

FCC RF Test Report

For

Shenzhen Hangshi Technology Co.,Ltd.

	D 1450 0 1 10 0 15 0 15				
Test Standards:	Part 15C Subpart C §15.247				
Product Description:	Bluetooth Keyboard				
Tested Model:	HB245				
Additional Model No.:	<u>N/A</u>				
Brand Name:	<u>N/A</u>				
FCC ID:	2AKHJHB245				
Classification	Digital Spread Spectrum (DSS)				
Report No.:	EC1810004F01				
Tested Date:	2018-10-25 to 2018-10-26				
Issued Date:	2018-10-26				
Prepared By:	Tiny - yang Tiny Yang/ Engineer				
Approved By:	Bacon Wu / RF Manager				
Hunan Fcl	oud Testing Technology Co., Ltd.				
	Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and				
Technological	Development Zone, Hunan, P.R.C				
Tel.: +86-731-	89634887 Fax.: +86-731-89634887				
www.hn-ecloud.com					

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2018.10.26	Valid	Original Report

Tel.:+86-731-89634887

TABLE OF CONTENTS

1	TEST	T LABORATORY	5
	1.1	Test facility	5
2	GEN	ERAL DESCRIPTION	6
	2.1	Applicant	6
	2.2	Manufacturer	
	2.3	General Description Of EUT	
	2.4	Modification of EUT	
	2.5	Applicable Standards	
3	TEST	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	9
	3.3	Support Equipment	10
	3.4	Test Setup	10
	3.5	Measurement Results Explanation Example	12
4	TEST	T RESULT	13
	4.1	20dB and 99% Bandwidth Measurement	
	4.2	Hopping Channel Separation Measurement	16
	4.3	Number of Channel Measurement	
	4.4	Average Time of Occupancy Measurement	20
	4.5	Peak Output Power Measurement	
	4.6	Conducted Band Edges Measurement	30
	4.7	Conducted Spurious Emission Measurement	34
	4.8	Radiated Band Edges and Spurious Emission Measurement	
	4.9	AC Conducted Emission Measurement	
	4.10	Antenna Requirements	61
5	LIST	OF MEASURING EQUIPMENT	62
6	UNC	ERTAINTY OF EVALUATION	63
Α	PPENI	DIX A. SETUP PHOTOGRAPHS	
Α	PPEN	DIX B. EUT EXTERNAL PHOTOGRAPHS	
Α	PPEN	DIX C. EUT INTERNAL PHOTOGRAPHS	

Summary of Test Result

FCC Rule	IC Rule	Description	Limit	Result	Remark
15.247(a)(1)	RSS-247 5.1(1)	20dB Bandwidth	NA	Pass	-
-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-
15.247(a)(1)	RSS-247	Hopping Channel	≥ 2/3 of 20dB BW	Pass	_
13.247 (a)(1)	5.1(2)	Separation	2 2/3 OI 200B BVV	F a 3 3	-
15 247(2)(1)	RSS-247	Number of Channels	≥ 15Chs	Pass	
15.247(a)(1)	5.1(4)	Number of Channels	2 150115	F a 5 5	-
15.247(a)(1)	RSS-247	Average Time of	≤ 0.4sec in 31.6sec	D	
15.247(a)(1)	5.1(4)	Occupancy	period	Pass	_
15.247(b)(1)	RSS-247	Peak Output Power	≤ 125 mW	Pass	
15.247(0)(1)	5.4(2)	reak Output Fower	≤ 125 IIIVV		-
15.247(d)	RSS-247	Conducted Band Edges	≤ 20dBc	Pass	
15.247(u)	5.5	Conducted Band Edges	≥ 200BC	F a 5 5	-
15.247(d)	RSS-247	Conducted Spurious	≤ 20dBc	Pass	
15.247(d)	5.5	Emission	≥ 200BC	Fa55	-
	RSS-247	Radiated Band Edges			Under limit
15.247(d)	5.5	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	-6.68 dB at
	5.5	Emission			9764.00 MHz
	RSS-Gen	AC Conducted		Pass	Under limit
15.207	8.8	Emission	15.207(a)		-13.74 dB at
	0.0	LIIII35IUII			0.486 MHz
15.203 & N/A Antenna Requirement		N/A	Pass	-	

Tel.:+86-731-89634887

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number: L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244 , Test Firm Registration Number: 793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Code: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Tel.:+86-731-89634887

General Description 2

2.1 Applicant

Shenzhen Hangshi Technology Co.,Ltd.

Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.2 Manufacturer

Shenzhen Hangshi Technology Co.,Ltd.

Technology Park, Democracy Town, Bao'an West Industry Area, Shajing District, Shenzhen, China.

2.3 General Description Of EUT

Product	Bluetooth Keyboard
Model No.	HB245
Additional No.	N/A
Difference Description	N/A
FCC ID	2AKHJHB245
IC ID	N/A
Power Supply	5Vdc (adapter or host equipment) 3.7Vdc (Li-ion)
Modulation Technology	FHSS
Modulation Type	GFSK
Operating Frequency	2402MHz~2480MHz
Number Of Channel	79
Max. Output Power	Bluetooth BR(1Mbps) : -5.625 dBm (0.274 W)
Antenna Type	PCB Antenna type with 1.87dBi gain
I/O Ports	Refer to user's manual

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

FCC ID: 2AKHJHB245 www.hn-ecloud.com

Tel.:+86-731-89634887

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05

Tel.:+86-731-89634887

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Channel	Frequency	Mode	Bluetooth RF Output Power
Ch00	2402MHz	GFSK	-5.625
Ch39	2441MHz	GFSK	-6.675
Ch78	2480MHz	GFSK	-7.828

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- b. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Tel.:+86-731-89634887 Fax.: +86-731-89634887

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

	Summary table of Test Cases					
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps					
	GFSK					
Conducted	Mode 1: CH00_2402 MHz					
	Mode 2: CH39_2441 MHz					
Test Cases	Mode 3: CH78_2480 MHz					

3.2.2 Radiated Emission Test (Below 1GHz)

	Bluetooth BR 1Mbps GFSK				
Radiated		Mode 1: CH00_2402 MHz			
Test Cases	Transmitting+Charging	Mode 2: CH39_2441 MHz			
		Mode 3: CH78_2480 MHz			

Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

2. All above modes were tested, but only the worst case test mode 2 was reported.

3.2.3 Radiated Emission Test (Above 1GHz)

	Bluetooth BR 1Mbps GFSK				
Radiated		Mode 1: CH00_2402 MHz			
Test Cases	Transmitting+Charging	Mode 2: CH39_2441 MHz			
		Mode 3: CH78_2480 MHz			

Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

2. Following channel(s) was (were) selected for the final test as listed above

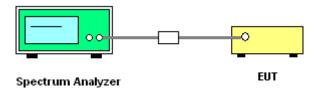
3.2.4 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : Bluetooth Link + USB Cable (Charging from Adapter)
Emission	

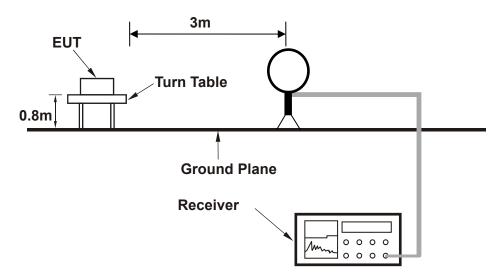
Tel.:+86-731-89634887 Fax.: +86-731-89634887

FCC ID: 2AKHJHB24 www.hn-ecloud.com

3.3 Support Equipment


Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	нтс	TC E250	N/A	N/A	N/A
2.	Micro-USB Cable	нтс	N/A	N/A	N/A	unshielded 1.2m
3.	Notebook	Lenovo	E470C	FCC DoC	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m
4.	lpad	Apple	A1822	BCGA1822	N/A	N/A

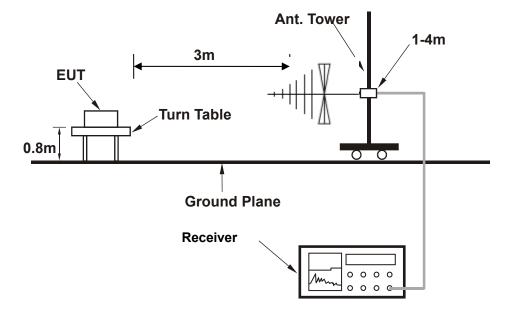
3.4 Test Setup


The EUT is continuously communicating to the Bluetooth tester during the tests.

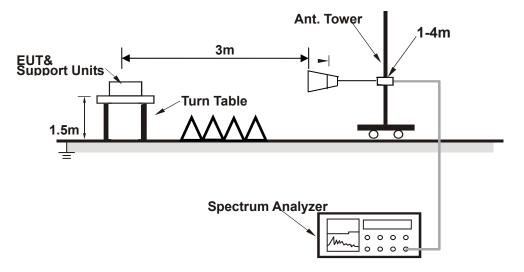
EUT was set in the Hidden menu mode to enable BT communications.

Setup diagram for Conducted Test

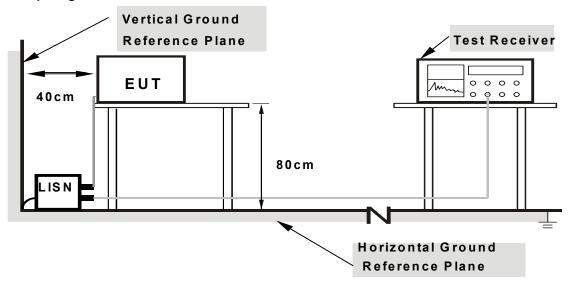
Setup diagram for Raidation(9KHz~30MHz) Test



Setup diagram for Raidation(Below 1G) Test


Fax.: +86-731-89634887

FCC ID: 2AKHJHB245 www.hn-ecloud.com Tel.:+86-731-89634887



Setup diagram for Raidation(Above1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 5 + 10 = 15 (dB)

4 Test Result

4.1 20dB and 99% Bandwidth Measurement

4.1.1 Limit of 20dB and 99% Bandwidth

None; for reporting purposes only.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

RBW = 1% to 5% of the 20 dB bandwidth; VBW = approximately 3 times RBW; Sweep = auto;

Detector function = peak; Trace = max hold.

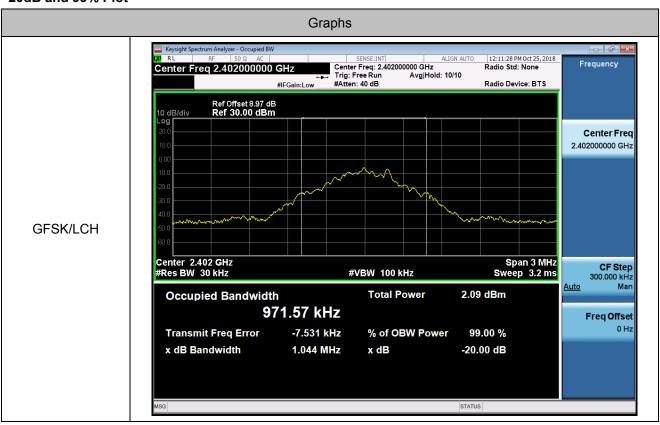
4. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.

Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;

RBW = 1% to 5% of the 99% bandwidth; VBW = approximately 3 times RBW; Sweep = auto;

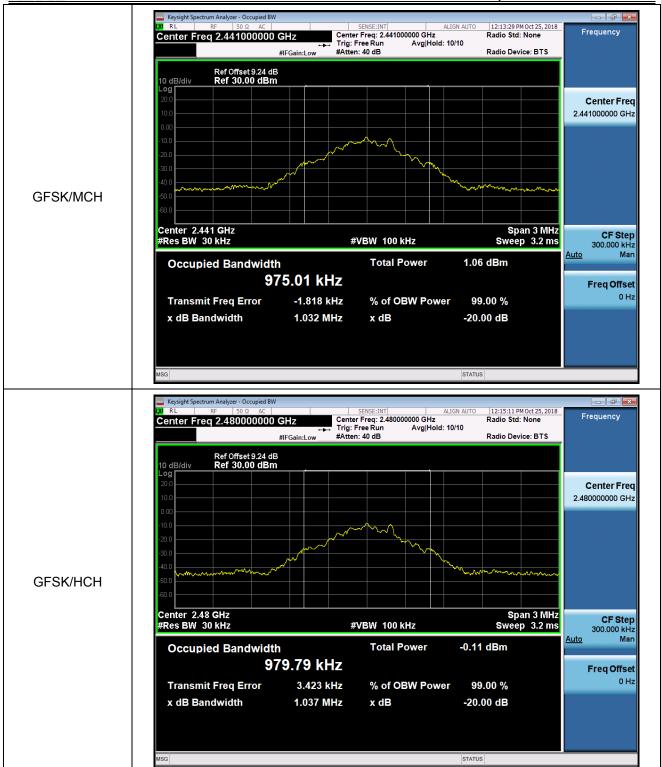
Detector function = peak; Trace = max hold.

Tel.:+86-731-89634887



4.1.3 Test Result of 20dB Bandwidth and 99% Bandwidth

Test Mode :		Transmitting	Temperature :			24~26 ℃	
Test Engine	er:	Damon Zhang	Relative Humid		dity:	61~63	
Data Rate	Modulatio	on Channel	20dB Bar	ndwidth [MHz]	99	% OBW [MHz]	Verdict
1Mbps	GFSK	LCH	•	1.044		0.97157	PASS
1Mbps	GFSK	MCH	•	1.032		0.97501	PASS
1Mbps	GFSK	НСН	,	1.037		0.97979	PASS


20dB and 99% Plot

Tel.:+86-731-89634887

Tel.:+86-731-89634887

4.2 Hopping Channel Separation Measurement

4.2.1 Limit of Hopping Channel Separation

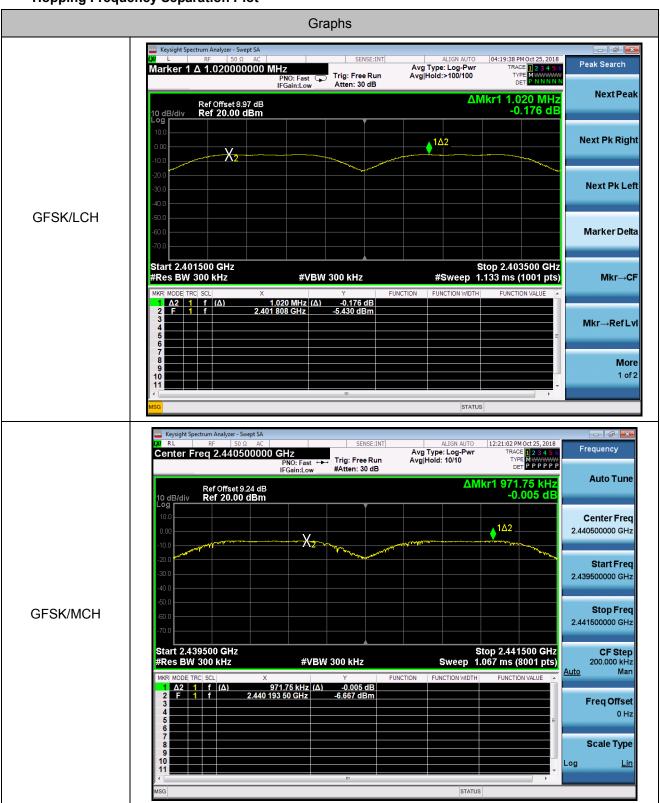
FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

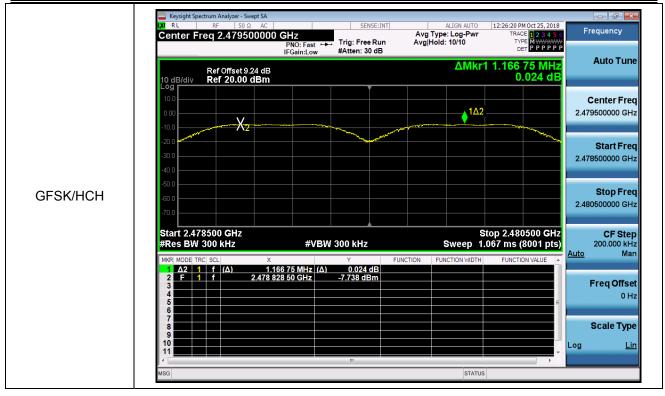
4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


4.2.3 Test Result of Hopping Channel Separation

Test Mode :		Transmitting		Temperature :	24~26 ℃	
Test Enginee	r:	Damon Zhang		Relative Humidity :	61~63	
Data Rate	Modulatio	n Channel	Carrier	Carrier Frequency Separation [MHz]		Verdict
1Mbps	GFSK	LCH		1.020		PASS
1Mbps	GFSK	MCH		0.972		PASS
1Mbps	GFSK	HCH		1.167		PASS

Tel.:+86-731-89634887


Hopping Frequency Separation Plot

Tel.:+86-731-89634887

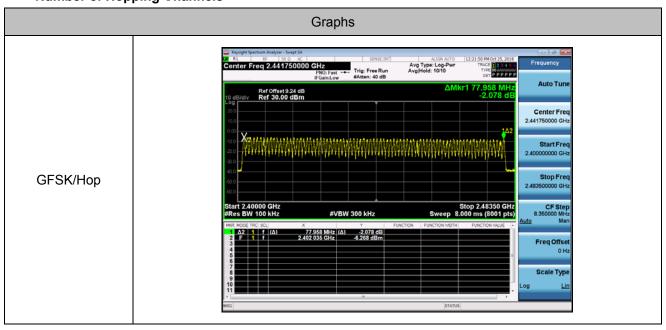
Tel.:+86-731-89634887

4.3 Number of Channel Measurement

4.3.1 Limits of Number of Hopping Frequency

FCC § 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


4.3.2 Test Procedure

- 4. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 5. Turn on the EUT and connect it to measurement instrument.
- 6. The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple continuous sweeps. The RBW is set to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. The analyzer is set to Max Hold.

4.3.3 Test Result of Number of Hopping Frequency

Test Mode :		Trans	mitting	Temperature :		24~26℃	
Test Engineer :		Damo	on Zhang	Relative Humidity:		61~63	
Data Rate	Modulati	on	Channel.	Nun	Number of Hopping Channel		Verdict
1Mbps	GFSK		Нор	79			PASS

Number of Hopping Channels

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID: 2AKHJHB245

www.hn-ecloud.com

4.4 Average Time of Occupancy Measurement

4.4.1 Limit of Average Time of Occupancy

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

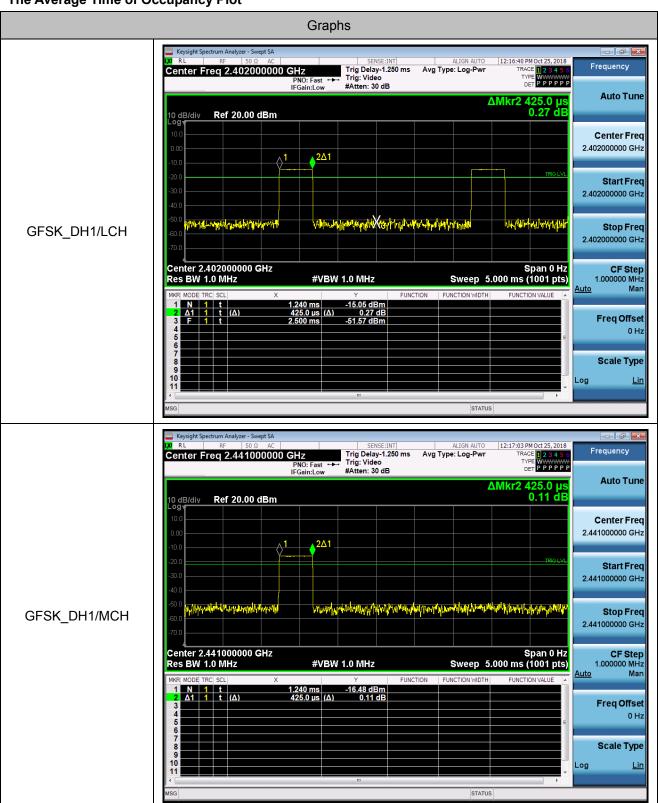
4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.
- 4. The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

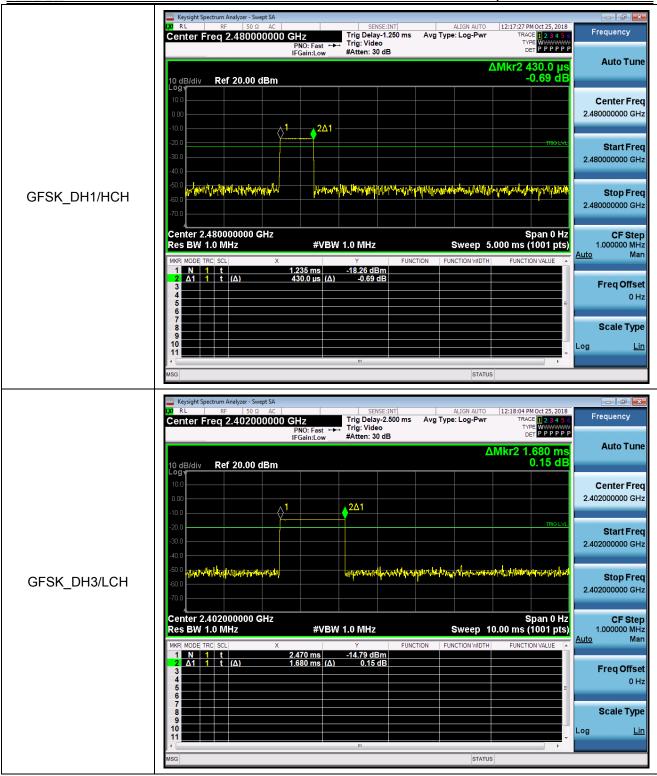
Tel.:+86-731-89634887

4.4.3 Test Result of Dwell Time

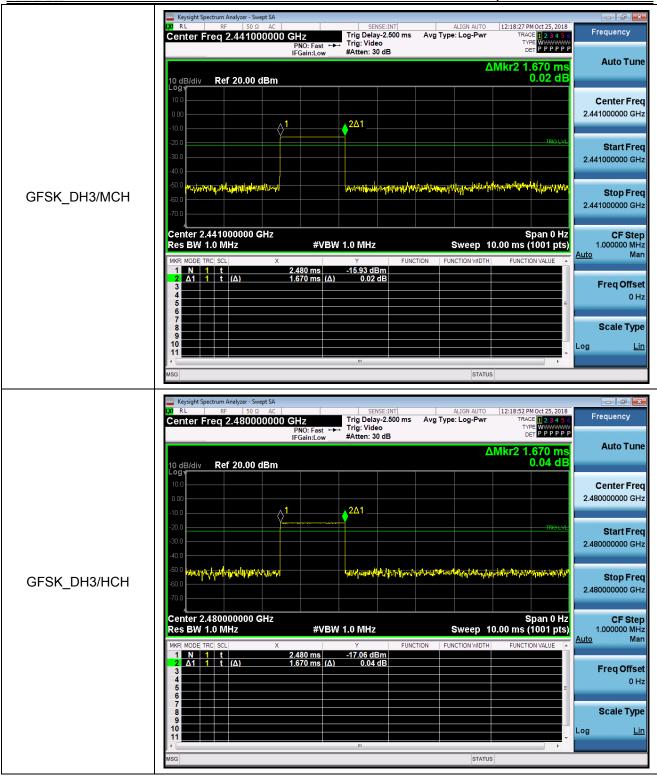
Test Mode :TransmittingTemperature :24~26℃Test Engineer :Damon ZhangRelative Humidity :67~69%

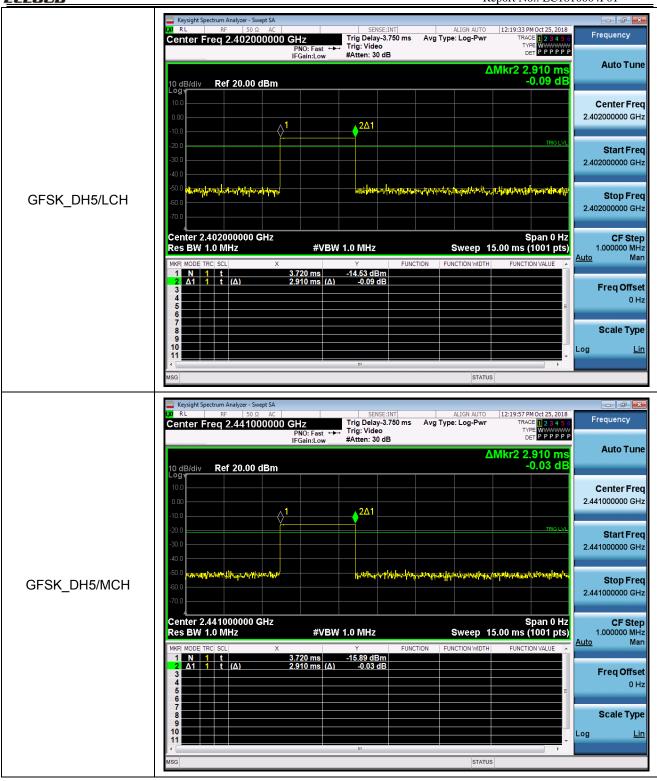

rest Engineer.		Danioi	i Zilaliy	Relative numbers 107~09%			
Data	Modulation	Packet	Channel	Burst Width	Total	Dwell	Verdict
Rate	Wiodulation	Packet	Chamine	[ms/hop/ch]	Hops[hop*ch]	Time[s]	verdict
1Mbp	GFSK	DH1	LCH	0.43	320	0.138	PASS
S							
1Mbp	GFSK	DH1	MCH	0.43	320	0.138	PASS
s	0.01	5111	WOTT	0.10	020	0.130	
1Mbp	GFSK	DH1	HCH	0.43	320	0.138	PASS
s	Grak	וחט	псп	0.43	320	0.130	FASS
1Mbp	GFSK	DH3	LCH	1.68	160	0.269	PASS
s	Grak	טחט	LCH	1.00	100	0.209	PAGG
1Mbp	CESK	FSK DH3	MCH	1.67	160	0.267	PASS
S	Grak						
1Mbp	GFSK	DH3	HCH	1.67	160	0.267	PASS
s	Grak	טחט	псп	1.07	160	0.207	FASS
1Mbp	GFSK	DH5	LCH	2.91	106.7	0.31	PASS
s	GFSK	DHS	LOIT	2.91	100.7	0.51	FASS
1Mbp	GFSK	DH5	MCH	2.91	106.7	0.31	PASS
S	Gran	פחע	IVICH	2.91	100.7	0.31	PASS
1Mbp	GFSK	DH5	HCH	2.91	106.7	0.31	PASS
S	GFSK	טחט	ПСП	2.81	100.7	0.31	FASS

Tel.:+86-731-89634887

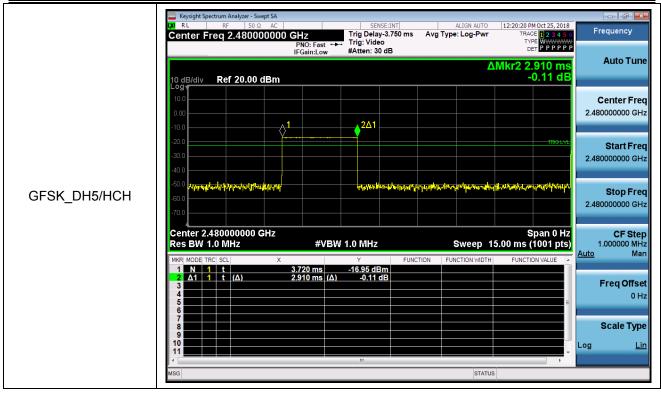


The Average Time of Occupancy Plot





Tel.:+86-731-89634887



Tel.:+86-731-89634887

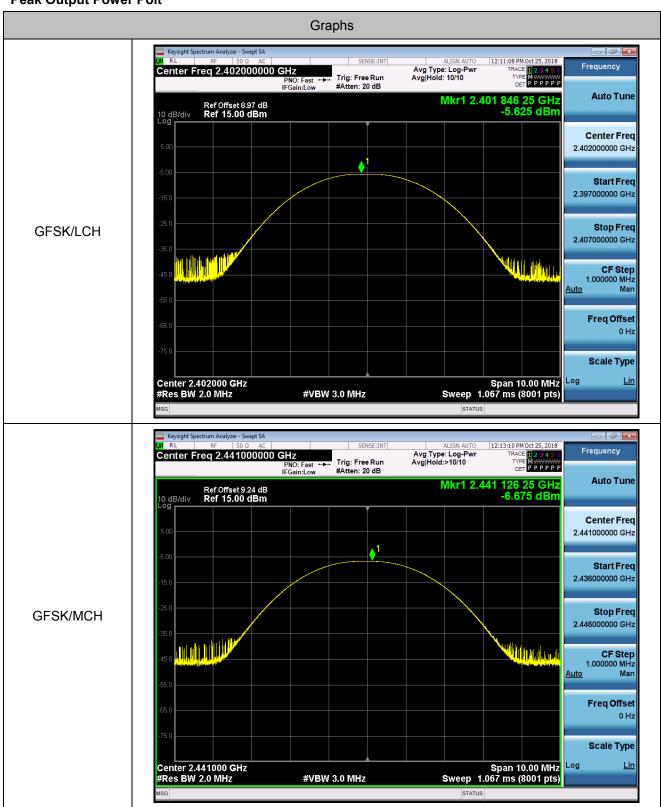
4.5 Peak Output Power Measurement

4.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

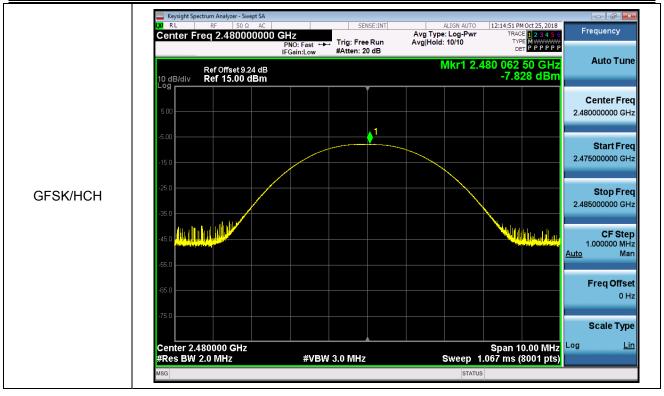
4.5.2 Test Procedures

- 5. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 6. Turn on the EUT and connect it to measurement instrument.
- 7. The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


4.5.3 Test Result of Peak Output Power

Test Mode:	-	Transmitting	Temperature :	24~26℃		
Test Enginee	r: [Damon Zhang	Relative Humidity :	: 67~69%		
Data Rate Modulation		Channel	Maximum Peak Outpu	t Limit[dBm]	Verdict	
Dala Nale	Wodulation	Chamilei	Power [dBm]	Limitabilij	verdict	
1Mbps	GFSK	LCH	-5.625	21	PASS	
1Mbps GFSK		MCH	-6.675	21	PASS	
1Mbps	GFSK	HCH	-7.828	21	PASS	

Tel.:+86-731-89634887



Peak Output Power Polt

Tel.:+86-731-89634887

4.6 Conducted Band Edges Measurement

4.6.1 Limit of Band Edges

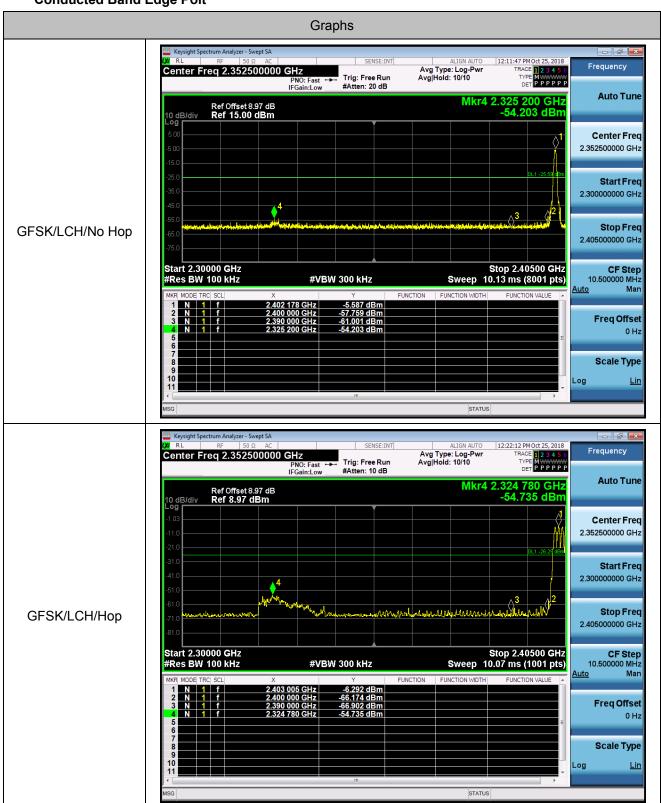
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.6.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3.Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 1~3.

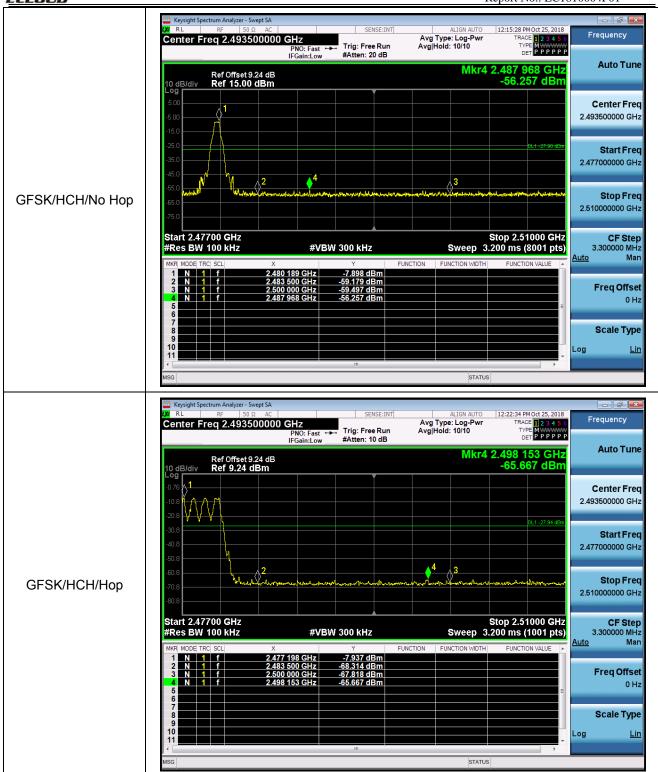
Tel.:+86-731-89634887

4.6.3 Test Result of Conducted Band Edges


Test Mode :	Transmitting	Temperature :	24~26 ℃
Test Engineer :	Damon Zhang	Relative Humidity :	67~69%

Data Rate	Modulation	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdic t
1Mb	OFOK	1.011	2402	-5.587	Off	-54.203	-25.59	PASS
ps	GFSK	LCH	2402	-6.292	On	-54.735	-26.29	PASS
1Mb	CECK	ПСП	2490	-7.898	Off	-56.257	-27.9	PASS
ps	GFSK	HCH	2480	-7.937	On	-65.667	-27.94	PASS

Tel.:+86-731-89634887



Conducted Band Edge Polt

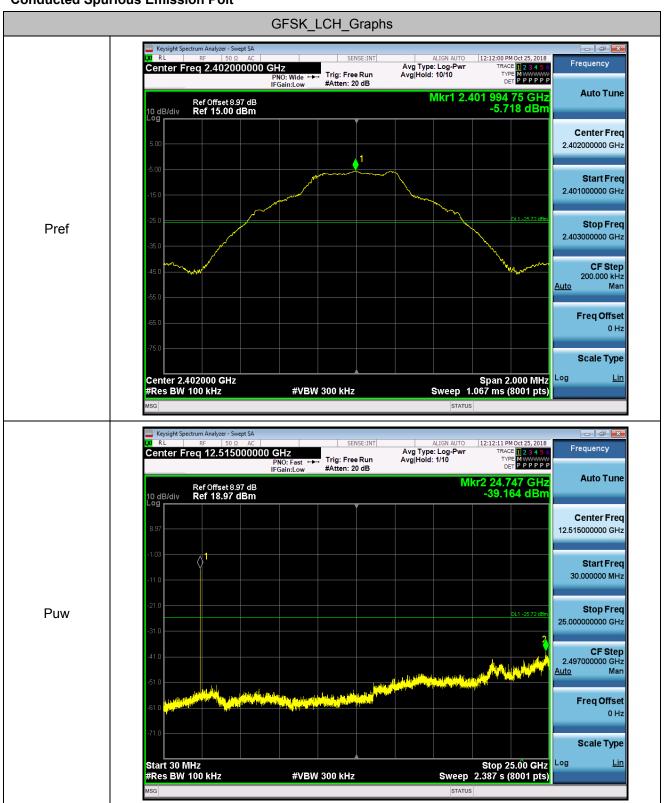
4.7 Conducted Spurious Emission Measurement

4.7.1 Limit of Spurious Emission Measurement

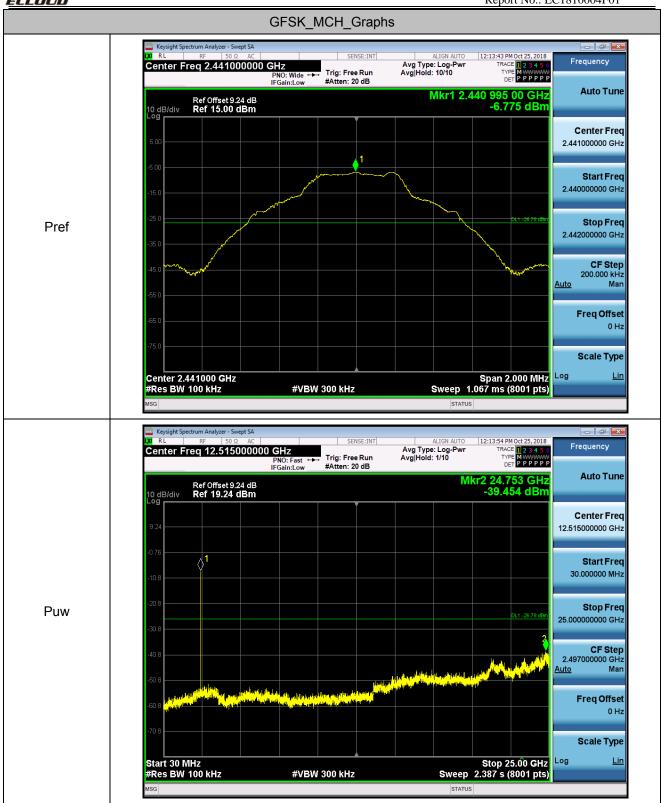
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.7.2 Test Procedure

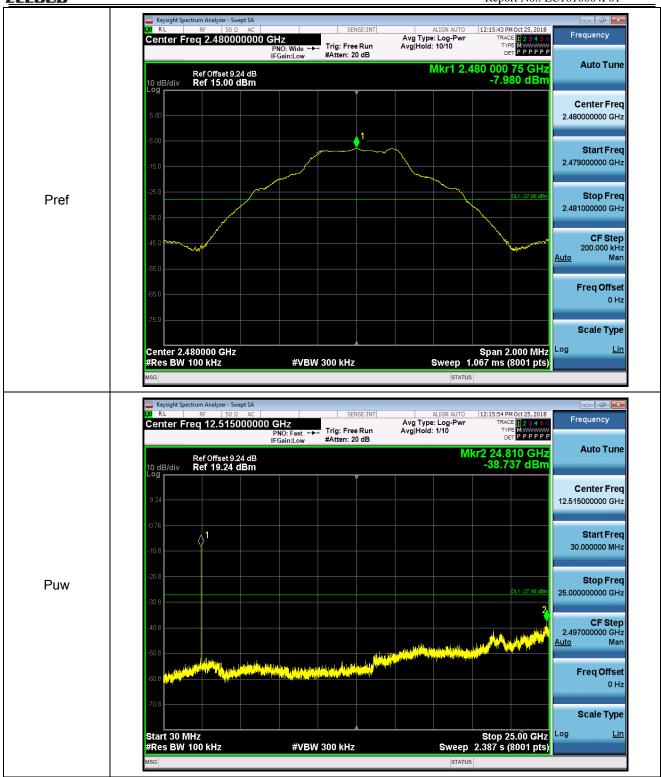
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4.Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


4.7.3 Test Result of Conducted Spurious Emission

Test Mode :		Transmitti	ng	Temperature :	24~26℃	
Test Engineer :		Damon Zh	nang	Relative Humidity :	67~69%	
Data Rate	Мо	dulation	Channel	Pref [dBm]	Puw[dBm]	Verdict
1Mbps	(GFSK	LCH	-5.718	<limit< td=""><td>PASS</td></limit<>	PASS
1Mbps	(GFSK	MCH	-6.775	<limit< td=""><td>PASS</td></limit<>	PASS
1Mbps	(GFSK .	HCH	-7.98	<limit< td=""><td>PASS</td></limit<>	PASS



Conducted Spurious Emission Polt



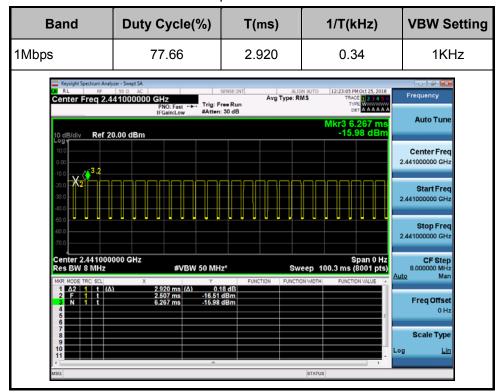
GFSK_HCH_Graphs

4.8 Radiated Band Edges and Spurious Emission Measurement

4.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3


Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Tel.:+86-731-89634887

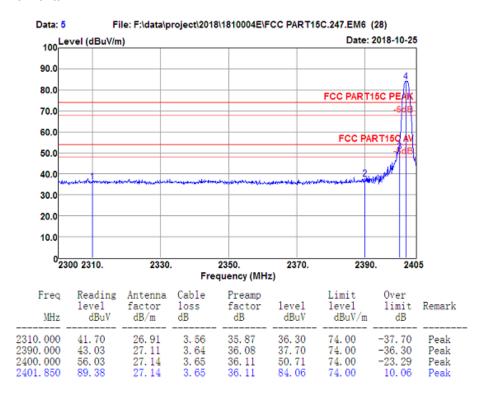
4.8.2 Test Procedures

- 6. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 7. The measurement distance is 3 meter.
- 8. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 9. Set to the maximum power setting and enable the EUT transmit continuously.
- 10. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

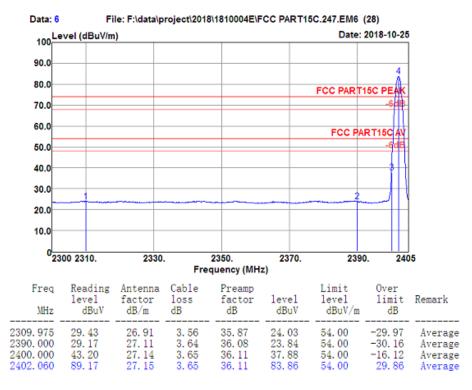
www.hn-ecloud.com

Page 39 of 74

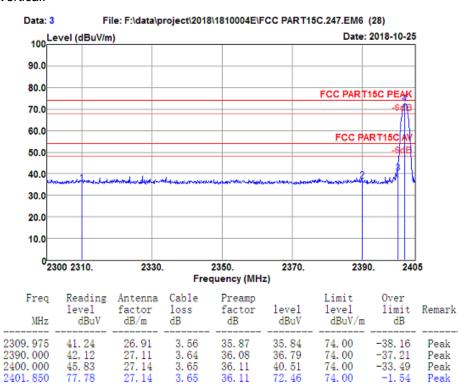


4.8.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

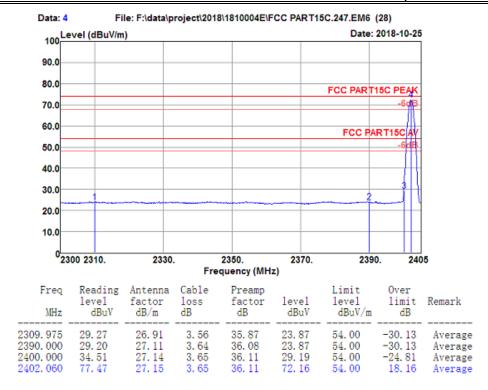
The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


4.8.4 Test Result of Radiated Spurious at Band Edges

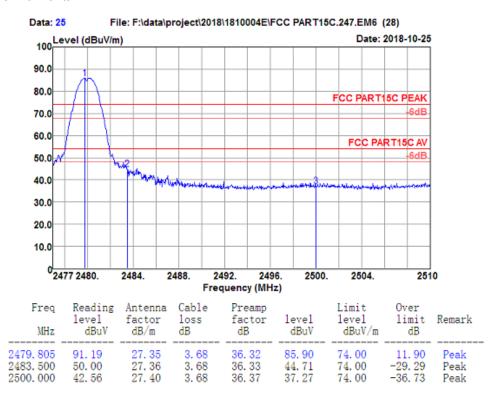
Low Channel Horizontal:



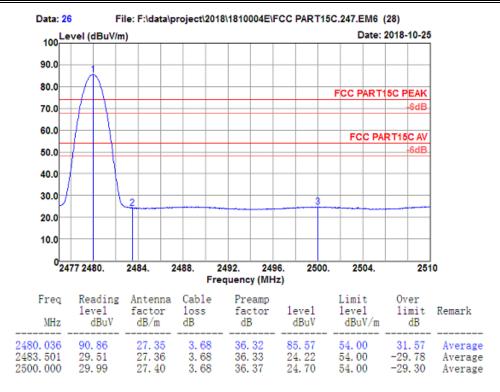
Tel.:+86-731-89634887



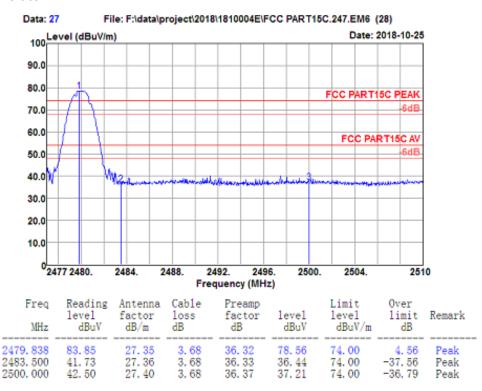
Low Channel Vertical:



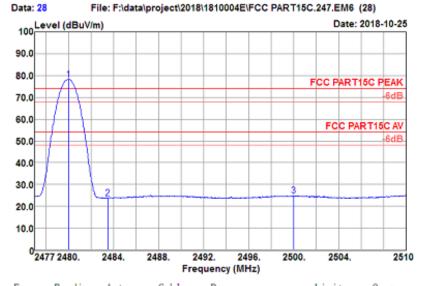
www.hn-ecloud.com



High Channel Horizontal:

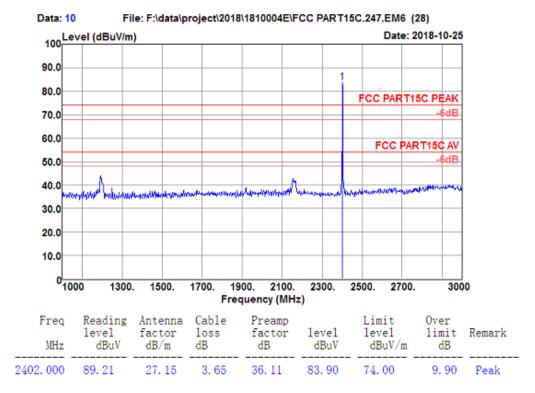


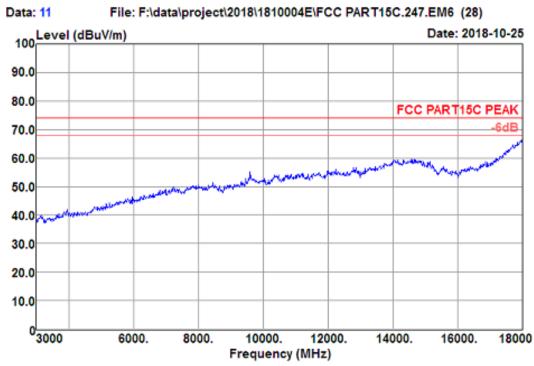
Tel.:+86-731-89634887



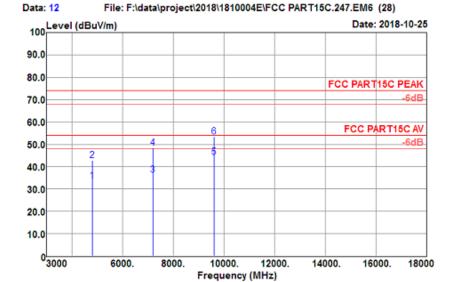
High Channel Vertical:

FCC ID : 2AKHJHB245 www.hn-ecloud.com


MHz	Reading 1evel dBuV	Antenna factor dB/m	Cable loss dB	factor dB	1eve1 dBuV	level dBuV/m	Over limit dB	Remark
2480. 036	29.00	27. 35	3. 68	36. 32	78, 25	54. 00	24. 25	Average
2483. 501		27. 36	3. 68	36. 33	23, 71	54. 00	-30. 29	Average
2500. 000		27. 40	3. 68	36. 37	24, 68	54. 00	-29. 32	Average

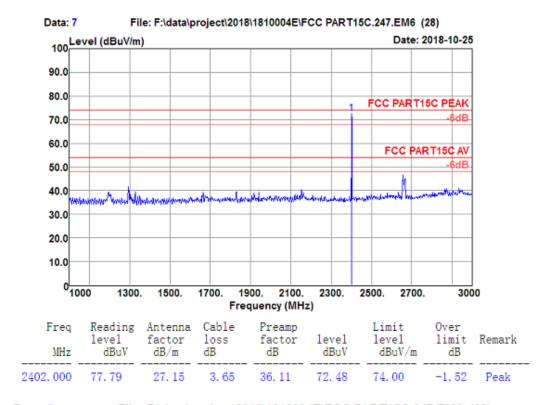

Page 44 of 74

4.8.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

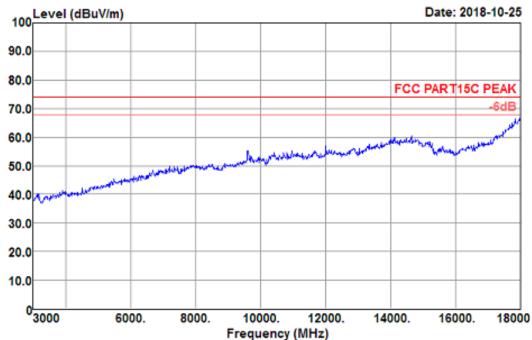

Low Channel Horizontal:

FCC ID : 2AKHJHB245 www.hn-ecloud.com

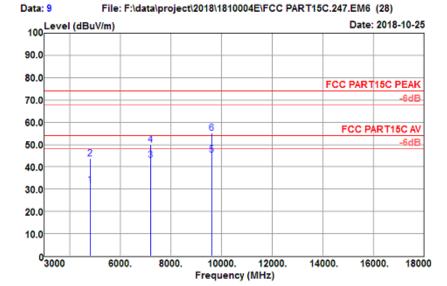
Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable 1oss dB	Preamp factor dB	level dBuV	Limit 1evel dBuV/m	Over limit dB	Remark
4804.000	33. 33	31. 23	5. 45	36. 27	33. 74	54. 00	-20. 26	Average
4804.000	42. 33	31. 23	5. 45	36. 27	42. 74	74. 00	-31. 26	Peak
7206.000	27. 84	35. 87	6. 94	34. 25	36. 40	54. 00	-17. 60	Average
7206.000	39. 89	35. 87	6. 94	34. 25	48. 45	74. 00	-25. 55	Peak
9608.000	32. 75	37. 79	7. 77	34. 13	44. 18	54. 00	-9. 82	Average
9608.000	41. 97	37. 79	7. 77	34. 13	53. 40	74. 00	-20. 60	Peak


www.hn-ecloud.com

Tel.:+86-731-89634887 Fax.: +86-731-89634887

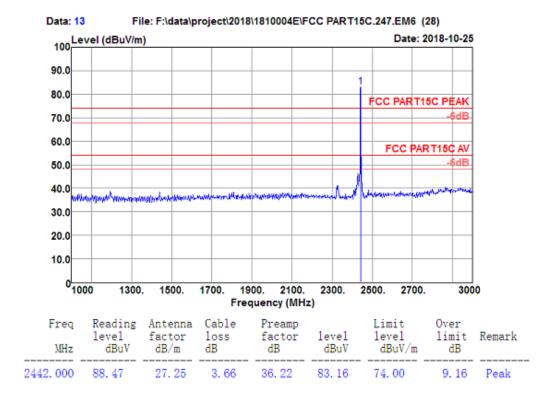


Low Channel Vertical:

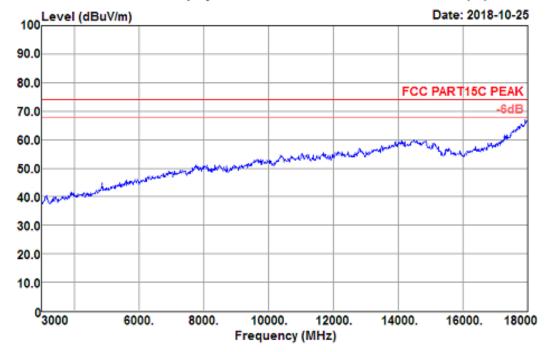


Data: 8 File: F:\data\project\2018\1810004E\FCC PART15C.247.EM6 (28)

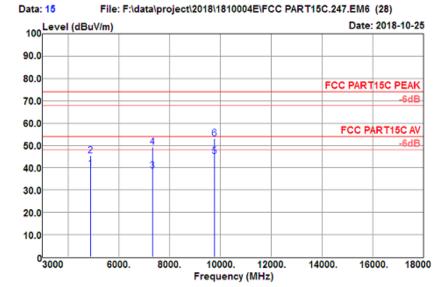
FCC ID : 2AKHJHB245 www.hn-ecloud.com


Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	1eve1 dBuV	Limit 1eve1 dBuV/m	Over limit dB	Remark
4804. 000 4804. 000 7206. 000	31. 46 43. 35 34. 60	31. 23 31. 23 35. 87	5. 45 5. 45 6. 94	36. 27 36. 27 34. 25	31. 87 43. 76 43. 16	54. 00 74. 00 54. 00	-22. 13 -30. 24 -10. 84	Average Peak Average
7206, 000	41.35	35. 87	6.94	34. 25	49. 91	74.00	-24.09	Peak
9608, 000 9608, 000	34. 13 43. 61	37. 79 37. 79	7. 77 7. 77	34. 13 34. 13	45. 56 55. 04	54. 00 74. 00	-8. 44 -18. 96	Average Peak

Tel.:+86-731-89634887

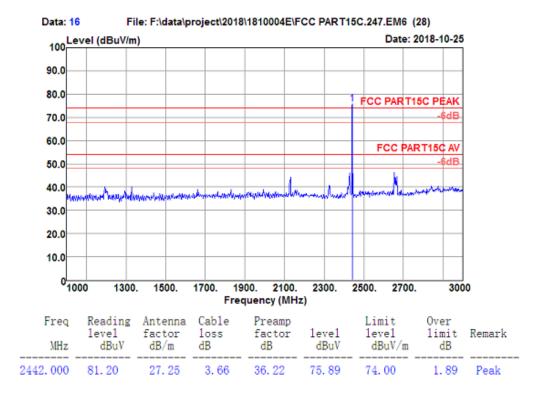


Middle Channel Horizontal:

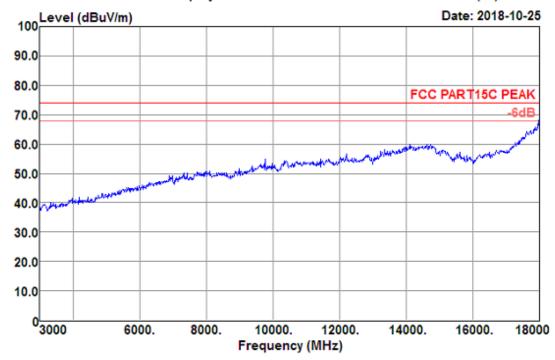

Data: 14 File: F:\data\project\2018\1810004E\FCC PART15C.247.EM6 (28)

www.hn-ecloud.com

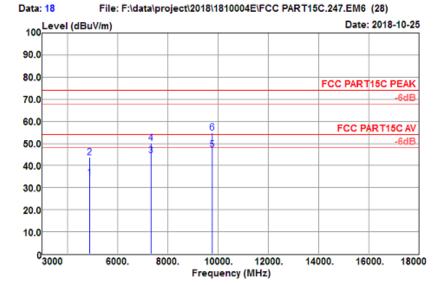
Tel.:+86-731-89634887


Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit 1evel dBuV/m	Over limit dB	Remark
4882. 000	39. 10	31. 42	5. 40	36. 24	39. 68	54. 00	-14. 32	Average
4882. 000	44. 76	31. 42	5. 40	36. 24	45. 34	74. 00	-28. 66	Peak
7323. 000	29. 66	36. 14	7. 28	34. 36	38. 72	54. 00	-15. 28	Average
7323. 000	40. 09	36. 14	7. 28	34. 36	49. 15	74. 00	-24. 85	Peak
9764. 000	33. 26	38. 08	7. 98	34. 20	45. 12	54. 00	-8. 88	Average
9764. 000	41. 33	38. 08	7. 98	34. 20	53. 19	74. 00	-20. 81	Peak

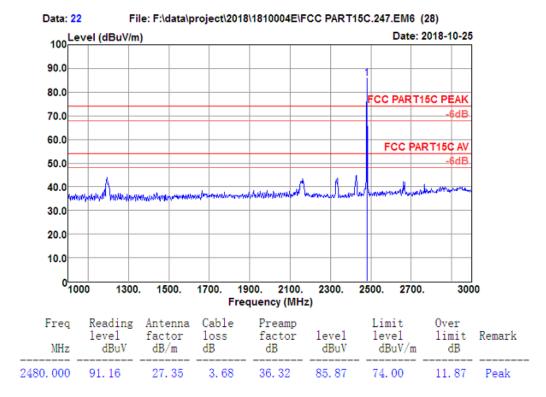
Tel.:+86-731-89634887



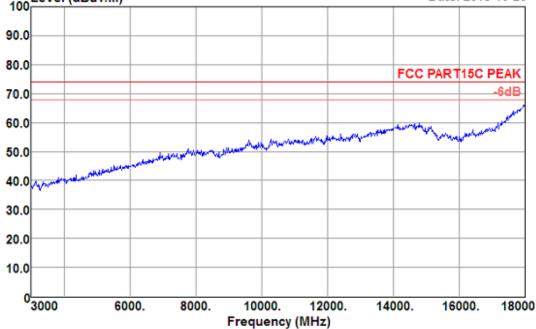
Middle Channel Vertical:



FCC ID: 2AKHJHB245 www.hn-ecloud.com


Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	1eve1 dBuV	Limit 1eve1 dBuV/m	Over 1imit dB	Remark
4882.000	33.96	31.42	5.40	36.24	34.54	54.00	-19.46	Average
4882.000	43. 11	31. 42	5.40	36. 24	43.69	74.00	-30.31	Peak
7323.000	35. 54	36. 14	7.28	34. 36	44.60	54.00	-9.40	Average
7323. 000	41.05	36. 14	7. 28	34. 36	50. 11	74.00	-23.89	Peak
9764.000	35.46	38.08	7.98	34.20	47.32	54.00	-6.68	Average
9764, 000	43.04	38. 08	7.98	34. 20	54.90	74.00	-19.10	Peak

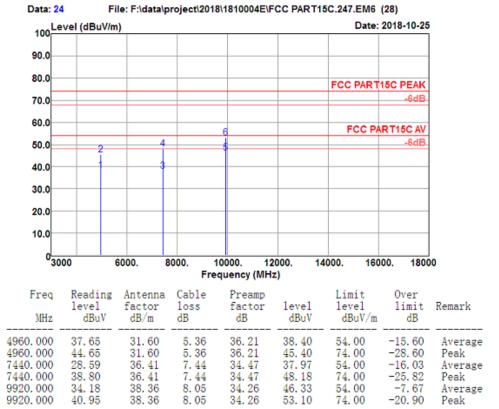
Tel.:+86-731-89634887



High Channel Horizontal:

Data: 23 File: F:\data\project\2018\1810004E\FCC PART15C.247.EM6 (28)

100 Date: 2018-10-25



www.hn-ecloud.com

Tel.:+86-731-89634887

Average Peak

34. 26 34. 26

54. 00 74. 00

46.33

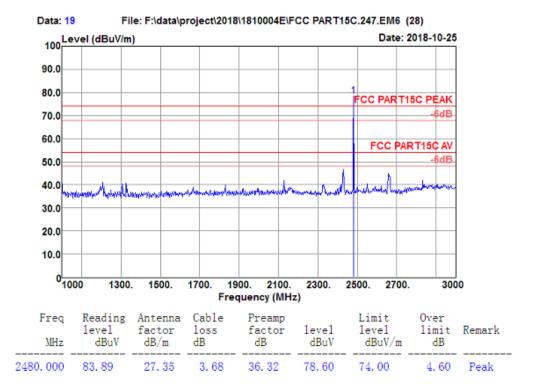
53.10

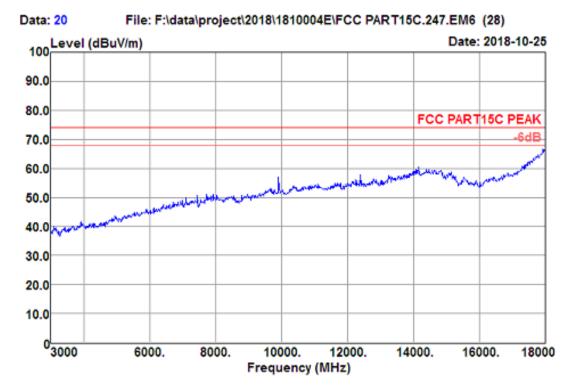
38. 36 38. 36

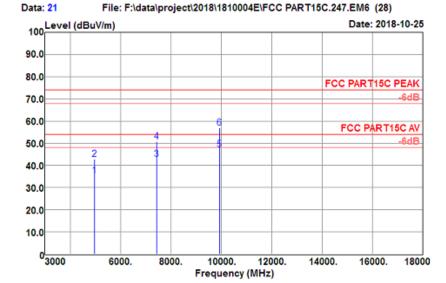
8.05

8.05

34. 18


40.95

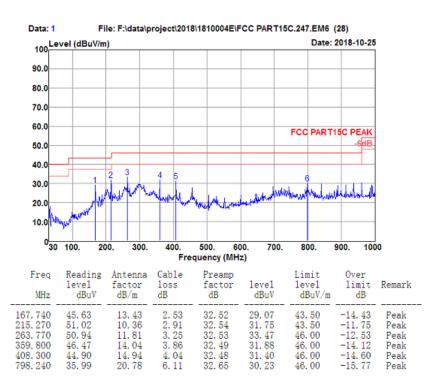

FCC ID: 2AKHJHB245 www.hn-ecloud.com


High Channel Vertical:

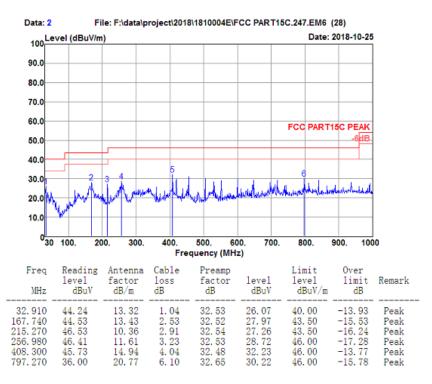
Tel.:+86-731-89634887

Freq MHz	Reading 1evel dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit 1eve1 dBuV/m	Over limit dB	Remark
4960. 000	34. 67	31. 60	5. 36	36. 21	35. 42	54. 00	-18. 58	Average
4960. 000	42. 05	31. 60	5. 36	36. 21	42. 80	74. 00	-31. 20	Peak
7440. 000	33. 34	36. 41	7. 44	34. 47	42. 72	54. 00	-11. 28	Average
7440. 000	41. 43	36. 41	7. 44	34. 47	50. 81	74. 00	-23. 19	Peak
9920. 000	35. 03	38. 36	8. 05	34. 26	47. 18	54. 00	-6. 82	Average
9920. 000	44. 76	38. 36	8. 05	34. 26	56. 91	74. 00	-17. 09	Peak

www.hn-ecloud.com


g Economic and Technological Development Zone, Hunan, P.R.C Fax.: +86-731-89634887

Tel.:+86-731-89634887



Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

Horizontal:

Vertical:

4.9 AC Conducted Emission Measurement

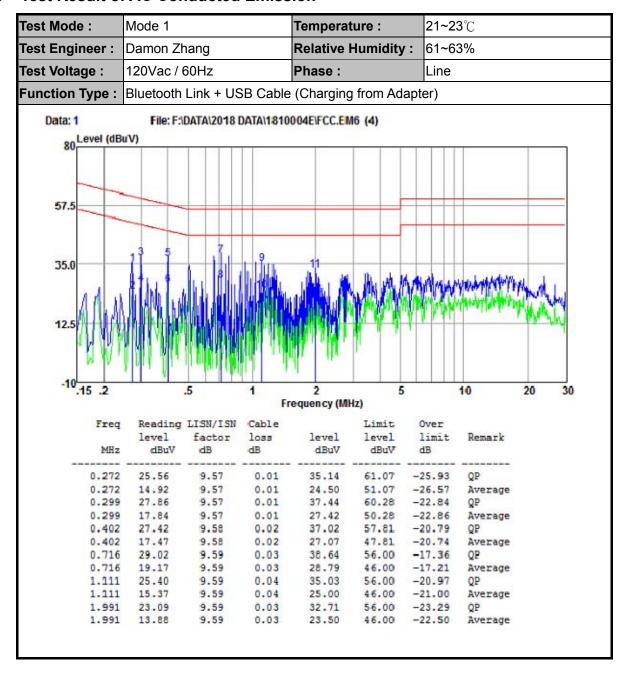
4.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

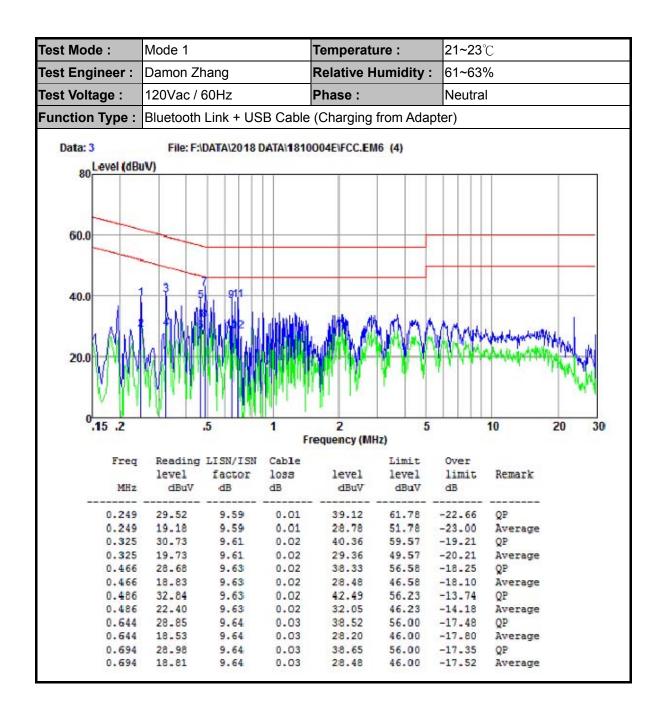
Frequency of emission (MHz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

4.9.2 Test Procedures


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8.Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

www.hn-ecloud.com


Tel.:+86-731-89634887

4.9.3 Test Result of AC Conducted Emission

FCC ID: 2AKHJHB245 www.hn-ecloud.com

4.10 Antenna Requirements

4.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.10.2 Antenna Connected Construction

An embedded-in antenna design is used.

4.10.3 Antenna Gain

The antenna peak gain of EUT is 1.87dBi.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2018-03-02	2019-03-01	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2018-03-02	2019-03-01	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2018-03-02	2019-03-01	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2018-03-02	2019-03-01	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2018-03-02	2019-03-01	Conducted
Thermal Chamber	Sanmtest	SMC-408-CD	2435	2018-07-05	2019-07-04	Conducted
Base Station	R&S	CMW 270	101231	2018-03-17	2019-03-16	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2018-04-10	2019-04-09	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2018-03-15	2019-03-14	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2018-03-14	2019-03-13	Radiation
Amplifier	Sonoma	310	363917	2018-03-06	2019-03-05	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2018-03-14	2019-03-13	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2018-07-18	2019-07-17	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2017-03-03	2020-03-02	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2017-03-03	2020-03-02	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021-06-19	Radiation
Test Software	Auidx	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

N/A: No Calibration Required

Tel.:+86-731-89634887

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.64dB
	30MHz ~ 1GMHz	5.05dB
Radiated emission	1GHz ~ 18GHz	5.06 dB
	18GHz ~ 40GHz	3.65dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel.:+86-731-89634887