-emissions for spectrum mask at EUT-position 2, antenna in line.

Picture 14: Spectrum mask for 13.56 MHz @ 3m distance

Frequency [MHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result
12.924	38.80	PK	-21.81	16.99			Pass
12.924	29.86	QPK	-21.81	8.05	29.54	-21.49	Pass
13.348	43.95	PK	-21.53	22.42			Pass
13.348	36.46	QPK	-21.53	14.93	40.51	-25.58	Pass
13.560	62.73	PK	-21.40	41.33			Pass
13.560	62.46	QPK	-21.40	41.06	84.00	-42.94	Pass
13.772	40.87	PK	-21.26	19.61			Pass
13.772	33.80	QPK	-21.26	12.54	40.51	-27.97	Pass

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 31 of 47

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}}$

= 47.77 /
$$f_{MHz}$$

Recalculation factor

= -40 log(d_{near field} / d_{measure}) - 20 log(d_{limit} / d_{near field})

f _{мнz} [MHz]	d _{near field} [m]	d _{measure} [m]	d _{limit} [m]	Recalculation factor [dB]
12.924	3.696	3.000	30.000	-21.81
13.348	3.579	3.000	30.000	-21.53
13.560	3.523	3.000	30.000	-21.40
13.772	3.469	3.000	30.000	-21.26

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 32 of 47

6 Radiated emission measurement (>1 GHz)

according to 47 CFR Part 15, section 15.209(a), RSS-210, section 4.3 with RSS-Gen, section 8.9

Remark:

This measurement needs not to be applied because

- the intentional radiator operates below 10 GHz and tenth harmonic of the highest fundamental frequency is lower than 1 GHz (see 47 CFR Part 15, section 15.33(a)(1), and RSS-Gen, section 6.13), and
- the digital part of the device does not generate or use internal frequencies higher than 108 MHz (see 47 CFR Part 15 section 15.33(b)(1), and RSS-Gen, section 2.3.3 with ICES-003, section 6.2).

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 33 of 47

7 Carrier frequency stability

according to CFR 47 Part 15, section 15.225(e), and RSS-210, Annex B6 with RSS-Gen, section 6.11

7.1 Test Location

Description		Manufacturer	Inventory No.	
	Climatic chamber VC 4100	Vötsch Industrietechnik	C00014	
\boxtimes	Climatic chamber VC ³ 4034	Vötsch Industrietechnik	C00015	

7.2 Test instruments

	Description	Manufacturer	Inventory No.
	ESU 26	Rohde & Schwarz	W00002
	ESCI 3	Rohde & Schwarz	E00552
\boxtimes	RF-R 400-1	Langer EMV-Technik	E00270

7.3 Limits

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ (100 ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery. Alternatively, an external supply voltage can be used and set at the battery nominal voltage, and again at the battery operating end point voltage which must be specified by the equipment manufacturer.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 34 of 47

7.4 Test procedure

 If possible EUT is operating providing an unmodulated carrier. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to the shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point on the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1% of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance allowed is larger than the uncertainty of the measured frequency tolerance.

- 2. The carrier frequency is measured depending on the variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment an external supply voltage can be used and set at the battery nominal voltage, and again at the battery operating end point voltage which must be specified by the equipment manufacturer. Alternatively, tests shall be performed using a new battery.
- 3. The carrier frequency is measured over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage.

7.5 Test setup

Picture 15: Test setup for carrier frequency stability measurement

7.6 Test deviation

There is no deviation from the standards referred to.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 35 of 47

emperature:	20°C		Н	umidity:	2	11%
ested by:	Marti	n Müller	Te	est date:	2	2016-12-05
arrier fre	quency sta	bility vs.	temper	ature		
150.0						
150,0						
100.0						
Ldo						
e 50,0						
ano						
				+		
δ 2						
ien -50,0						
Е						
-100,0						
-150,0			· · ·	120		
±υ	+10	+20	Tomporatura	+30	+40	+50
			remperature	(*C)		
		F			40	
Supply voltage:	5 V	Frequen	cy under nor	ninal conditions:	13,	560577 MHz
Supply voltage: Temperature	5 V Frequency	Frequen	cy under nor	ninal conditions:	13, Lower Limit	560577 MHz Margin
Supply voltage: Temperature (°C)	5 V Frequency (MHz)	Frequen Frequency (Hz)	cy under nor Tolerance (ppm)	ninal conditions: Upper Limit (ppm)	13, Lower Limit (ppm)	560577 MHz Margin (ppm)
Supply voltage: Temperature (°C) ±0	5 V Frequency (MHz) 13,560569	Frequen Frequency (Hz) -8	cy under nor Tolerance (ppm) -0,6	ninal conditions: Upper Limit (ppm) +100,0	13, Lower Limit (ppm) -100,0	560577 MHz Margin (ppm) 99,4
Supply voltage: Temperature (°C) ±0 +10	5 V Frequency (MHz) 13,560569 13,560605	Frequen Frequency (Hz) -8 28	Tolerance (ppm) -0,6 2,1	ninal conditions: Upper Limit (ppm) +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9
Supply voltage: Temperature (°C) ±0 +10 +20	5 V Frequency (MHz) 13,560569 13,560605 13,560577	Frequen Frequency (Hz) -8 28 0	Tolerance (ppm) -0,6 2,1 0,0	ninal conditions: Upper Limit (ppm) +100,0 +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9 100,0
Supply voltage: Temperature (°C) <u>±0</u> +10 +20 +30	5 V Frequency (MHz) 13,560569 13,560505 13,560577 13,560553	Frequency (Hz) -8 28 0 -24	Tolerance (ppm) -0,6 2,1 0,0 -1,8	ninal conditions: Upper Limit (ppm) +100,0 +100,0 +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9 100,0 98,2
Supply voltage: Temperature (°C) ±0 +10 +20 +30 +40	5 V Frequency (MHz) 13,560569 13,560605 13,560577 13,560553 13,560513	Frequency (Hz) -8 28 0 -24 -64	Tolerance (ppm) -0,6 2,1 0,0 -1,8 -4,7	ninal conditions: Upper Limit (ppm) +100,0 +100,0 +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0 -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9 100,0 98,2 95,3
Supply voltage: Temperature (°C) ±0 +10 +20 +30 +40 +50	5 V Frequency (MHz) 13,560569 13,560505 13,560577 13,560553 13,560513 13,560476	Frequency (Hz) -8 28 0 -24 -64 -101	Tolerance (ppm) -0,6 2,1 0,0 -1,8 -4,7 -7,4	ninal conditions: Upper Limit (ppm) +100,0 +100,0 +100,0 +100,0 +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0 -100,0 -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9 100,0 98,2 95,3 92,6
Supply voltage: Temperature (°C) ±0 +10 +20 +30 +40 +50 +60	5 V Frequency (MHz) 13,560569 13,560605 13,560577 13,560553 13,560513 13,560476 13,560498	Frequency (Hz) -8 28 0 -24 -64 -101 -79	Tolerance (ppm) -0,6 2,1 0,0 -1,8 -4,7 -7,4 -5,8	ninal conditions: Upper Limit (ppm) +100,0 +100,0 +100,0 +100,0 +100,0 +100,0	13, Lower Limit (ppm) -100,0 -100,0 -100,0 -100,0 -100,0	560577 MHz Margin (ppm) 99,4 97,9 100,0 98,2 95,3 92,6 94,2

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 36 of 47

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 37 of 47

8 Bandwidths

according to CFR 47 Part 2, section 2.202(a), and RSS-Gen, section 6.6

8.1 Test Location

See clause 5.1 on page 20.

8.2 Test instruments

See clause 5.2 on page 20.

8.3 Limits

The bandwidths are recorded only. There are no limits specified in CFR 47 Part 15, section 15.225, and RSS-210, Annex B6

8.4 Test setup

See clause 5.5 on page 23.

8.5 Test deviation

There is no deviation from the standards referred to.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 38 of 47

8.6 Test results

Temperature:	20°C	Humidity:	41%
Tested by:	Martin Müller	Test date:	2016-12-01

Occupied bandwidth (99 %)

Test procedure

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth. For this purpose the appropriate measurement function of the spectrum analyzer is used.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 39 of 47

-20 dB emission bandwidth

Test procedure

Where indicated, the -20 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

160826-AU01+W02

Page 41 of 47

9 Estimation of RF radiation exposure for mobile devices

according to 47 CFR Part 2, section 2.1091, and RSS-102, sections 3.2 and 4

This estimation follows the general guidelines for RF Exposure according to KDB 447498.

As noted in §2.1091(b) a mobile device is defined as "a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a **separation distance of at least 20 centimeters** is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons."

According to §2.1091(c) the limits to be used for evaluation are defined in §1.1310.

As specified in §1.1310(d)(2) at operating frequencies less than or equal to 6 GHz, the limits for maximum permissible exposure (MPE), derived from whole-body SAR limits and listed in Table 1 of §1.1310(e) may be used.

Table 1 below shows the limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fields.

Frequency range	Electric field strength	Magnetic field strength	Power density	Averaging time			
(MHz)	(V/m)	(A/m)	(mW/cm²)	(minutes)			
(A) Limits for Occupational/Controlled Exposure							
0.3 - 3.0	614	1.63	*100	6			
3.0 - 30	1842/f	4.89/f	*900/f ²	6			
30 - 300	61.4	0.163	1.0	6			
300 - 1500			f/300	6			
1500 - 100000			5	6			
	(B) Limits for Gener	ral Population/Unco	ntrolled Exposure				
0.3 - 1.34	614	1.63	*100	30			
1.34 - 30	824/f	2.19/f	*180/f ²	30			
30 - 300	27.5	0.073	0.2	30			
300 - 1500			f/1500	30			
1500 - 100000			1.0	30			

Table 1: Limits for maximum permissible exposure (MPE) according to table 1 of §1.1310(e)

Notes:

- 1. f = frequency in MHz.
- 2. * = Plane-wave equivalent power density.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 42 of 47

Appropriate RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment) can be found in table 4 of RSS-102, section 4:

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)
0.003-10	83	90	-	Instantaneous*
0.1-10	-	0.73/f	-	6**
1.1-10	87/f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/f ^{0.25}	0.1540/f ^{0.25}	8.944/f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/f ^{1.2}
150000-300000	0.158 f ^{0.5}	$4.21 \text{ x} 10^{-4} \text{ f}^{0.5}$	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}
Note: f is frequency in I	MHz.			

*Based on nerve stimulation (NS).

** Based on specific absorption rate (SAR).

Table 2: RF field strength limits according to table 4 of RSS-102

Maximum peak value of electric field strength measured at 13.560 MHz in a distance of 3 m: $E_{meas}(3 \text{ m}) = \frac{62.73 \text{ dB}\mu\text{V/m}}{1000 \text{ (see picture 14)}}$

Although expressed in "dBµV/m" the source of the field strength is magnetic and the value is recorded with a loop antenna measuring magnetic field. Using wave impedance in free space of about $120 \cdot \pi \Omega$ (51.5 dB) magnetic field strength results in: H_{meas}(3 m) = E_{meas}(3 m) - 51.5 dB = 62.73 dBµV/m -51.5 dB = <u>11.23 dBµA/m</u>

Worst case field strength is calculated for a separation distance of 20 centimeters.

Using an extrapolation factor of 40 dB/decade (~ r^{-2}) results in: $E_{calc}(20 \text{ cm}) = 62.73 \text{ dB}\mu\text{V/m} - 40 \cdot \log(0.2 \text{ m} / 3 \text{ m}) = 62.73 \text{ dB}\mu\text{V/m} + 47.04 \text{ dB}$ $E_{calc}(20 \text{ cm}) = 109.77 \text{ dB}\mu\text{V/m} = 0.308 \text{ V/m}$

Using an extrapolation factor of 60 dB/decade (~ r⁻³) results in: $E_{calc} (20 \text{ cm}) = 62.73 \text{ dB}\mu\text{V/m} - 60 \cdot \log(0.2 \text{ m} / 3 \text{ m}) = 62.73 \text{ dB}\mu\text{V/m} + 70.56 \text{ dB}$ $E_{calc} (20 \text{ cm}) = 133.29 \text{ dB}\mu\text{V/m} = 4.618 \text{ V/m}$

Using an extrapolation factor of 40 dB/decade (~ r⁻²) results in: $H_{calc}(20 \text{ cm}) = 11.23 \text{ dB}\mu\text{A/m} - 40 \cdot \log(0.2 \text{ m} / 3 \text{ m}) = 11.23 \text{ dB}\mu\text{A/m} + 47.04 \text{ dB}$ $H_{calc}(20 \text{ cm}) = 58.27 \text{ dB}\mu\text{A/m} = \underline{819.41 \cdot 10^{-6} \text{ A/m}}$

Using an extrapolation factor of 60 dB/decade (~ r⁻³) results in: $H_{calc}(20 \text{ cm}) = 11.23 \text{ dB}\mu\text{A/m} - 60 \cdot \log(0.2 \text{ m} / 3 \text{ m}) = 11.23 \text{ dB}\mu\text{A/m} + 70.56 \text{ dB}$ $H_{calc}(20 \text{ cm}) = 81.79 \text{ dB}\mu\text{A/m} = 0.0123 \text{ A/m}$

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Worst case power density is calculated for a separation distance of 20 centimeters by using the respective field strenghts for an extrapolation factor of 60 dB/decade ($\sim r^{-3}$):

 $\begin{array}{l} S_{calc}(20\ cm) = E_{calc}\ (20\ cm) \cdot H_{calc}(20\ cm) = 4.618\ V/m \cdot 0.0123\ A/m \\ S_{calc}(20cm) = \underline{0.0568\ W/m^2} = \underline{0.0057\ mW/cm^2} \end{array}$

Comparing the calculated results to the limits for general population/uncontrolled exposure at 13.56 MHz shows that even with worst case calculation using peak values the limits are kept.

E-field								
E _{calc} (2	20 cm)	Limit 47 CFR Par 1, §1.1310(e)		Limit RSS-102, table 2				
(V/m)		(V/m)		(V/m)				
4.618		60.77		27.46				
H-field								
H _{calc} (20 cm)		Limit 47 CFR Par 1, §1.1310(e)		Limit RSS-102, table 2				
(A/m)		(A/m)		(A/m)				
0.0123		0.1615		0.0728				
Power density								
S _{calc} (20 cm)	Limit 47 CFR Par 1, §1.1310(e)		S _{calc} (20 cm)	Limit RSS-102, table 2				
(mW/cm ²)	(mW/cm ²)		(W/m²)	(W/m²)				
0.0057	0.9789		0.0568	2				

Table 3: Calculated results @ 13.56 MHz compared to RF field strength limits

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 44 of 47

10 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
Test receiver	ESCI 3	100013	E00001	2016-02	2018-02
Test receiver	ESCI 3	100328	E00552	2016-09	2018-09
Test receiver	ESCS 30	825442/0002	E00003	2016-04	2018-04
LISN	ESH2-Z5	893406/009	E00005	2016-02	2018-02
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
Broadband antenna	VULB 9160	9160-3050	E00011	2015-09	2017-09
Broadband antenna	VULB 9163	9163-114	E00013	2015-09	2017-09
Magnetic field probe	RF-R 400-1	02-2030	E00270	N/A (see note 1)	
Shielded room	P92007	B83117C1109T211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69- 2-0006	E00026	N/A	
Open area test site (OATS)			E00354	2015-10	2017-10
Climatic chamber 340 I	VC ³ 4034	58566123250010	C00015	2016-10	2018-10
Cable set shielded room	Cable no. 30		E00424	2016-07	2018-07
Cable set CDC	Cables no. 37 and 38		E00459 E00460	2015-05	2017-05
Cable set OATS 3 m	Cables no. 19, 34 and 36		E00453 E00456 E00458	2015-11	2017-11

Table 4: Equipment calibration status

Note 1:Used for relative measurements only (see test instruments for "Carrier frequency
stability", clause 7.2)Note 2:Expiration date of measurement facility registration (OATS) by
- FCC (registration number 221458):2017-04

- Industry Canada (test sites number 3472A-1 and 3472A-2): 2018-11 Note 3: Expiration date of test firm accreditation for OATS and SAC:

FCC test firm type "accredited": 2017-06

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

11 Measurement uncertainty

Description	Max. deviation	k=
Conducted emission AMN (9kHz to 30 MHz)	± 3.8 dB	2
Radiated emission open field (3 m) (30 MHz to 300 MHz) (300MHz to 1 GHz)	± 5.4 dB ± 5.9 dB	2
Radiated emission absorber chamber (> 1000 MHz)	± 4.5 dB	2

Table 5: Measurement uncertainty

The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 46 of 47

12 Revision History

Date	Description	Person	Revision
2016-12-06	First edition	M. Müller	0

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany GMMC GmbH 13.56 MHz Multi Standard - Multi Antenna Reader/Writer SANGOMA-MSMA 2V3

160826-AU01+W02

Page 47 of 47