

FCC Test Report

Report No.: AGC00803240805FR01

FCC ID	:	2AKHJ-HW391
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Wireless keyboard
BRAND NAME	:	N/A
MODEL NAME	:	HW391, EK04, EKM04 A, EKM04, HW391-T01, HW391-T02
APPLICANT	:	Shenzhen Hangshi Electronic Technology Co., Ltd
DATE OF ISSUE	:	Aug. 30, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Aug. 30, 2024	Valid	Initial Release

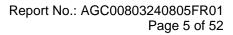


Table of Contents

1. General Information	
2. Product Information	6
2.1 Product Technical Description	
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	6
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	8
3.1 Address of the Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	9
3.4 Measurement Uncertainty	
3.5 List of Equipment Use	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Duty Cycle Measurement	
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	
9. Power Spectral Density Measurement	
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	

10. Conducted Band Edge And Out-of-Band Emissions	28
10.1 Provisions Applicable	
10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Results	
11. Radiated Spurious Emission	
11.1 Measurement Limit	35
11.2 Measurement Procedure	35
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	39
12. AC Power Line Conducted Emission Test	48
12.1 Measurement Limit	
12.2 Measurement Setup (Block Diagram of Configuration)	
12.3 Preliminary Procedure of Line Conducted Emission Test	
12.4 Final Procedure of Line Conducted Emission Test	49
12.5 Measurement Results	
Appendix I: Photographs of Test Setup	52
Appendix II: Photographs of Test EUT	52

1. General Information

Shenzhen Hangshi Electronic Technology Co., Ltd			
2nd Floor, Building A1, Zone G, Democratic Western Industrial Zone, Park,			
Shajing Street, Bao'an District, Shenzhen, 518104, China.			
Shenzhen Hangshi Electronic Technology Co., Ltd			
2nd Floor, Building A1, Zone G, Democratic Western Industrial Zone, Park,			
Shajing Street, Bao'an District, Shenzhen, 518104, China.			
Shenzhen Hangshi Electronic Technology Co., Ltd			
2nd Floor, Building A1, Zone G, Democratic Western Industrial Zone, Park,			
Shajing Street, Bao'an District, Shenzhen, 518104, China.			
Wireless keyboard			
N/A			
HW391			
EK04, EKM04 A, EKM04, HW391-T01, HW391-T02			
All the series models are the same as the test model except for the model names.			
Aug. 14, 2024			
Aug. 14, 2024 - Aug. 26, 2024			
No any deviation from the test method			
Normal			
Pass			
AGCER-FCC-SRD-V1			

Note: The test results of this report relate only to the tested sample identified in this report.

けんご Prepared By Cici Li Aug. 30, 2024 (Project Engineer) Calvin Lin **Reviewed By** Calvin Liu Aug. 30, 2024 (Reviewer) Max Zhang Approved By Max Zhang Aug. 30, 2024 Authorized Officer

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2405MHz-2470MHz
Modulation Type	GFSK
Number of channels	16
Maximum Transmitter Power	3.677dBm
Hardware Version	V1.0
Software Version	V1.0
Antenna Designation	PCB Antenna
Antenna Gain	2.34dBi
Power Supply	DC 3.7V by battery or DC 5V by adapter

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency	Channel Number	Frequency
	0	2405 MHz	8	2440 MHz
	1	2409 MHz	9	2445 MHz
	2	2413 MHz	10	2450 MHz
2400 2402 FMU	3	2417 MHz	11	2455 MHz
2400~2483.5MHz	4	2422 MHz	12	2460 MHz
	5	2426 MHz	13	2465 MHz
	6	2430 MHz	14	2467 MHz
	7	2435 MHz	15	2470 MHz

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2AKHJ-HW391, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 2.34dBi.

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V by battery or DC 5V by adapter

3.4 Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

3.5 List of Equipment Use

• R	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23	
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31	
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31	
\boxtimes	AGC-ER-A001	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-09-21	2025-09-20	
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22	
\boxtimes	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23	
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27		
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08		
\square	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27		

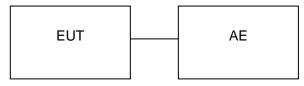
• Tes	Test Software								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information				
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71				
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A				
	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6				
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0				

4.System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

I Test Accessories Come From The Laboratory

			,					
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable			
1	Adapter	Huawei	HW-200440C00					
2	Control Box		USB-TTL					
	Test Accessories Come From The Manufacturer							
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable			

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1					

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.209	Radiated Emission& Band Edge	Pass
7	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

Summary Table of Test Cases					
	Data Rate / Modulation				
Test Item	2.4G / GFSK				
	Mode 1: 2.4G Tx CH00_2405 MHz(Battery powered or AC/DC adapter)				
Radiated & Conducted Test Cases	Mode 2: 2.4G Tx CH06_2430 MHz(Battery powered or AC/DC adapter)				
1001 04000	Mode 3: 2.4G Tx CH15_2470 MHz(Battery powered or AC/DC adapter)				
AC Conducted Emission	Mode 1: 2.4G + Battery + USB Cable (Charging from AC Adapter)				

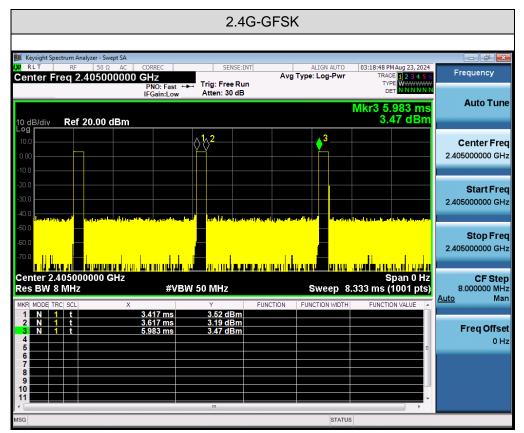
Note:

- Only the result of the worst case was recorded in the report, if no other cases. 1.
- The battery is full-charged during the test.
- 2. 3. 4. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Software Setting Diagram

8258.ini - SWIRE	- SWB SP	
RF PM		
Setting:	Tx Rx	
2405 Set_Channel	PA Set_Gpio	
5.1dbm - Set Power	Log_Window:	
BLE_2M · Set_RF_Mode	**************************************	
Carrier:	@ Set the number of packet Command ************************************	
Carrier CarrierData Hop	TC32 EVK: Swire OK Total Time: 0 ms ************************************	
TX: Unlimited -	@ Send Tx(PRBS9) Command ************************************	
PRBS9 0x55 0x0f	TC32 EVK: Swire OK Total Time: 0 ms ************************************	
	@ Send Start Tx(PRBS9) Command ************************************	
RX:	TC32 EVK: Swire OK Total Time: 0 ms Total Time: 0 ms	
	@ Send Start CarrierData Command ************************************	
Read_Rx_Cnt ReadRssi	TC32 EVK: Swire OK Total Time: 0 ms	

6. Duty Cycle Measurement


The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
2.4G-GFSK	200	7.79	11.08	5.00

Remark:

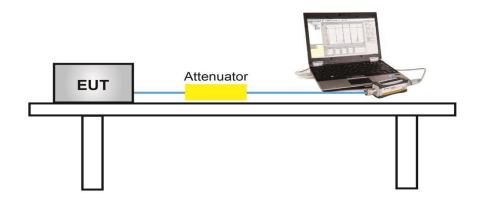
- 1. Duty Cycle factor = $10 * \log (1/\text{Duty cycle})$
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value

The test plots as follows:

7. RF Output Power Measurement

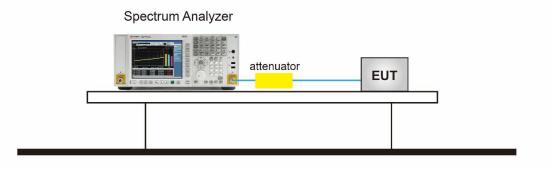
7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

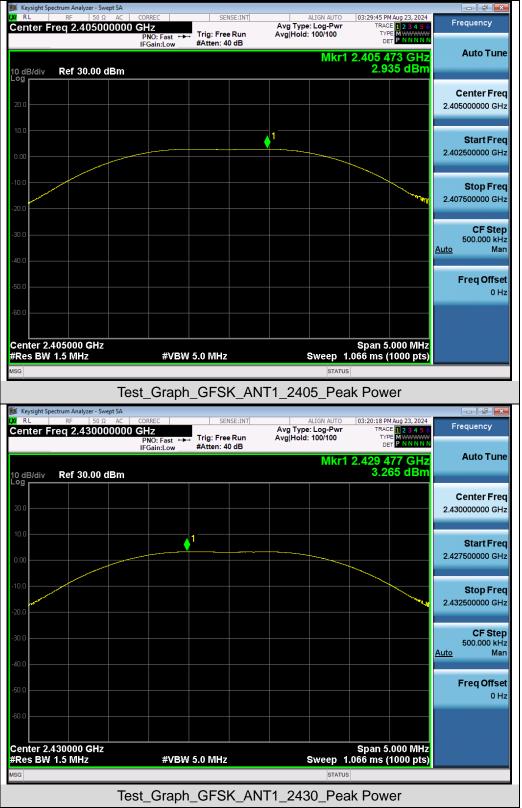

7.2 Measurement Procedure

For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

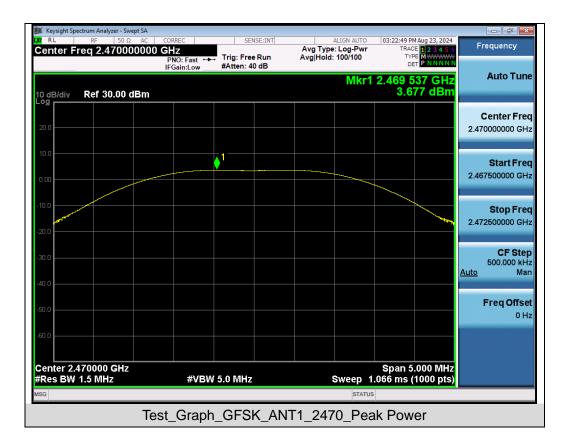
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW > DTS bandwidth
- 3. Set the VBW \geq [3 x RBW].
- 4. Span≥[3 x RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.


7.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup


For peak power test setup

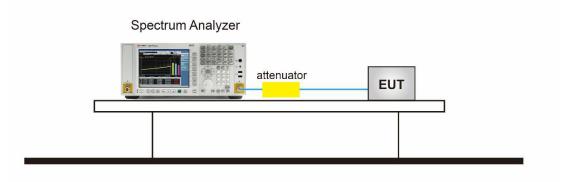
7.4 Measurement Result


Test Data of Conducted Output Power							
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail			
	2405	2.935	≪30	Pass			
GFSK	2430	3.265	≪30	Pass			
	2470	3.677	≪30	Pass			

Test Graphs of Conducted Output Power

8. 6dB Bandwidth Measurement

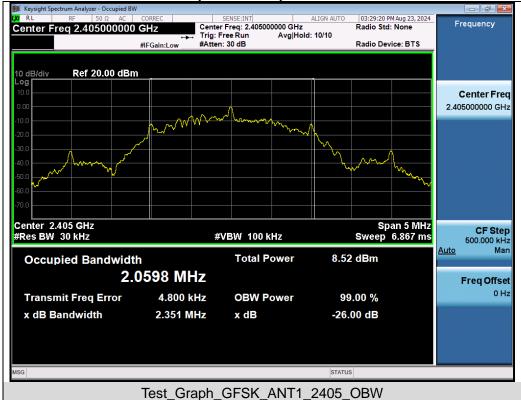
8.1 Provisions Applicable

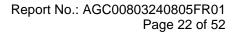

The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

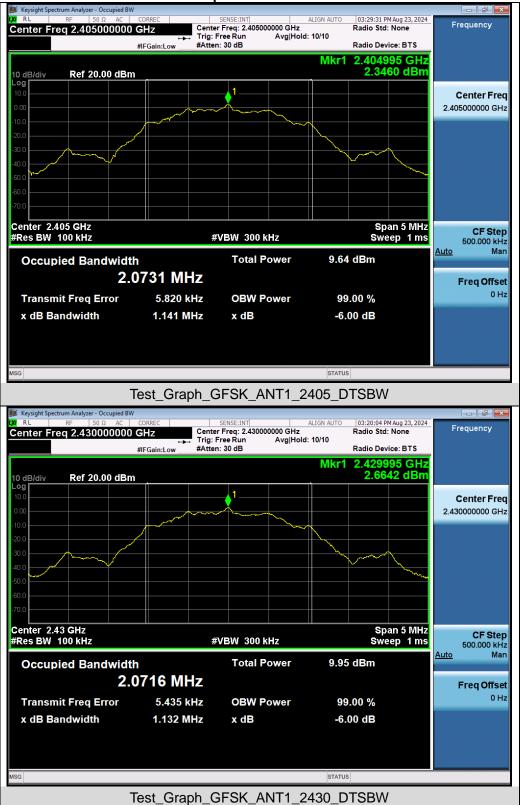
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.


8.3 Measurement Setup (Block Diagram of Configuration)



8.4 Measurement Results

Test Data of Occupied Bandwidth and DTS Bandwidth								
Test Mode	Test Frequency (MHz)	Occupied Bandwidth (MHz)	DTS BW (MHz)	DTS BW Limits	Pass or Fail			
GFSK	2405	2.060	1.141	≥0.5	Pass			
	2430	2.059	1.132	≥0.5	Pass			
	2470	2.059	1.141	≥0.5	Pass			

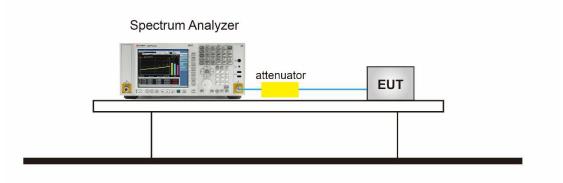

Test Graphs of Occupied Bandwidth

Test Graphs of DTS Bandwidth

Rf 190.0 AC CORREC SERVITI ALICN AUTO 1032235 Mag 23,2024 Center Freq 2.470000000 GHz Trig: Free Run Avg Hold: 10/10 Radio Std: None Radio Std: None 0 dB/dlv Ref 20.00 dBm Mkr1 2.469995 GHz 3.1548 dBm Center Freq 2.47000000 GHz 0 dB/dlv Ref 20.00 dBm 0	💓 Keysight Spectrum Analyzer - Occupied BW	_						_	
Add Survey Ref 20.00 dBm HFGainLow HFG 2.47000000 GHz Center Freq 2.47000000 GHz CF Step 500.000 KHz Sweep 1 ms CF Step 500.000 KHz Man Freq Offset 0 Hz	LXIRL RF 50Ω AC CO				LIGN AUTO			En	
Image: all constraints of the second seco	Center Freq 2.470000000 G				10/10	Radio Std:	None		equency
0 dB/dv Ref 20.00 dBm 3.1548 dBm 0 dB/dv Ref 20.00 dBm 3.1548 dBm 0 dB/dv 0 d 1	#1					Radio Devi	ice: BTS		
Center Freq 2.47000000 GHz Center 2.47 GHz CF Step Sweep 1 ms CCF Step Sweep 1 ms CCF Step Sweep 1 ms CCF Step Sweep 1 ms CCF Step Souldow Hz CF Step Souldow Hz CF Step Souldow Hz Man Freq Offset OHz X dB Bandwidth 1.141 MHz X dB CF Step Sweep 1 ms CF Step Souldow Hz CF Step Souldow Hz CF Step Souldow Hz Sweep 1 ms CF Step Souldow Hz CF Step Souldow Hz CF Step Souldow Hz CF Step Souldow Hz CF Step Souldow Hz Sweep 1 ms CF Step Souldow Hz Sweep 1 ms Sweep 1 ms					Mkr1	2.4699	95 GHz		
Center Freq 2.47000000 GHz Center 2.47 GHz Frees BW 100 kHz Transmit Freq Error x dB Bandwidth 1.141 MHz x dB Center 2.47 GHz Transmit Freq Error x dB Bandwidth 1.141 MHz X dB Center Freq Center Freq 2.47000000 GHz Synap 5 MHz Sweep 1 ms Freq Offset 0 Hz						3.154	48 dBm		
Center 2.47 GHz Span 5 MHz Center 2.47 GHz FRes BW 100 kHz Transmit Freq Error x dB Bandwidth 1.141 MHz x dB 1.141 MHz x dB 2.47000000 GHz CF Step Sweep 1 ms Sweep 1 ms Swe	Log		1						
Center 2.47 GHz #VBW 300 kHz Span 5 MHz Sweep 1 ms Occupied Bandwidth 2.0707 MHz Transmit Freq Error x dB Bandwidth 1.141 MHz x dB Transmit Freq Error x dB Bandwidth x dB Bandwidth 1.141 MHz x dB Transmit Freq Error x dB Bandwidth x dB B									•
200 200 200 200 200 200 200 200		- mont		and a second				2.470	J000000 GHZ
200 200 200 200 200 200 200 200									
400 4									
Sond	/ mmm /				- Jon	\sim			
600									
Center 2.47 GHz Res BW 100 kHz Cocupied Bandwidth Cocupied Bandwidt	-50.0								
Center 2.47 GHz Span 5 MHz Span 5 MHz Pres BW 100 kHz #VBW 300 kHz Sweep 1 ms Occupied Bandwidth Total Power 10.4 dBm 2.0707 MHz Freq Offset Transmit Freq Error 3.913 kHz OBW Power 99.00 % x dB Bandwidth 1.141 MHz x dB -6.00 dB	-60.0								
Res BW 100 kHz #VBW 300 kHz Sweep 1 ms CCF Step 500,000 kHz Occupied Bandwidth Total Power 10.4 dBm 2.0707 MHz Freq Offset Transmit Freq Error 3.913 kHz OBW Power 99.00 % x dB Bandwidth 1.141 MHz x dB -6.00 dB	-70.0								
Res BW 100 kHz #VBW 300 kHz Sweep 1 ms CCF Step 500,000 kHz Occupied Bandwidth Total Power 10.4 dBm 2.0707 MHz Freq Offset Transmit Freq Error 3.913 kHz OBW Power 99.00 % x dB Bandwidth 1.141 MHz x dB -6.00 dB	Center 247 GHz					Sna	an 5 MHz		
Occupied Bandwidth Total Power 10.4 dBm Auto Man 2.0707 MHz Freq Offset Freq Offset 0 Hz Transmit Freq Error 3.913 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 1.141 MHz x dB -6.00 dB 0 Hz	#Res BW 100 kHz		#VBW 300 k	Hz					
Coordination Freq Offset 2.0707 MHz Freq Offset Transmit Freq Error 3.913 kHz X dB Bandwidth 1.141 MHz X dB -6.00 dB								<u>Auto</u>	
Transmit Freq Error 3.913 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 1.141 MHz x dB -6.00 dB				ower	10.4	dBm			
x dB Bandwidth 1.141 MHz x dB -6.00 dB	2.07	707 MH	Z					F	Freq Offset
x dB Bandwidth 1.141 MHz x dB -6.00 dB	Transmit Fred Error	3 913 kH	ORW P	ower	qq	00 %			0 Hz
	· · · · ·			01101					
SG STATUS	x dB Bandwidth	1.141 MF	iz xdB		-6.	00 dB			
3G STATUS									
3G STATUS									
SG STATUS									
	MSG				STATUS				
Test_Graph_GFSK_ANT1_2470_DTSBW	Te	est Grap	h GESK A	NT1 24	170 D	TSBW			

9. Power Spectral Density Measurement

9.1 Provisions Applicable

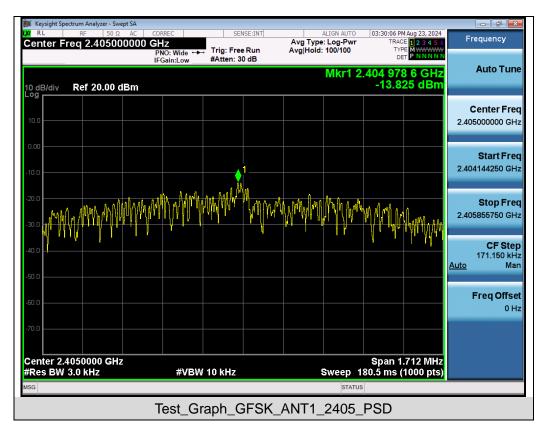

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

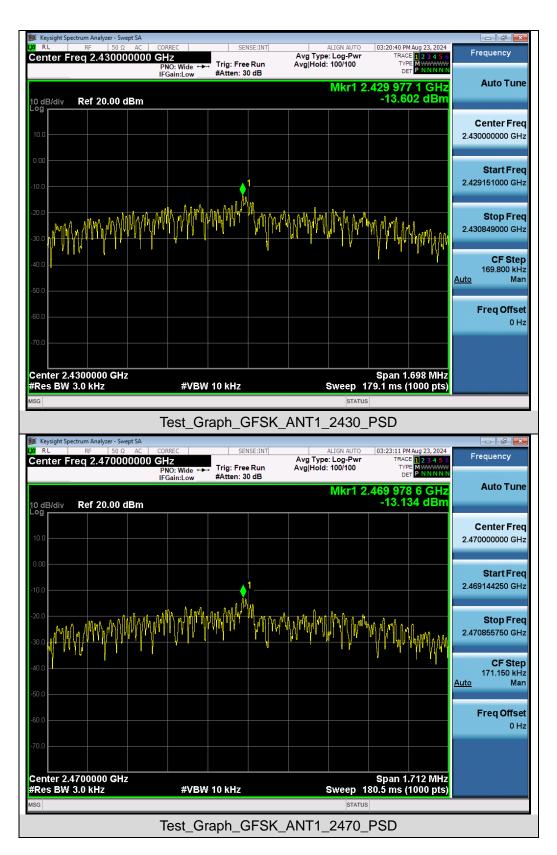
9.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.3 Measurement Setup (Block Diagram of Configuration)



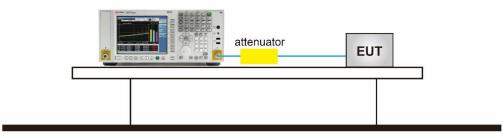

9.4 Measurement Results

Test Data of Conducted Output Power Spectral Density							
Test ModeTest Frequency (MHz)Power density (dBm/3kHz)Limit (dBm/3kHz)Particular							
	2405	-13.825	≪8	Pass			
GFSK	2430	-13.602	≪8	Pass			
	2470	-13.134	≪8	Pass			

Test Graphs of Conducted Output Power Spectral Density

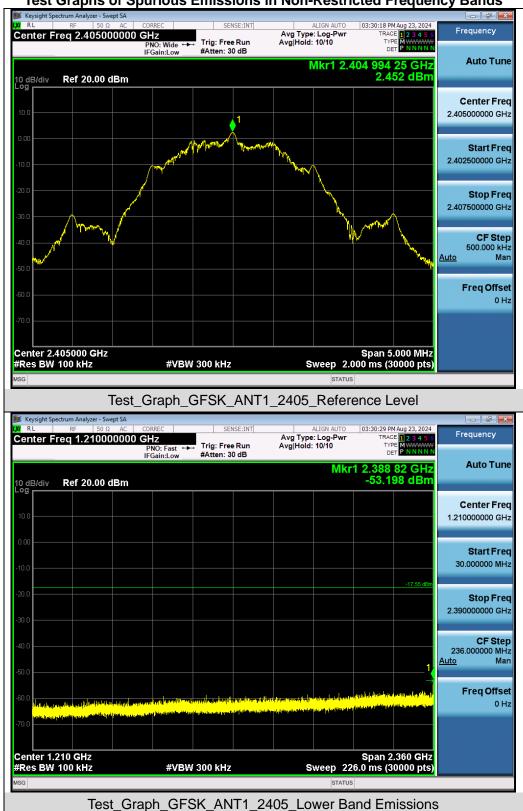
10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

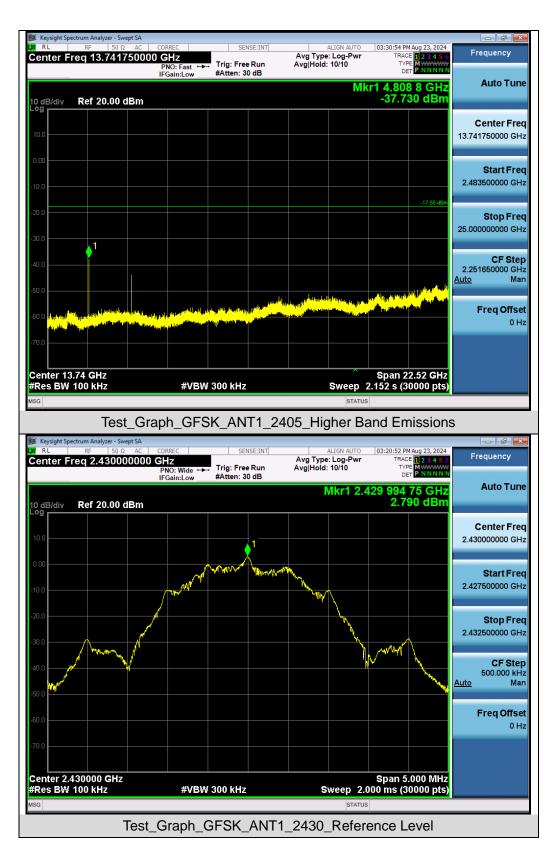

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

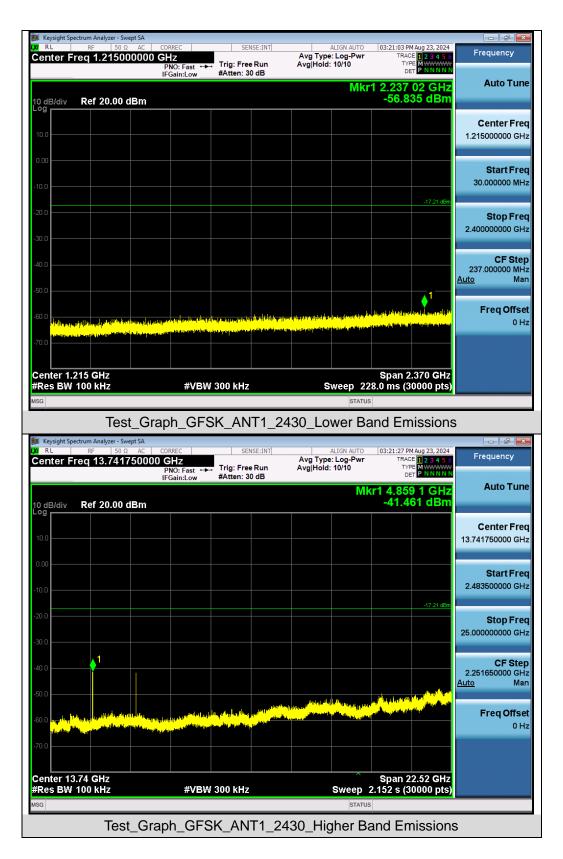
10.2 Measurement Procedure

- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

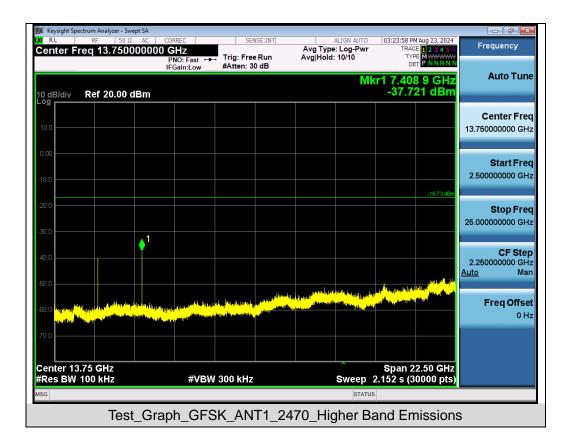

10.3 Measurement Setup (Block Diagram of Configuration)

Spectrum Analyzer


10.4 Measurement Results


Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

Any report having not been signed by festing/Inspection aumonzed nzano aleo Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.



Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

11. Radiated Spurious Emission

11.1 Measurement Limit

FCC Part 15.209 Limit in the below table to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 9. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 10. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 11. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum ParameterSettingStart ~Stop Frequency9kHz~150kHz/RB 200Hz for QPStart ~Stop Frequency150kHz~30MHz/RB 9kHz for QPStart ~Stop Frequency30MHz~1000MHz/RB 120kHz for QPStart ~Stop Frequency1GHz~26.5GHzStart ~Stop Frequency1MHz/3MHz for Peak, 1MHz/3MHz for Average

The following table is the setting of spectrum analyzer and receiver.

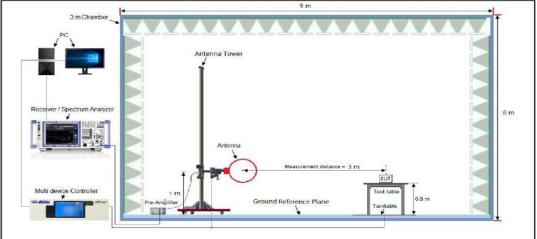
Receiver Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP

• Quasi-Peak Measurements below 1GHz

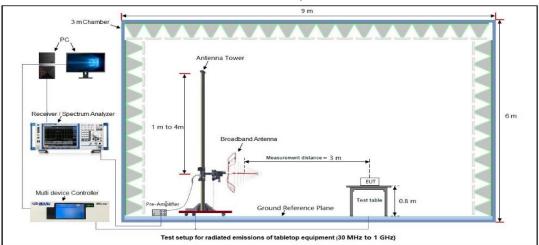
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

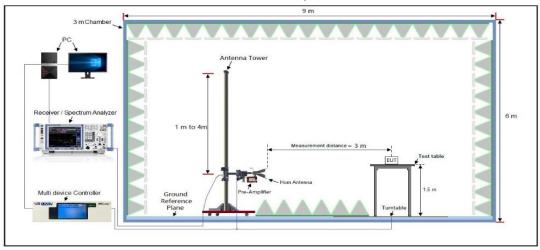
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


<u>Average Measurements above 1GHz</u>

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.



11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz

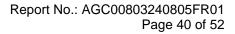
Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

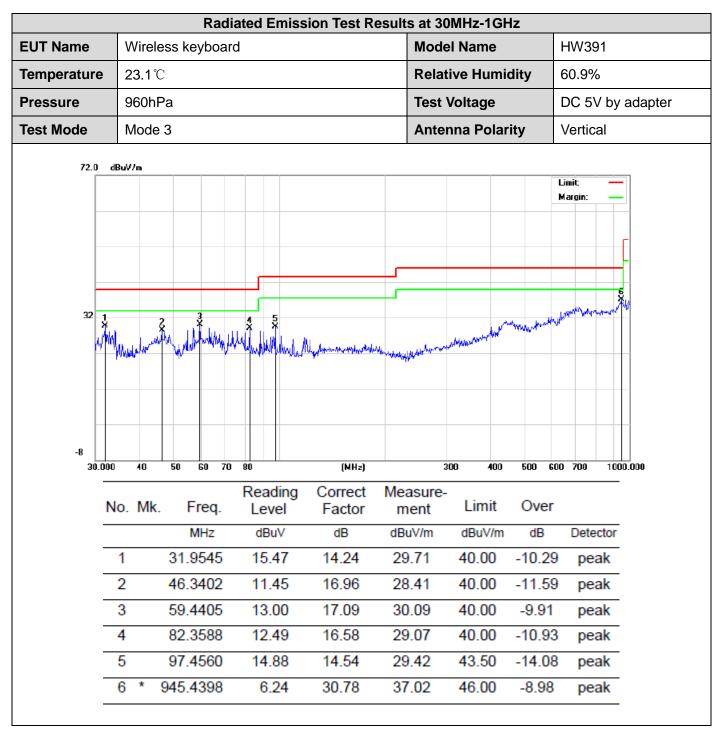
 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com



11.4 Measurement Result


Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

		Radia	ated Emiss	ion Test Re	esults at 30	0MHz-1GH	łz		
EUT Name	Wire	eless keyboard	ł		Mode	el Name		HW391	
Temperature	23.1°C				Relat	Relative Humidity 60.9%		60.9%	
Pressure	960ł	nPa			Test	Voltage		DC 5V by a	Idapter
Test Mode	Mod	e 3			Ante	nna Polar	ity	Horizontal	
72.0	dBuV/m				·		·		
32 North		Myr Anger all a fille	And Market and Andrews	trever have been have	Metropological and a second se	× 1		Linit — Margin: —	
-8 30.000	D 40	50 60 70	80	(MHz)	;	300 4 00	500 600	D 700 1000.	000
N	lo. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	39.9941	5.27	13.90	19.17	40.00	-20.83	peak	
	2	90.5374	10.26	14.73	24.99	43.50	-18.51	peak	
	3	449.5557	5.35	24.77	30.12	46.00	-15.88	peak	
	4	524.5540	5.81	24.90	30.71	46.00	-15.29	peak	
	5	597.2233	7.17	24.99	32.16	46.00	-13.84	peak	
_	6 *	896.9964	6.78	31.42	38.20	46.00	-7.80	peak	

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

UT Name	Wireless ke	eyboard	Mo	odel Name	HW391		
emperature	23.1 ℃		Re	lative Humidity	60.9%		
ressure	960hPa	960hPa		st Voltage	Normal	Normal Voltage	
Test Mode 1		An	itenna Polarity	Horizont	al		
Frequency	Meter Reading	Meter Reading Factor Emission		el Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4810.000	48.62	0.08	48.7	74	-25.3	peak	
4810.000	32.54	0.08	32.62	54	-21.38	AVG	
7215.000	42.16	2.21	44.37	74	-29.63	peak	
7215.000	32.38	2.21	34.59	54	-19.41	AVG	
Remark:							
	nna Factor + Cab	le Loss – Pre-	amplifier.				
	nna Factor + Cab Wireless ke			odel Name	HW391		
Factor = Anter			Ma	odel Name Iative Humidity	HW391 60.9%		
Factor = Anter	Wireless ke		Re			√oltage	
Factor = Anter	Wireless ke		Ma Re Te	lative Humidity	60.9%	Voltage	
Factor = Anter	Wireless ke 23.1℃ 960hPa Mode 1	eyboard	Ma Re Te Ar	elative Humidity st Voltage htenna Polarity	60.9% Normal Vertical	1	
Factor = Anter	Wireless ke 23.1℃ 960hPa Mode 1 Meter Reading	eyboard Factor	Ma Re Te Emission Lev	elative Humidity st Voltage ntenna Polarity rel Limits	60.9% Normal V Vertical Margin	Voltage Value Type	
Factor = Anter	Wireless ke 23.1℃ 960hPa Mode 1 Meter Reading (dBµV)	eyboard Factor (dB)	Ma Re Te Emission Lev (dBµV/m)	elative Humidity st Voltage Itenna Polarity ////////////////////////////////////	60.9% Normal V Vertical Margin (dB)	- Value Type	
Factor = Anter	Wireless ke 23.1 °C 960hPa Mode 1 Meter Reading (dBµV) 48.15	Factor (dB) 0.08	Mc Re Te Emission Lev (dBµV/m) 48.23	elative Humidity st Voltage itenna Polarity ////////////////////////////////////	60.9% Normal Vertical Margin (dB) -25.77	- Value Type peak	
Factor = Anter	Wireless ke 23.1 °C 960hPa Mode 1 Meter Reading (dBµV) 48.15 37.42	Factor (dB) 0.08 0.08	Μα Re Te An Emission Lev (dBµV/m) 48.23 37.5	elative Humidity st Voltage tenna Polarity ////////////////////////////////////	60.9% Normal V Vertical Margin (dB) -25.77 -16.5	- Value Type peak AVG	
Factor = Anter	Wireless ke 23.1 °C 960hPa Mode 1 Meter Reading (dBµV) 48.15 37.42 42.38	Factor (dB) 0.08 0.08 2.21	Μα Re Te An Emission Lev (dBµV/m) 48.23 37.5 44.59	elative Humidity st Voltage ntenna Polarity ////////////////////////////////////	60.9% Normal Vertical Margin (dB) -25.77 -16.5 -29.41	- Value Type peak	
Factor = Anter	Wireless ke 23.1 °C 960hPa Mode 1 Meter Reading (dBµV) 48.15 37.42	Factor (dB) 0.08 0.08	Μα Re Te An Emission Lev (dBµV/m) 48.23 37.5	elative Humidity st Voltage tenna Polarity ////////////////////////////////////	60.9% Normal V Vertical Margin (dB) -25.77 -16.5	- Value Type peak AVG peak	
Factor = Anter	Wireless ke 23.1 °C 960hPa Mode 1 Meter Reading (dBµV) 48.15 37.42 42.38	Factor (dB) 0.08 0.08 2.21	Μα Re Te An Emission Lev (dBµV/m) 48.23 37.5 44.59	elative Humidity st Voltage ntenna Polarity ////////////////////////////////////	60.9% Normal Vertical Margin (dB) -25.77 -16.5 -29.41	- Value Type peak AVG peak	

Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

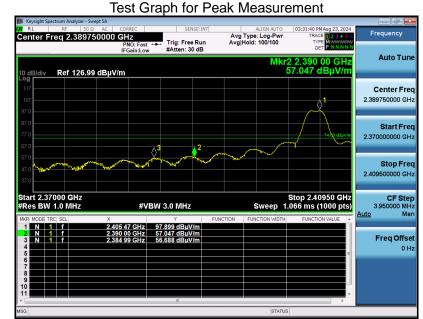
emperature ressure est Mode Frequency M (MHz) 4860.000 4860.000 7290.000 7290.000 7290.000 Remark: Factor = Antenna	23.1 ℃ 960hPa Mode 2 Meter Reading (dBµV) 49.63 38.52 42.53 31.95	Factor (dB) 0.14 0.14 2.36 2.36	Те	elative Humidity est Voltage ntenna Polarity vel Limits (dBµV/m) 74 54 74 54	60.9% Normal Horizon (dB) -24.23 -15.34 -29.11 -19.69		
Est Mode Frequency N (MHz) 4860.000 4860.000 7290.000 7290.000 7290.000 Remark: 1	Mode 2 Meter Reading (dBµV) 49.63 38.52 42.53 31.95	(dB) 0.14 0.14 2.36	Emission Lee (dBµV/m) 49.77 38.66 44.89	vel Limits (dBµV/m) 74 54 74	Margin (dB) -24.23 -15.34 -29.11	tal Value Type peak AVG peak	
Frequency N (MHz) 4860.000 4860.000 7290.000 7290.000 7290.000 Remark: 1000000000000000000000000000000000000	Meter Reading (dBµV) 49.63 38.52 42.53 31.95	(dB) 0.14 0.14 2.36	Emission Let (dBµV/m) 49.77 38.66 44.89	vel Limits (dBµV/m) 74 54 74	Margin (dB) -24.23 -15.34 -29.11	Value Type peak AVG peak	
(MHz) 4860.000 4860.000 7290.000 7290.000 Remark:	(dBµV) 49.63 38.52 42.53 31.95	(dB) 0.14 0.14 2.36	(dBµV/m) 49.77 38.66 44.89	(dBµV/m) 74 54 74	(dB) -24.23 -15.34 -29.11	peak AVG peak	
(MHz) 4860.000 4860.000 7290.000 7290.000 Remark:	(dBµV) 49.63 38.52 42.53 31.95	(dB) 0.14 0.14 2.36	(dBµV/m) 49.77 38.66 44.89	(dBµV/m) 74 54 74	(dB) -24.23 -15.34 -29.11	peak AVG peak	
4860.000 4860.000 7290.000 7290.000 Remark:	49.63 38.52 42.53 31.95	0.14 0.14 2.36	49.77 38.66 44.89	74 54 74	-24.23 -15.34 -29.11	peak AVG peak	
4860.000 7290.000 7290.000 Remark:	38.52 42.53 31.95	0.14 2.36	38.66 44.89	54 74	-15.34 -29.11	AVG peak	
7290.000 7290.000 Remark:	42.53 31.95	2.36	44.89	74	-29.11	peak	
7290.000 Remark:	31.95					· ·	
Remark:		2.36	34.31	54	-19.69	AVG	
	Factor + Cable						
UT Name emperature	Wireless key 23.1℃	yboard		Model Name Relative Humidity		HW391 60.9%	
ressure	960hPa			Test Voltage		Normal Voltage	
est Mode	Mode 2		Aı	ntenna Polarity	Vertical	Vertical	
Frequency	Meter Reading	Factor	Emission Le	vel Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4860.000	48.62	0.14	48.76	74	-25.24	peak	
4860.000	38.42	0.14	38.56	54	-15.44	AVG	
7290.000	42.38	2.36	44.74	74	-29.26	peak	
7290.000	31.24	2.36	33.6	54	-20.4	AVG	
Remark:							

Radiated Emissions Test Results for Above 1GHz

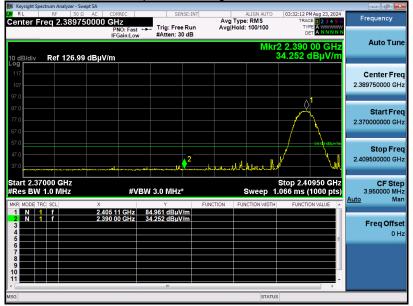
RESULT: Pass

T Name Wireless keyboard			1	Model Name		HW391		
emperature	23.1 ℃	23.1℃ 960hPa		Relativ	ve Humidity	60.9%		
ressure	960hPa			Test Voltage		Normal V	Normal Voltage	
Test Mode Mode 3			Anten	na Polarity	Horizonta	al		
Frequency	Meter Reading	Factor	Emission	Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/	/m)	(dBµV/m)	(dB)	value Type	
4940.000	49.65	0.22	49.87	7	74	-24.13	peak	
4940.000	38.53	0.22	38.7	5	54	-15.25	AVG	
7410.000	42.53	2.64	45.1	7	74	-28.83	peak	
7410.000	32.57	2.64	35.2 ⁻	1	54	-18.79	AVG	
		<u> </u>						
Remark:								
Factor = Anten	ina Factor + Cabl	e Loss – Pre-	amplifier.					
UT Name	Wireless ke	yboard	1	Model Name		HW391	HW391	
emperature	23.1 ℃		Relative Humidity		ve Humidity	60.9%		
ressure	960hPa	ıPa		Test Voltage		Normal V	Normal Voltage	
est Mode	Mode 3			Anten	na Polarity	Vertical		
			- · ·				1	
Frequency	Meter Reading	Factor	Emission		Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/	/m)	(dBµV/m)	(dB)		
(MHz) 4940.000	(dBµV) 48.62	(dB) 0.22	(dBµV/ 48.84	/m) 4	(dBµV/m) 74	(dB) -25.16	peak	
(MHz) 4940.000 4940.000	(dBµV) 48.62 37.53	(dB) 0.22 0.22	(dBµV/ 48.84 37.75	/m) 4 5	(dBµV/m) 74 54	(dB) -25.16 -16.25	peak AVG	
(MHz) 4940.000 4940.000 7410.000	(dBµV) 48.62 37.53 42.35	(dB) 0.22 0.22 2.64	(dBµV/ 48.84 37.75 44.99	/m) 4 5 9	(dBµV/m) 74 54 74	(dB) -25.16 -16.25 -29.01	peak AVG peak	
(MHz) 4940.000 4940.000	(dBµV) 48.62 37.53	(dB) 0.22 0.22	(dBµV/ 48.84 37.75	/m) 4 5 9	(dBµV/m) 74 54	(dB) -25.16 -16.25	peak AVG	
(MHz) 4940.000 4940.000 7410.000	(dBµV) 48.62 37.53 42.35	(dB) 0.22 0.22 2.64	(dBµV/ 48.84 37.75 44.99	/m) 4 5 9	(dBµV/m) 74 54 74	(dB) -25.16 -16.25 -29.01	peak AVG peak	
(MHz) 4940.000 4940.000 7410.000	(dBµV) 48.62 37.53 42.35	(dB) 0.22 0.22 2.64	(dBµV/ 48.84 37.75 44.99	/m) 4 5 9	(dBµV/m) 74 54 74	(dB) -25.16 -16.25 -29.01	peak AVG peak	

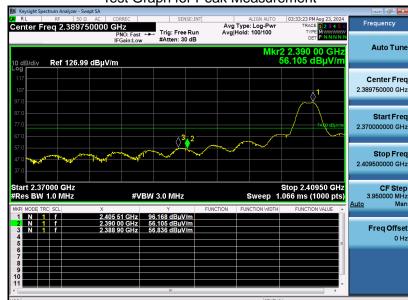
Radiated Emissions Test Results for Above 1GHz


RESULT: Pass

Note:


- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

EUT Name	Wireless keyboard	Model Name	HW391
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 1	Antenna Polarity	Horizontal

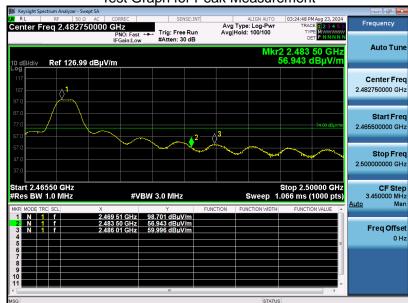

Test Graph for Average Measurement

RESULT: Pass

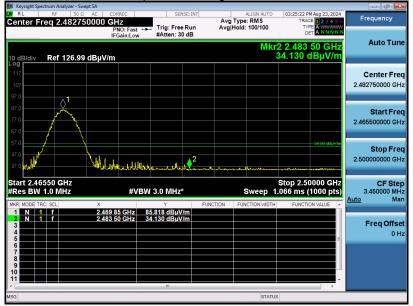


EUT Name	Wireless keyboard	Model Name	HW391
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement


Test Graph for Average Measurement

RESULT: Pass



EUT Name	Wireless keyboard	Model Name	HW391
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	Wireless keyboard	Model Name	HW391
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 3	Antenna Polarity	Vertical

Test Graph for Peak Measurement

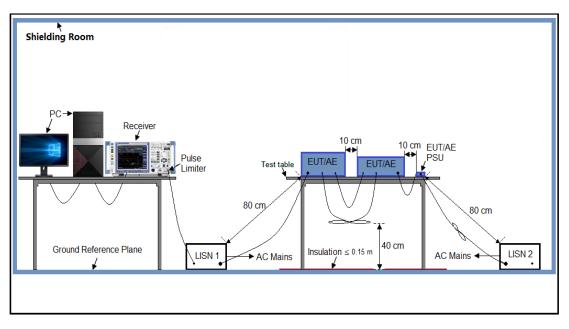
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

12. AC Power Line Conducted Emission Test

12.1 Measurement Limit


Francisco	Maximum RF Line Voltage				
Frequency	Q.P. (dBµV)	Average (dBµV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

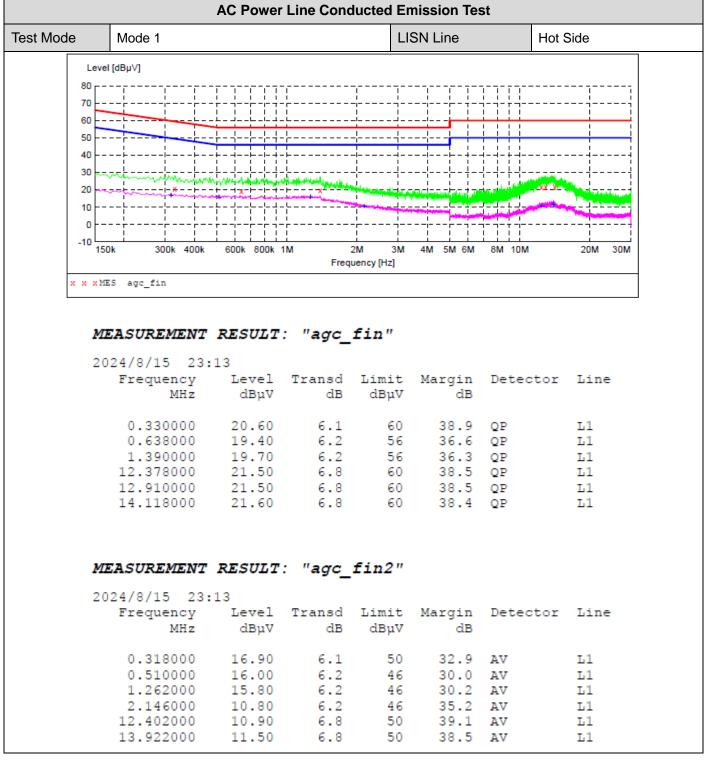
1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 Measurement Setup (Block Diagram of Configuration)

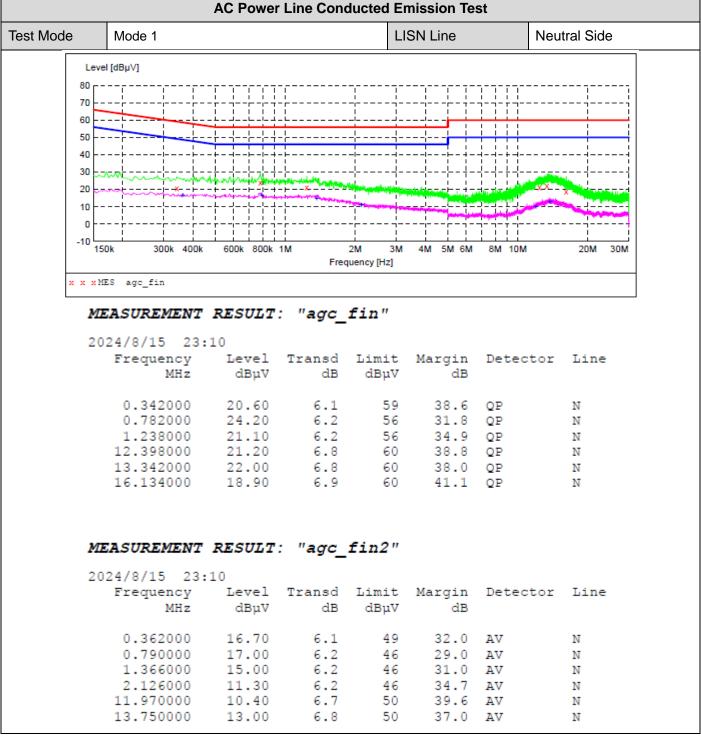
12.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.


12.5 Measurement Results

RESULT: Pass

RESULT: PASS

Report No.: AGC00803240805FR01 Page 52 of 52

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC00803240805AP02

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC00803240805AP03

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.