

Г

FCC RF Test Report

For

Shenzhen Hangshi Technology Co.,Ltd

Test Standards:	Part 15C Subpart C §15.249			
Product Description:	<u>Wireless Mouse</u>			
Tested Model:	<u>MW163</u>			
FCC ID:	2AKHJMW163			
Classification	DXX-Low Power Communication Device Transmitter			
Report No.:	EC2004022RF01			
Tested Date:	2020-04-15 to 2020-04-28			
Issued Date:	<u>2020-04-28</u>			
Prepared By:	epared By:			
	Jerry Wang / Engineer			
Approved By:	Bacon Wu			
	Bacon Wu / RF Manager			
Hunan Ecloud Testing Technology Co., Ltd.				
	Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and			
Technological Development Zone, Hunan, P.R.C				
Tel.: +86-731-89634887 Fax.: +86-731-89634887				
www.hn-ecloud.com				

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2020.04.28	2020.04.28 Valid	

TABLE OF CONTENTS

1	TEST		.5
	1.1	Test facility	.5
2	GENI	ERAL DESCRIPTION	.6
	2.1	Applicant	.6
	2.2	Manufacturer	
	2.3	General Description Of EUT	
	2.4	Modification of EUT	
	2.5	Applicable Standards	.7
3	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	3.1	Descriptions of Test Mode	.8
	3.2	Test Mode	-
	3.3	Support Equipment	
	3.4	Test Setup	
	3.5	Measurement Results Explanation Example	12
4	TEST	RESULT1	13
	4.1	20dB Occupy Bandwidth Measurement	13
	4.2	Field Strength of The Fundamental Signal, Radiated Band Edges and Spurious Emission Measurement	
	4.3	AC Conducted Emission Measurement	46
	4.4	Antenna Requirements	19
5	LIST	OF MEASURING EQUIPMENT	50
6	UNCI	ERTAINTY OF EVALUATION	52
A	PEN	DIX A. SETUP PHOTOGRAPHS	

APPENDIX B. EUT EXTERNAL PHOTOGRAPHS

APPENDIX C. EUT INTERNAL PHOTOGRAPHS

FCC Rule	Description	Limit	Result	Remark
15.215(c)	20dB Bandwidth	NA	Pass	-
Field strength of the 15.249(a) fundamental signal		15.249(a)	Pass	-
15.249(a)(d)/15.209	15.249(a)(d)/15.209 Radiated Band Edges and Radiated Spurious Emission		Pass	Under limit 3.26 dB at 4810 MHz
15.207	15.207 AC Conducted Emission		Pass	Under limit 27.73 dB at 0.516 MHz
15.203 Antenna Requirement		N/A	Pass	-

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number:CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2 General Description

2.1 Applicant

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.2 Manufacturer

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.3 General Description Of EUT

Product	Wireless Mouse		
Model No.	MW163		
Additional No.	N/A		
Difference Description	N/A		
FCC ID	2AKHJMW163		
Power Supply	5Vdc (adapter or host equipment) 3.7Vdc (Li-ion)		
Modulation Type	GFSK		
Operating Frequency 2405MHz~2470MHz			
Number Of Channel 8			
Antenna Type PCB Antenna type with 1.87dBi gain			
I/O Ports	Refer to user's manual		
Cable Supplied	N/A		

NOTE:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.249
- ANSI C63.10-2013

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The Operation Frequency each of channel as follows:

Operation Frequency each of channel					
Channel Frequency Channel Frequency					
01 2405MHz		05	2440MHz		
02 2413MHz		06	2450MHz		
03	2422MHz	07	2460MHz		
04	2430MHz	08	2470MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test

- a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- b. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases				
Test Item 2.4G Wireless				
Conducted Test Cases	Mode 1: CH01_2405 MHz			
	Mode 2: CH04_2430 MHz			
	Mode 3: CH08_2470 MHz			

3.2.2 Radiated Emission Test (Below 1GHz)

	2.4G Wireless			
Radiated	Transmitting	Mode 1: CH01_2405 MHz		
Test Cases		Mode 2: CH04_2430 MHz		
	Transmitting+Charging	Mode 3: CH08_2470 MHz		

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

2. All above modes were tested, but only the worst case test mode 1 while transmitting was reported.

3.2.3 Radiated Emission Test (Above 1GHz)

	2.4G Wireless			
Radiated	Transmitting Mode 1: CH01_2405 MH			
Test Cases		Mode 2: CH04_2430 MHz		
	Transmitting+Charging	Mode 3: CH08_2470 MHz		

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible

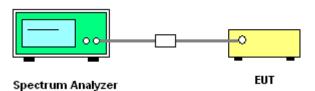
combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

2. All above modes were tested, but only the worst case transmitting was reported.

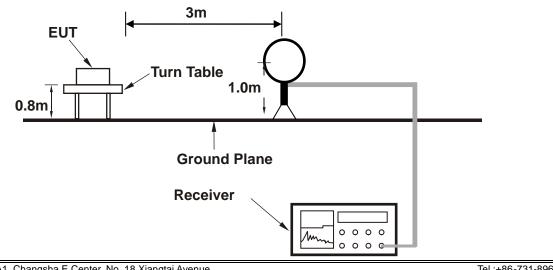
3.2.4 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : Wireless 2.4G Link + USB Cable (Charging from Adapter)
Emission	

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJMW163 www.hn-ecloud.com

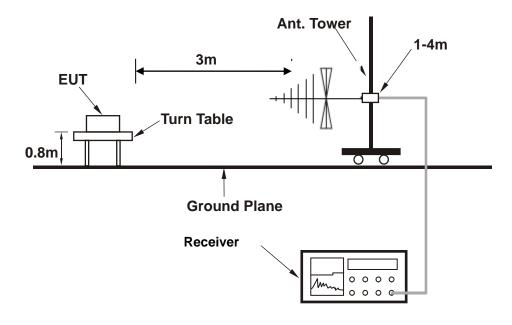

3.3 Support Equipment

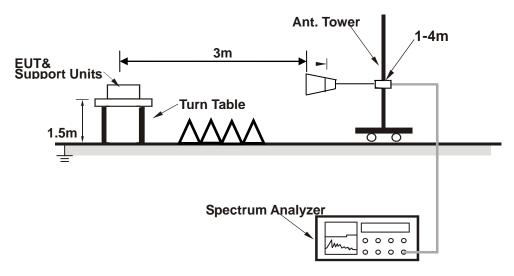
Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Power Adapter	N/A	TC E250	N/A	N/A	N/A
2.	Micro-USB Cable	N/A	N/A	N/A	N/A	shielded 0.8m
3.	Notebook	Lenovo	E470C	N/A	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m
4.	2.4G Dongle	Shenzhen Hastech industries Co., Ltd	HW086-1	2AC9LHW086-1	N/A	N/A


3.4 Test Setup

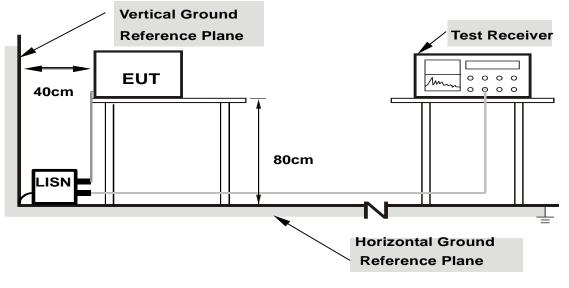
The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Setup diagram for Conducted Test


Setup diagram for Raidation(9KHz~30MHz) Test


Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJMW163 www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

Setup diagram for Raidation(Below 1G) Test



Setup diagram for Raidation(Above1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

4 Test Result

4.1 20dB Occupy Bandwidth Measurement

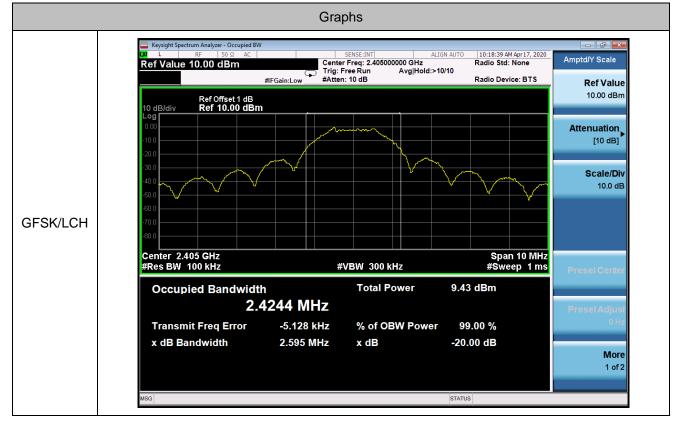
4.1.1 Limit of 20dB Occupy Bandwidth

None; for reporting purposes only.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;


RBW = 1% to 5% of the 20 dB bandwidth; VBW = approximately 3 times RBW; Sweep = auto; Detector function = peak; Trace = max hold.

4.1.3 Test Result of 20dB Bandwidth

Test Mode :	Engineer : Jack Liu Channel. 20dB Bandwidth [Temperature	:	21~23 ℃
Test Engineer :		Relative Hum	nidity :	41~43%
Channel.				Verdict
LCH	2.595			PASS
MCH	2.645			PASS
НСН	2.615			PASS

20dB Plot

Report No.: EC2004022RF01

4.2 Field Strength of The Fundamental Signal, Radiated Band Edges and Spurious Emission Measurement

4.2.1 Limit of Fundamental Signal, Radiated Band Edges and Spurious Emission

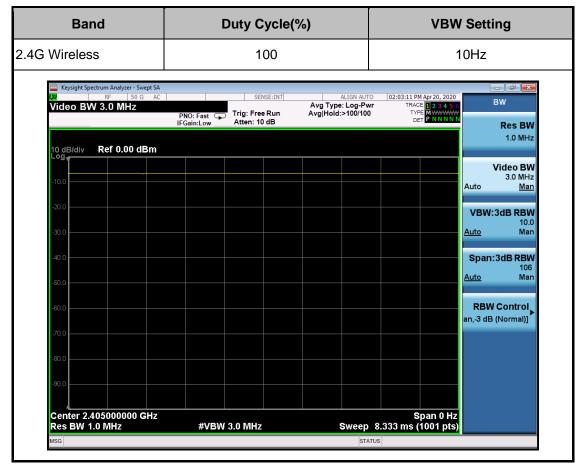
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209&15.249 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Frequency	Field Strength	Measurement Distance
(MHz)	(millivolts/meter)	(meters)
2400-2483.5	50	3m

Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

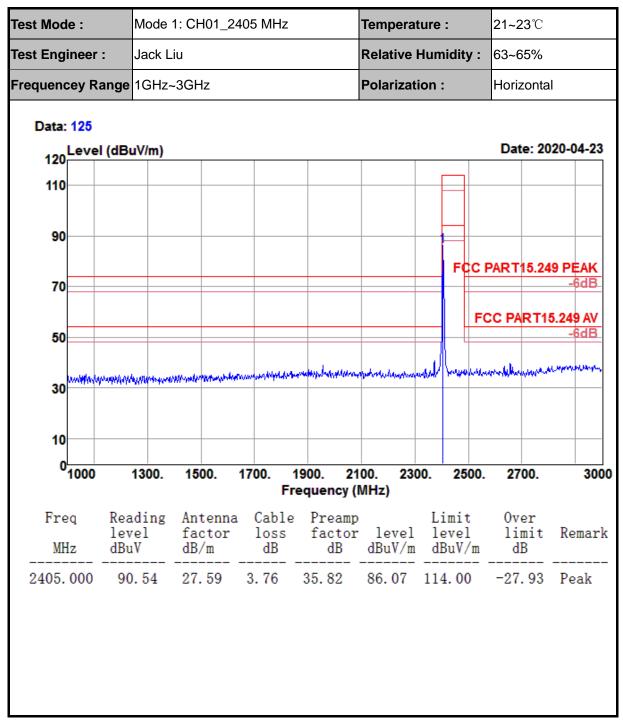
4.2.2 Test Procedures

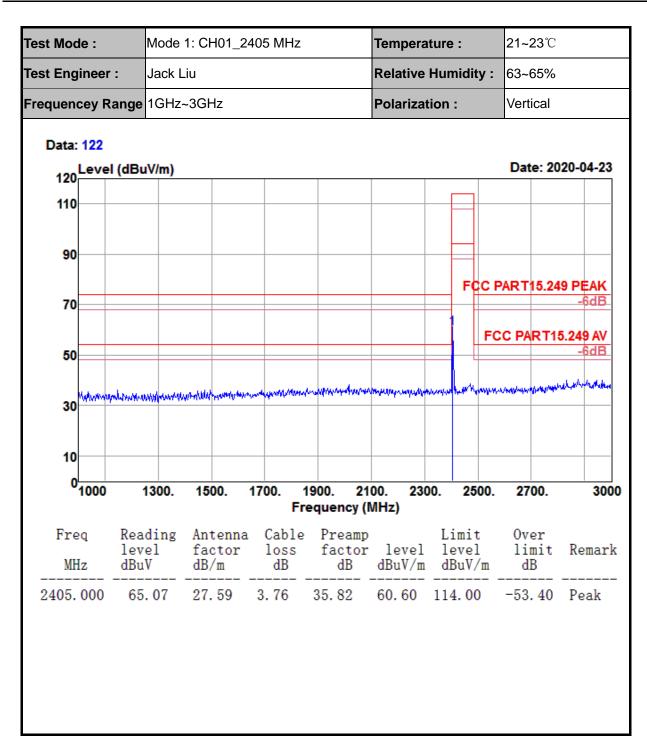

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:

- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW >RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
- (3) For average measurement:

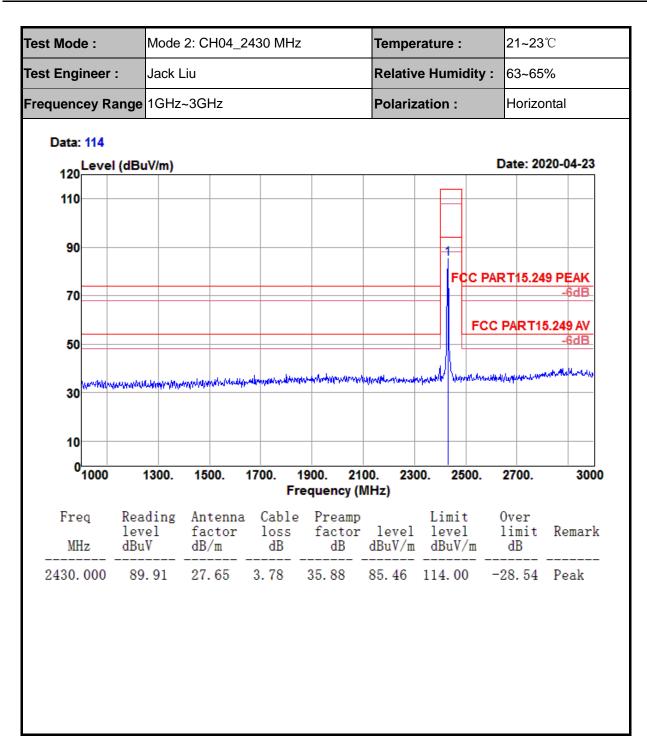
VBW = 10 Hz, when duty cycle is no less than 98 percent.

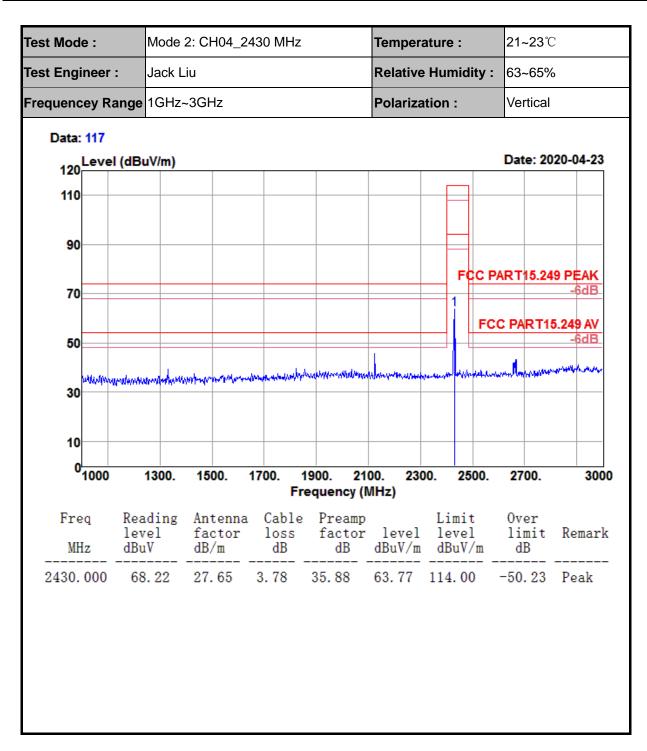
VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

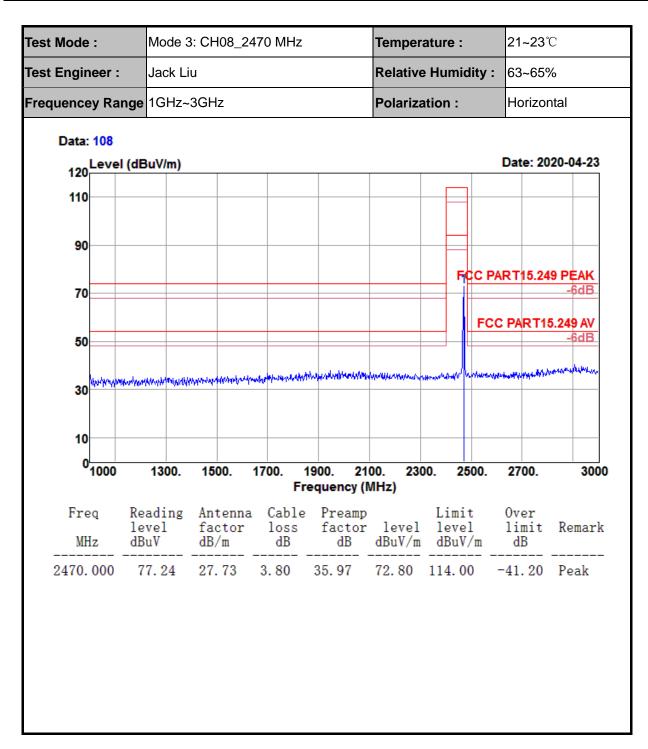

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

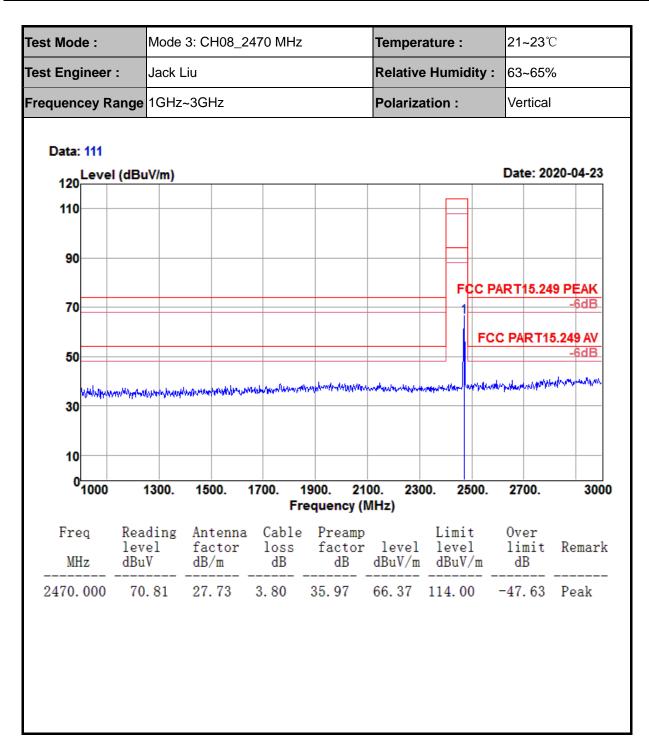

4.2.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


4.2.4 Field Strength of The Fundamental Signal







4.2.5 Test Result of Radiated Spurious at Band Edges

st Mode :	Mode	1: CH01_2	2405 MHz		Temper	rature :	21~23	21~23℃			
st Engineer	: Jack I	Liu			Relativ	e Humidity	1: 63~65	63~65%			
equencey R	ange 2.30G	GHz∼2.41Gł	Hz		Polariz	ation :	Horizo	ontal			
Data: 123							Data: 20	20-04-23			
120	(dBuV/m)					FCC	Date: 20				
110								-6dB			
90								4			
70											
50								Д			
50						2 1 1 1	1 Same	Д			
50 30	uddfarweiweiren (1994), w	Heredonal Societary		inglideetstop ^{ring} uis	arrinorad	2 Virselanderstater	sa Barran				
Brokerphan	ull to a second second	Herrichter of the Production o		(v-gl.dagetation ^{(V-4} vv.)).	ar consourd	2 W Viriyildey, generilden	sand manual and				
30 10	2310.			2350.	A. production and the	Vinnener	2390	2410			
30	2310.	**************************************		2350. equency (N	2370	Vinnener	2390.	2410			
30 10	2310. Reading level dBuV		2 Fre		алонаана d 2370 ЛНz)	Vinnener	2390. Over limit dB	2410 Remark			

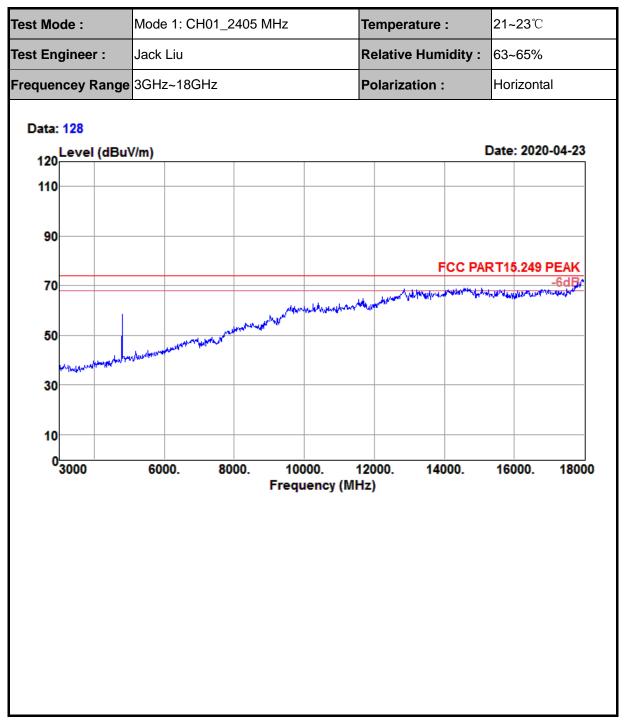
est Mode :	Mode	1: CH01_2	405 MHz		Tempera	ature :	21~23°	21~23 ℃				
est Engineer	: Jack L	iu			Relative	Humidity :	63~659	63~65% Horizontal				
requencey Ra	ange 2.30GI	Hz~2.41GF	łz		Polariza	tion :	Horizor					
Data: 124							Date: 20	20-04-23				
120	l (dBuV/m)						Date. 20	20-04-23				
110												
90						FC	C PART1	5.249 AV -6dB 4				
70												
50												
30	-1					2	3					
10												
⁰ 2300	2310.	2330.	-	2350. equency (N	2370 //Hz)	. 2	2390.	2410				
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB		Limit level dBuV/m	Over limit dB	Remark				
2310.000 2373.040 2390.000 2405.050	27.84 35.20 29.49 88.33	27.38 27.52 27.56 27.59	3. 62 3. 72 3. 74 3. 76	35.61 35.75 35.79 35.82	23. 23 30. 69 25. 00 83. 86	54.00 54.00 54.00 94.00	-30.77 -23.31 -29.00 -10.14	Average Average				

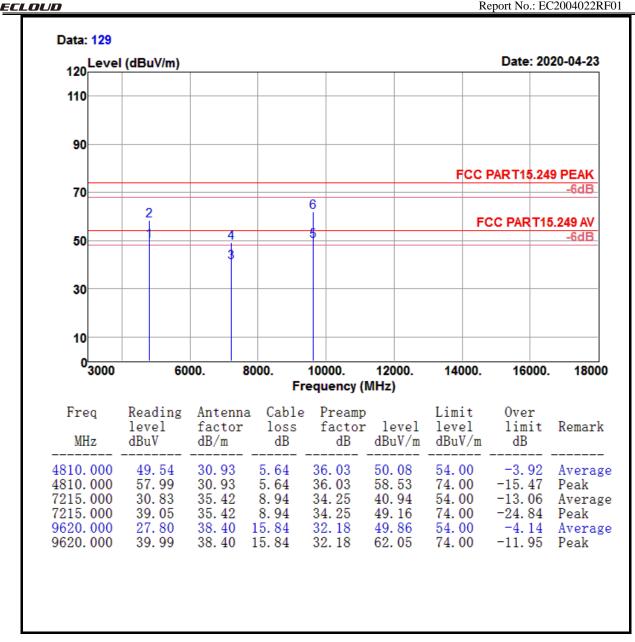
st Mode :	Mode 1:	CH01_240	5 MHz		Temperat	ure :	21~23 ℃	
st Engineer :	Jack Liu				Relative I	Humidity :	63~65%	
equencey Ran	ige 2.30GHz	z~2.41GHz			Polarizati	ion :	Vertical	
Data: 120								
120	l (dBuV/m)					FCC	Date: 20 PAR T15.24	20-04-23
110						FUUT	-ARTI0.24	-6dB
90								
70								3
50								\mathbb{A}
								- 7 1 \ 1
30	or and the second s	national and a second		ogelskæhdesspordbog	r, Weber, Anarden, Angels, Stradi	araameeykaanfesteerinnin	un an	nn h
10	n an	n de men de la constru		nd handraden	n State Anna Anna Anna Anna Anna Anna Anna Ann	eraam-Aquriy,Journeer	and a second second	mad ha
	2310.	2330.		2350. equency (2370		2390.	2410
10	2310. Reading level dBuV		2 Fre	2350.	237(MHz)). Limit level	2390. Over limit dB	241 Remark

est Mode :	Mode 1	: CH01_24	05 MHz		Tempera	ature :	21~23	C			
est Engineer :	Jack Li	u			Relative	Humidity	: 63~65	63~65%			
requencey Rar	nge 2.30GH	lz~2.41GH	Z		Polariza	tion :	Vertica	Vertical			
Data: 121							Dete: 00	00.04.02			
120	(dBuV/m)						Date: 20	20-04-23			
110											
						FC	C PART1				
90								-6dB			
70											
~~								3			
50											
30	1						2	H			
10											
⁰ 2300 2	2310.	2330.		2350. equency (l	2370 MHz)). :	2390.	2410			
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB		Limit level dBuV/m	Over limit dB	Remark			
2310.000 2390.000 2405.050	27.71 27.67 62.91	27.38 27.56 27.59	3. 62 3. 74 3. 76	35.61 35.79 35.82	23.10 23.18 58.44		-30.90 -30.82 -35.56	Average Average Average			

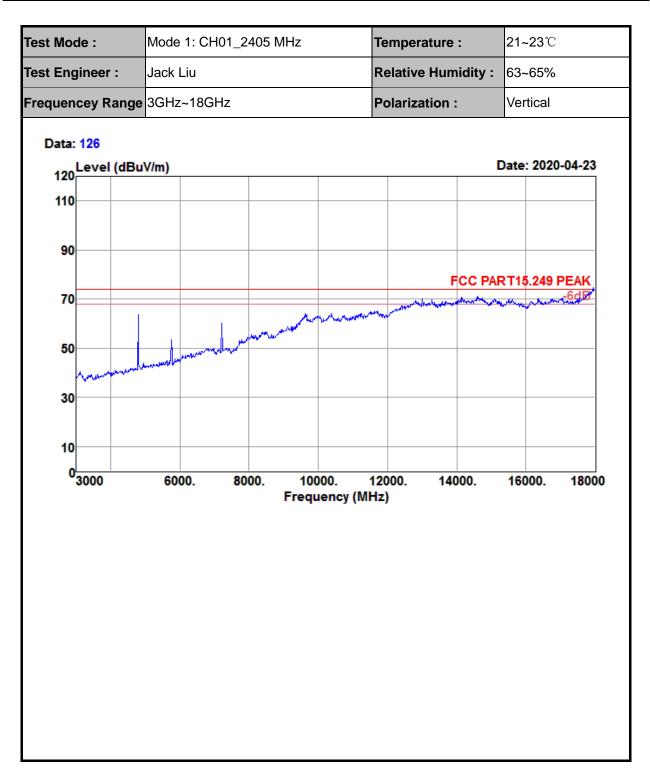
est Mode :	Mode 3	: CH08_24	70 MHz		Tempera	ature :	21~23℃	2				
est Engineer :	Jack Li	J			Relative	Humidity	63~65%	63~65%				
requencey Ran	ge 2.465G	Hz~2.51Gł	Ηz		Polariza	tion :	Horizon	tal				
Data: 106												
120 Level	(dBuV/m)						Date: 20	20-04-23				
110												
90	_ 1											
70	$\langle \rangle$					FCC	PAR T15.24	9 PEAK -6dB				
50		and and a second and	2									
30				and derive a second	***********	en alla and a second	and the start of the	****				
10												
0 <mark></mark> 2465	2470. 24	74. 2478.		2486. 24 equency (I	490. 249 MHz)	4. 2498.	2502. 28	506. 2510				
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over limit dB	Remark				
	87.32 27.74 42.60 27.76 41.45 27.80		3.80 3.81 3.82	35.97 36.00 36.04	82.89 38.17 37.03	114.00 74.00 74.00	-31.11 -35.83 -36.97					

est Mode :	Ν	Node 3	3: Cł	H08_2	470 MHz	:		Ter	npera	ature :	2'	21~23 ℃						
est Engineer :	J	lack Li	iu					Re	lative	Humi	idity	: 63	63~65%					
requencey Ra	nge 2	2.4650	GHz~	-2.51G	Hz			Po	lariza	tion :		H	Horizontal					
Data: 107 120 <mark>Level</mark>	(dBu	V/m)										Da	te: 20	20-0	4-23			
120																		
90																		
70																		
50		\backslash					_		FCC			C P/	2 PAR T15.249 AV -6dB					
30	30			2						3								
10																		
0 <mark>0</mark>	247(0. 24	74.	2478.		2486 reque	_	490. MHz)		4. 24	98.	2502	2. 2	506.	2510			
Freq MHz	Rea lev dBu			tenna ctor /m	Cable loss dB	fa	eamp tor 1B	le		Lim: leve dBu	el	li	ver .mit IB	Re	mark			
2469. 950 2483. 500 2500. 000	10 74.54 27.73 10 28.28 27.76 10 28.45 27.80		3. 80 3. 81 3. 82	35. 9 36. 0 36. 0	00	70.10 94.00 23.85 54.00			-30	-23.90 Av -30.15 Av -29.97 Av								

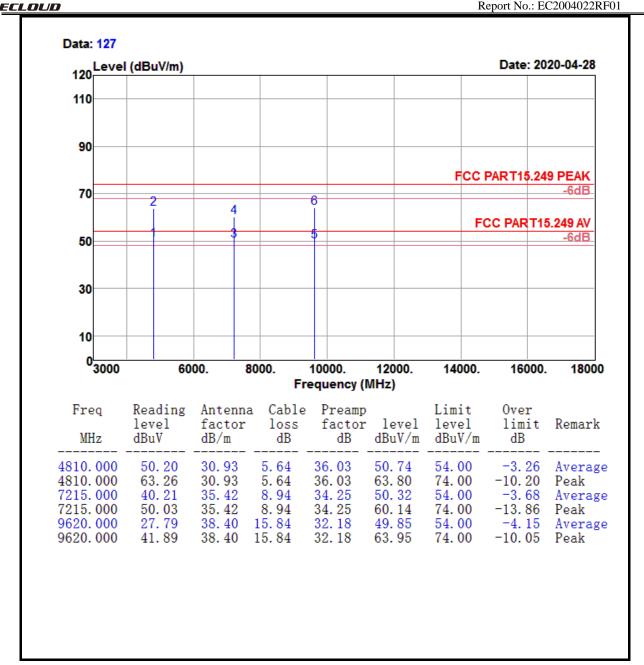

est Mode :	Mode 3	3: CH08_24	70 MHz		Tempera	ture :	21~23℃	С				
est Engineer :	Jack Li	u			Relative	Humidity :	63~65%	63~65%				
requencey Ran	ge 2.465G	Hz~2.51G	Hz		Polarizat	tion :	Vertical					
Data: 109												
120 Level (dBuV/m)						Date: 2	020-04-23				
110												
90												
70						FCCF	PAR T15.24	49 PEAK -6dB				
50 30	May	munin	านการแกรงว่าเสียง	nerestation in the second system of the	And the of the second second	had more that has the state of	Martan	and the second				
10												
0	2470. 24	74. 2478.	2482.	2486. 24	90. 2494	4. 2498.	2502. 2	506. 2510				
			Fre	equency (N	ИHz)							
	Reading level dBuV	Antenna factor dB/m	Cable loss dB		level	Limit level dBuV/m	Over limit dB	Remark				
2470. 490 2483. 500 2500. 000		27.76	3.80 3.81 3.82	35.97 36.00 36.04	64. 41 32. 90 35. 07	114.00 74.00 74.00		Peak				

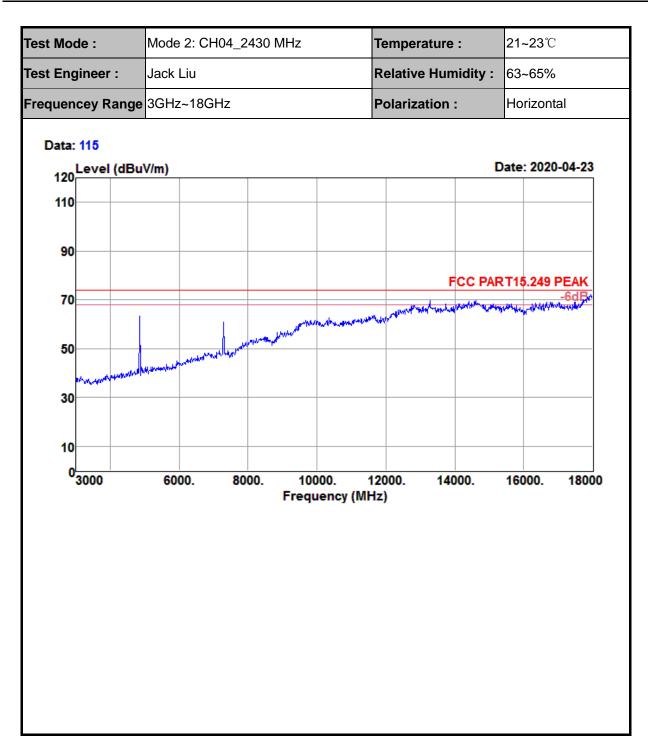

est Mode :	r	/lode 3: CH08_2470 MHz										Temperature :					21.	21~23 ℃				
est Engineer	: .	Jack L	ack Liu									Relative Humidity :					63 [,]	63~65%				
requencey R	ange	2.465	GHz	~2.5′	1GF	łz					Pc	olari	zati	ion	:		Ve	rtica				
Data: 110 120	l (dBu	V/m)														[Date	: 202	20-0	4-23		
110																						
90																						
70	1															~~~	PAR	745	240			
50		\downarrow																		idB		
30					_		2								;	3						
10 0 2465	2470	24	74.	247	8	248	2.	24	86	24	90.	24	94.	24	98.	25	02.	25	06	251	0	
2400	24/0			2411	•.	240					/Hz)							20		201	Č	
Freq MHz	Read leve dBuV		fa	tenn ctor /m		Cal los dI			rea act dB	\mathbf{or}		evel 1V/m		Lim: leve dBu	21		Ove lim: dB		Rei	narl	<u>«</u>	
2469.950 2483.500 2500.000	28.	.01 27.73 .35 27.76 .43 27.80		35 27.76 3.81 36.00 23		23.	61.57 94.00 23.92 54.00 24.01 54.00			-	-32.43 -30.08 -29.99		3 Avera 3 Avera 3 Avera 9 Avera		ge							

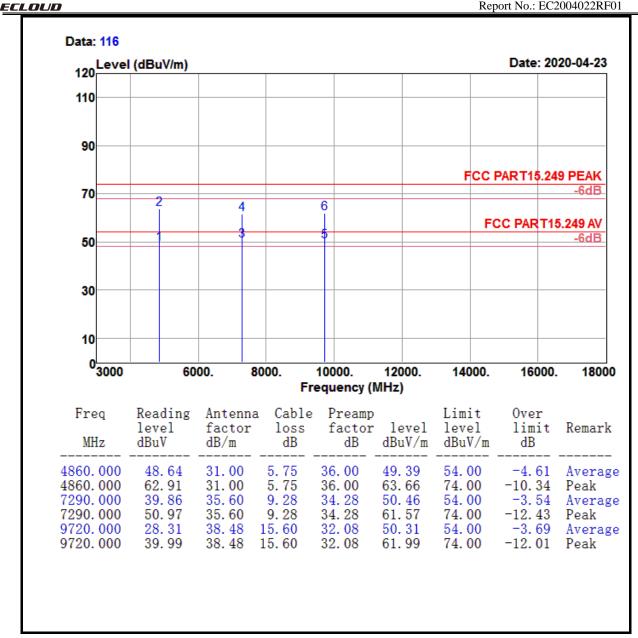
4.2.6 Test Result of Radiated Spurious Emission



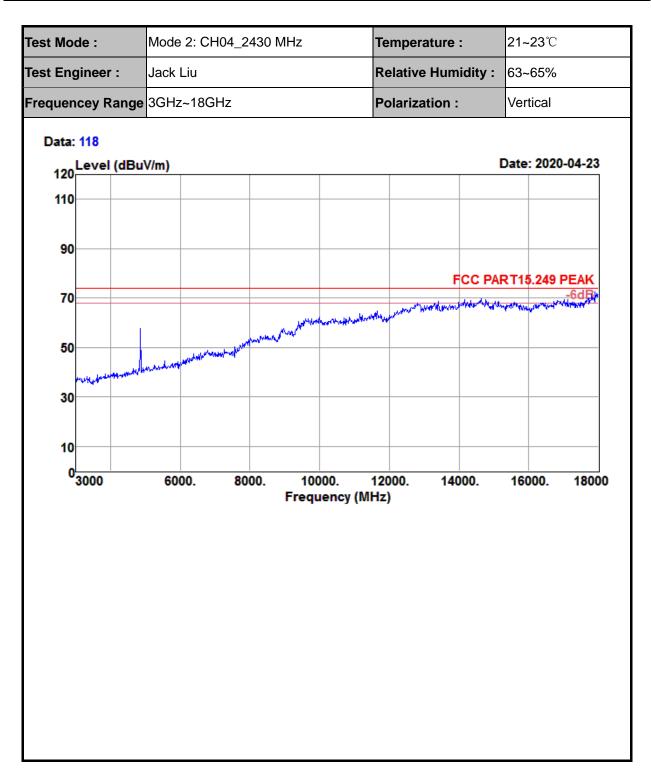
Report No.: EC2004022RF01

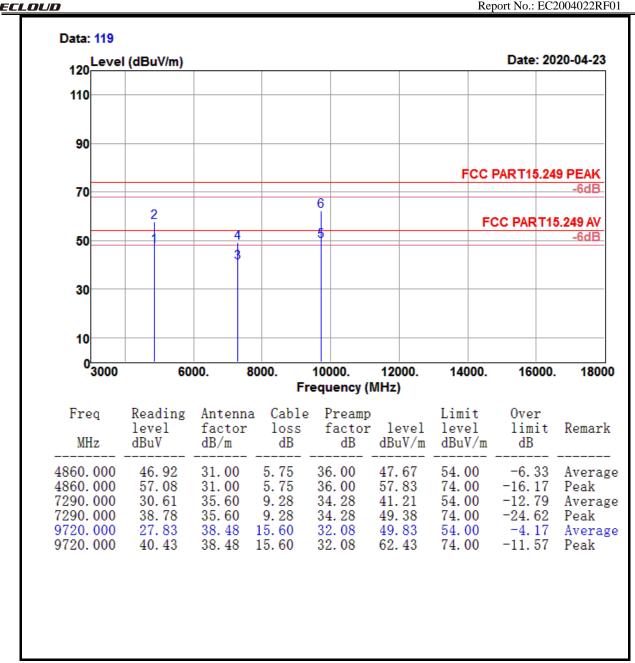


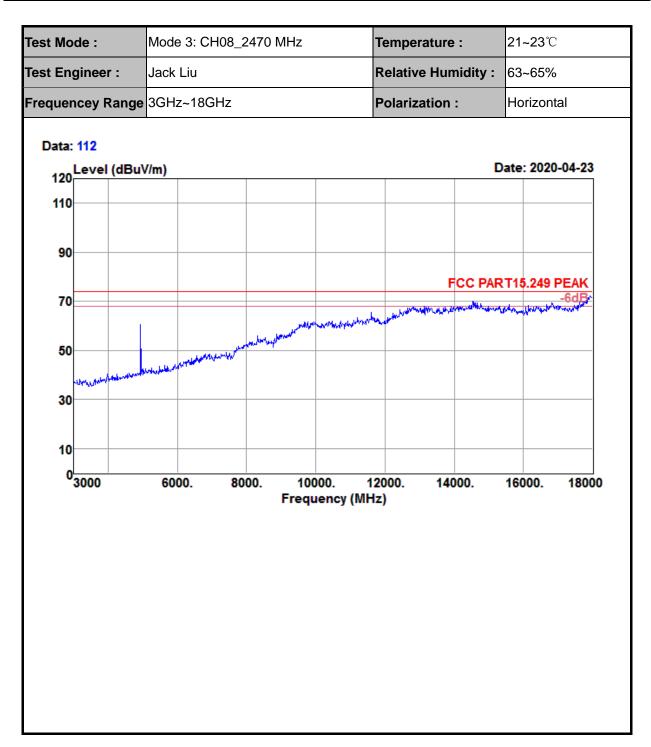


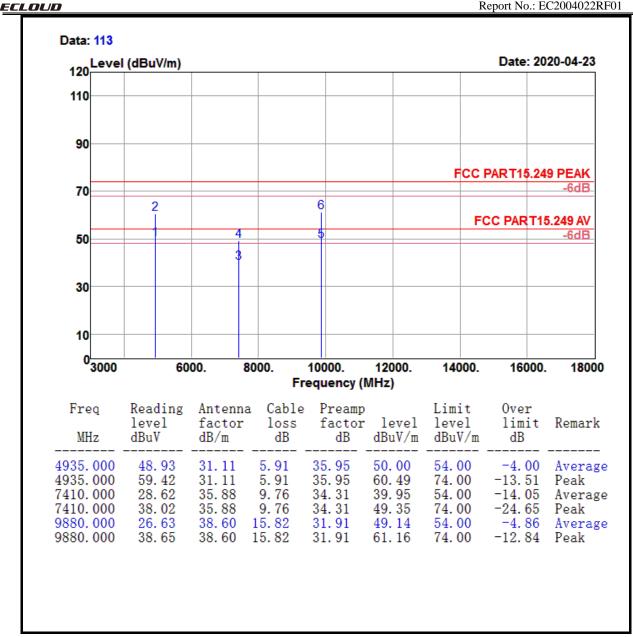

Report No.: EC2004022RF01

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

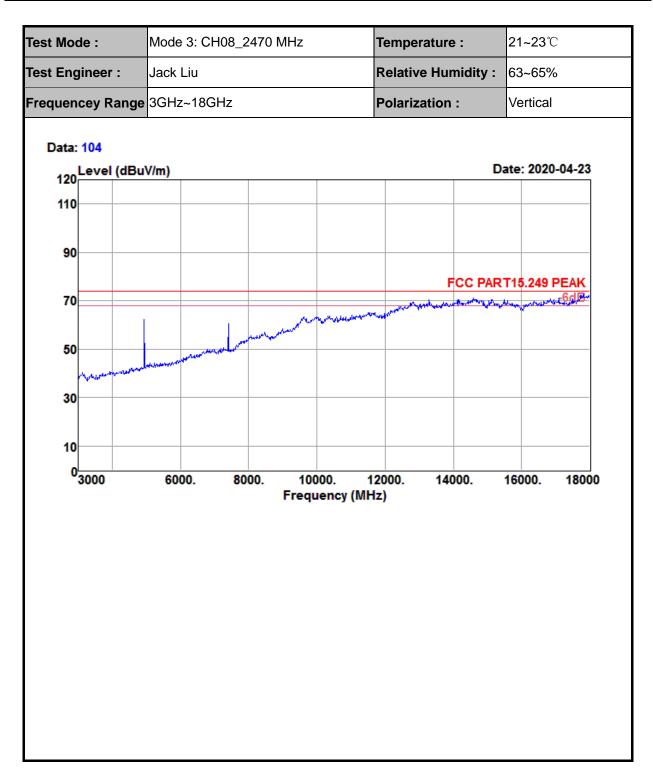


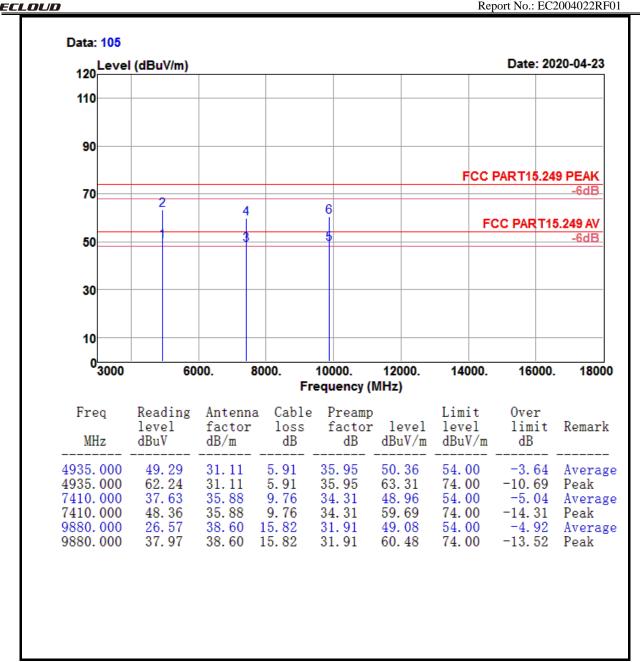






Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.





Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

4.2.7	Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)	
-------	--	--

Test Mode : Mode 1: CH01_2405 MHz			Temperature :		21~23 ℃			
Test Engineer : Jack Liu					Relative I	Humidity :	63~65%	
Frequencey Ra	inge 30MHz	z~1GHz			Polarizati	ion :	Horizonta	al
Data: 103	(dBuV/m)						Date: 20	20-04-17
80 70								
60						FCC F	ART15.24	
50								-6dB
40								
30						4 de abardation	5	6 (NPV:-4/4/44/1/1/1/1
20 10	2 3	and the factor of the factor	w./plandd-adav	nalanin kakala tina mati	der de la desta des ser de la desta de La desta de la d			
0 <mark></mark> 301	00. 200.	. 300.	400. Fre	500. equency (l	600. MHz)	700. 8	00. 90	0. 1000
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB		Limit level dBuV/m	Over limit dB	Remark
52. 310 150. 280 199. 750 744. 890 821. 520 965. 080	31. 56 27. 98 31. 66 28. 33 29. 20 28. 02	12. 40 14. 48 10. 61 22. 10 22. 57 24. 40	1. 40 2. 37 2. 73 5. 54 5. 77 6. 25	32. 51 32. 48 32. 47 32. 49 32. 28 32. 12	12.85 12.35 12.53 23.48 25.26 26.55	40.00 43.50 43.50 46.00 46.00 54.00	-27. 15 -31. 15 -30. 97 -22. 52 -20. 74 -27. 45	Peak Peak Peak Peak Peak Peak

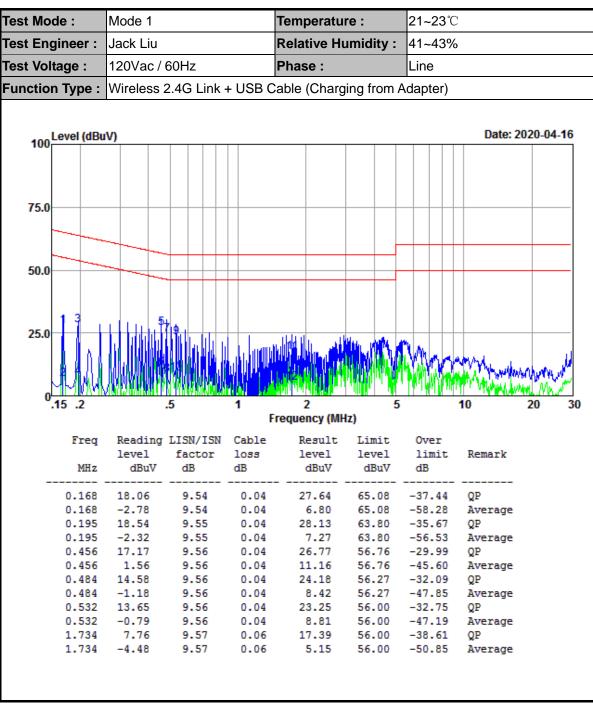
est Mode :		Mode 1: CH01_2405 MHz				Temperat	ure :	21~23 ℃	
Test Engineer : Jack Liu					Relative I	Humidity :	63~65%		
requencey R	Range	30MHz	∼1GHz			Polarizati	on :	Vertical	
Data: 102									
		uV/m)						Date: 20	20-04-17
70									
60							FCC F	ART15.24	9 PEAK
50									-6dB
40									
30							4	5	6 Jon participations and the
20		3			within a when wh	Wash to the second	the state of the second state of		
				A CONTRACT OF A					
10	ula Maria	MAN WAY HA	Martin	Mental And					
0	100		and a state of the					00 90	0 100
10 0 30	100.	200		400.	500. equency (l	600.		00. 90	0. 1000
0	Re le			400. Fr	500. equency (l	600. MHz)		00. 90 Over limit dB	0. 1000 Remark

4.3 AC Conducted Emission Measurement

4.3.1 Limit of AC Conducted Emission

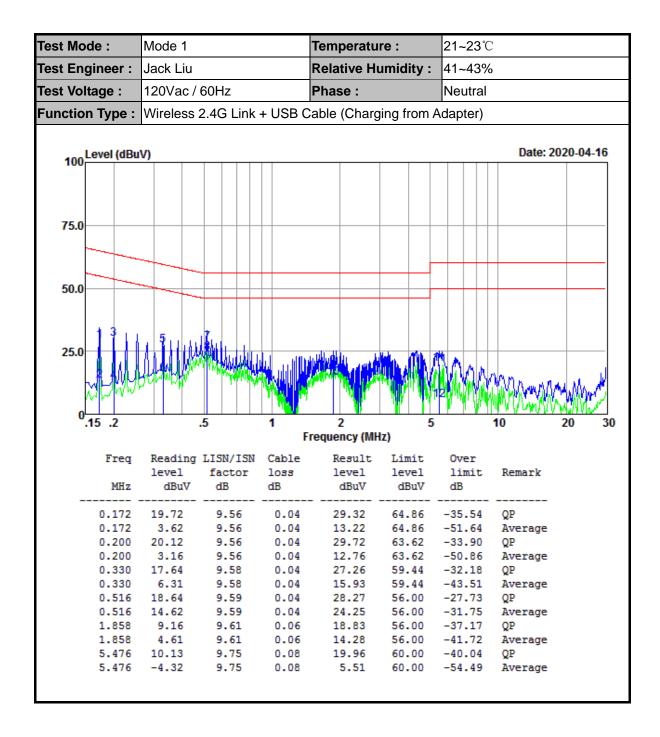
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			


*Decreases with the logarithm of the frequency.

4.3.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6.Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8.Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



4.4 Antenna Requirements

4.4.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

4.4.2 Antenna Connected Construction

An embedded-in antenna design is used.

4.4.3 Antenna Gain

The antenna peak gain of EUT is 1.87 dBi.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (YY-MM-DD)	Due Date (YY-MM-DD)	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2020-01-15	2021-01-14	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2020-01-16	2021-01-15	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2020-01-16	2021-01-15	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2020-01-16	2021-01-15	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2020-01-16	2021-01-15	Conducted
Thermal Chamber	Sanmtest	SMC-408-CD	2435	2019-05-09	2020-05-08	Conducted
Base Station	R&S	CMW 270	101231	2020-01-16	2021-01-15	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2020-02-21	2021-02-20	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2020-01-15	2021-01-14	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (YY-MM-DD)	Due Date (YY-MM-DD)	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2020-01-16	2021-01-15	Radiation
Amplifier	Sonoma	310	363917	2020-01-15	2021-01-14	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2020-01-15	2021-01-14	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2019-05-15	2020-05-14	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2020-02-14	2023-02-13	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2018-08-31	2021-08-30	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2020-02-14	2023-02-13	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021-06-19	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2020-01-08	2021-01-07	Conducted
LISN	R&S	ENV432	101327	2020-01-08	2021-01-07	Conducted
EMI Test	R&S	ESR3	102143	2020-01-16	2021-01-15	Conducted
Receiver	nao	Lono	102140	2020 01 10	2021 01 10	Conducted
EMI Test	Audix	E3	N/A	N/A	N/A	Conducted
Software	Audix	Eð	IN/A	N/A	IN/A	Conducted

N/A: No Calibration Required

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.60dB
	30MHz ~ 1GMHz	5.05dB
Radiated emission	1GHz ~ 18GHz	5.06 dB
	18GHz ~ 40GHz	3.65dB

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±0.1%
RF output power, conducted	±1.2dB
Power density, conducted	±1.2dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.