

RF Test Report

For

Shenzhen Hangshi Technology Co.,Ltd

Test Standards:	Part 15C Subpart C §15.247				
Product Name:	Bluetooth Keyboard				
Tested Model:	<u>HB334-T01</u>				
Additional Model No.:	<u>HB334-T02</u>				
FCC ID:	<u>2AKHJ-HB334</u>				
Classification	Digital Spread Spectrum (DSS)				
Report No.:	EC2209032RF01_				
Tested Date:	2022-09-28 to 2022-10-25				
Issued Date:	<u>2022-10-25</u>				
Prepared By:	Jack Liu / Engineer				
Approved By:	Timy Yang				
	Tiny Yang / RF Manager				
Testing laboratory:	Testing laboratory:				
Hunan Ecloud Testing Technology Co., Ltd.					
Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and					
Technological Development Zone, Hunan, P.R.C					
Tel.: +86-731-89634887 Fax.: +86-731-89634887					
www.hn-ecloud.com					

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2022.10.25	Valid	Original Report

TABLE OF CONTENTS

1	TEST	LABORATORY	5
	1.1	Test facility	5
2	GENI	ERAL DESCRIPTION	6
	2.1	Applicant	6
	2.2	Manufacturer	6
	2.3	General Description Of EUT	6
	2.4	Modification of EUT	7
	2.5	Applicable Standards	7
3	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	8
	3.3	Support Equipment	9
	3.4	Test Setup	10
	3.5	Measurement Results Explanation Example	13
4	TEST	RESULT	14
	4.1	20dB and 99% Bandwidth Measurement	14
	4.2	Peak Output Power Measurement	15
	4.3	Carrier Frequency Separation Measurement	
	4.4	Time of Occupancy Measurement	17
	4.5	Number of Hopping Channels Measurement	18
	4.6	Conducted Band Edges Measurement	19
	4.7	Conducted Spurious Emission Measurement	20
	4.8	Radiated Band Edges and Spurious Emission Measurement	21
	4.9	AC Conducted Emission Measurement	
	4.10	Antenna Requirements	49
5	LIST	OF MEASURING EQUIPMENT	50
6	UNCI	ERTAINTY OF EVALUATION	52
	Арре	endix A: 20dB Emission Bandwidth	53
	Арре	endix B: Occupied Channel Bandwidth	55
	Арре	endix C: Maximum conducted output power	57
	Арре	endix D: Carrier frequency separation	59
	••	endix E: Time of occupancy	
	Арре	endix F: Number of hopping channels	63
	Арре	endix G: Band edge measurements	64
		endix H: Conducted Spurious Emission	
	Appe	endix I. Setup Photographs	72

Tel.:+86-731-89634887 Fax.: +86-731-89634887

FCC Rule	Description	Limit	Result	Remark
15.247(a)(1)	20dB Bandwidth	NA	Pass	Test Engineer: Luo Xiang
-	99% Bandwidth	-	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Average Time of Occupancy	≤ 0.4sec in 31.6sec period	Pass	Test Engineer: Luo Xiang
15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	Test Engineer: Luo Xiang
15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	Test Engineer: Luo Xiang
15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	Test Engineer: Luo Xiang
15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.03 dB at 9920 MHz
15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 21.61 dB at 0.541 MHz
15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Summary of Test Result

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number:CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2 General Description

2.1 Applicant

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.2 Manufacturer

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.3 General Description Of EUT

Product	Bluetooth Keyboard		
Model No.	HB334-T01		
Additional NO.	HB334-T02		
	The difference between HB334-T02 and HB334-T01 is		
Difference Description	only the battery model and the addition of backlight plate,		
	which does not affect any RF parameters.		
FCC ID	2AKHJ-HB334		
Power Supply	5Vdc (adapter or host equipment)		
	3.7Vdc (Li-ion, polymer)		
Modulation Technology	FHSS		
Modulation Type	GFSK		
Operating Frequency 2402MHz~2480MHz			
Number Of Channel	79		
Max. Output Power	Bluetooth BR(1Mbps) : -2.52 dBm (0.0006W)		
Antenna Type	PCB Antenna type with 1.87dBi gain		
HW Version	v1.1		
SW Version	v1.0		
Sample no.	2209032R/S-1/2~2/2		
Sample Received Date	2022-09-27&2022-10-08		
I/O Ports	Refer to user's manual		
Cable Supplied	Refer to user's manual		

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com

- 1. The above EUT information is declared by manufacturer. The laboratory is not responsible for the information provided by the manufacturer.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Mode	Channel	Frequency	Bluetooth RF Output Power
	Ch00	2402MHz	-2.52
GFSK	Ch39	2441MHz	-3.9
	Ch78	2480MHz	-5.34

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases				
Test Item	Data Rate / Modulation			
lest item	Bluetooth BR 1Mbps GFSK			
Conducted	Mode 1: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz			

3.2.2 Radiated Emission Test (Below 1GHz)

Radiated	Bluetooth BR 1Mbps GFSK
Test Cases	Mode 3: CH78_2480 MHz

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible

combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3.2.3 Radiated Emission Test (Above 1GHz)

	Bluetooth BR 1Mbps GFSK		
Radiated	Mode 1: CH00_2402 MHz		
Test Cases	Mode 2: CH39_2441 MHz		
	Mode 3: CH78_2480 MHz		

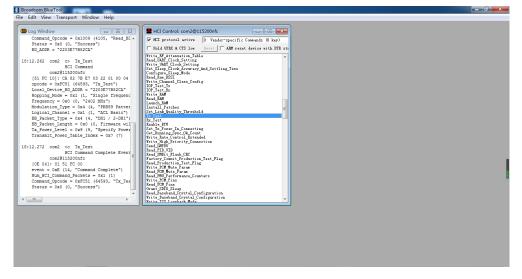
Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

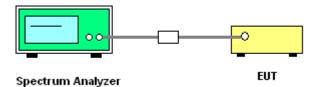
- 2. Following channel(s) was (were) selected for the final test as listed above
- 3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

3.2.4 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : Bluetooth Link + USB Cable (Charging from Adapter)
Emission	

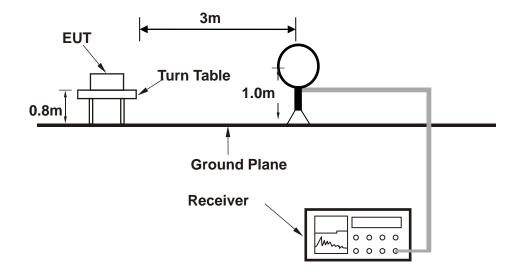
3.3 Support Equipment


ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	HUAWEI	HW-059200CHQ	FCC sDoC	N/A	N/A
2	MicroUSB	N/A N/A N/A	N1/A	N1/A	N/A	unshielded
2.	Cable		N/A	IN/A	IN/A	0.8m
3.	Notebook	Lenovo	E470C	FCC sDoC	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m

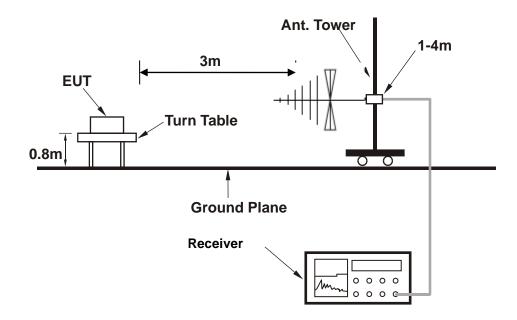

3.4 Test Setup

The EUT is continuously communicating to the Bluetooth tester during the tests.

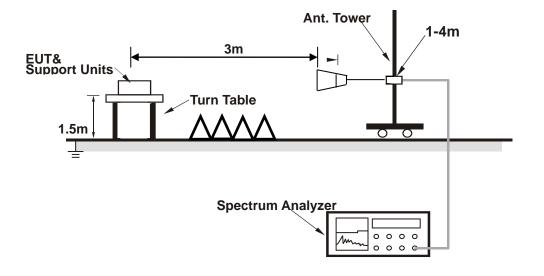
EUT was set in the Hidden menu mode to enable BT communications.



Setup diagram for Conducted Test



Setup diagram for Radiation(9KHz~30MHz) Test



Setup diagram for Radiation(Below 1G) Test



Setup diagram for Radiation(Above1G) Test

Setup diagram for AC Conducted Emission Test

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

4 Test Result

4.1 20dB and 99% Bandwidth Measurement

4.1.1 Limit of 20dB and 99% Bandwidth

None; for reporting purposes only.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

 $RBW \ge 1\%$ of the 20 dB bandwidth; $VBW \ge RBW$; Sweep = auto; Detector function = peak; Trace = max hold.

4. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.

Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; RBW \geq 1% of the 99% bandwidth; VBW \geq RBW; Sweep = auto; Detector function = sample; Trace = max hold.

4.1.3 Test Result of 20dB Bandwidth

Refer to Appendix A of this test report.

4.1.4 Test Result of 99% Bandwidth

Refer to Appendix B of this test report.

4.2 Peak Output Power Measurement

4.2.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

4.2.3 Test Result of Peak Output Power

Refer to Appendix C of this test report.

4.3 Carrier Frequency Separation Measurement

4.3.1 Limit of Hopping Channel Separation

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.3.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

4.3.3 Test Result of Hopping Channel Separation

Refer to Appendix D of this test report.

4.4 Time of Occupancy Measurement

4.4.1 Limit of Average Time of Occupancy

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

4. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as below:

DH1 time slot= Burst Width (ms)*(1600/ (2*79))*31.6

DH3 time slot= Burst Width (ms)*(1600/ (4*79))*31.6

DH5 time slot= Burst Width (ms)*(1600/ (6*79))*31.6

4.4.3 Test Result of Dwell Time

Refer to Appendix E of this test report.

4.5 Number of Hopping Channels Measurement

4.5.1 Limits of Number of Hopping Channels

FCC § 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 100KHz. The analyzer is set to Max Hold.

4.5.3 Test Result of Number of Hopping Channels

Refer to Appendix F of this test report.

4.6 Conducted Band Edges Measurement

4.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.6.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3.Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 1~3.

4.6.3 Test Result of Conducted Band Edges

Refer to Appendix G of this test report.

4.7 Conducted Spurious Emission Measurement

4.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4.Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.7.3 Test Result of Conducted Spurious Emission

Refer to Appendix H of this test report.

4.8 Radiated Band Edges and Spurious Emission Measurement

4.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

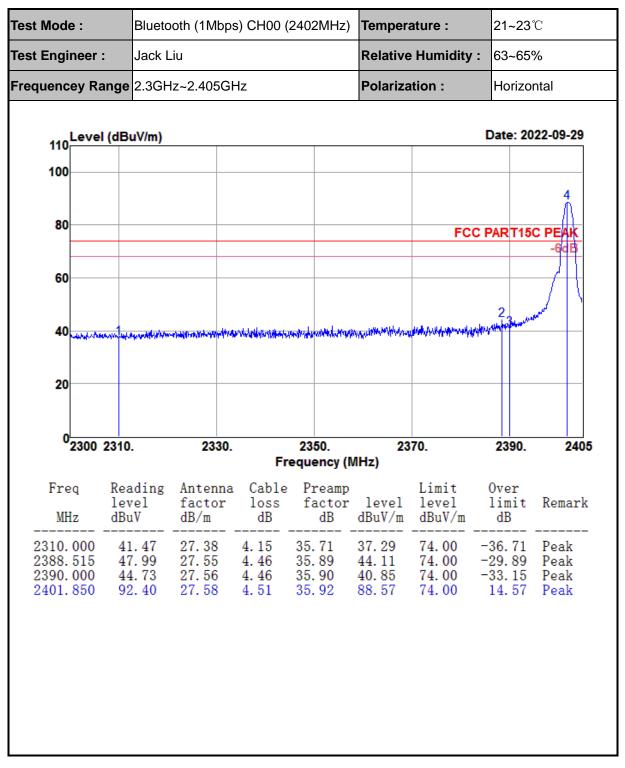
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

4.8.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) The EUT shall be configured to operate at the maximum achievable duty cycle.
 - (2) Measure the duty cycle D of the transmitter output signal as described in 11.6.
 - (3) RBW = 1 MHz (unless otherwise specified).
 - (4) VBW \geq [3 × RBW].
 - (5) Detector = RMS (power averaging), if span / (# of points in sweep) ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (6) Averaging type = power (i.e., rms):
 - a. As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - b. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
 - (7) Sweep time = auto.
 - (8) Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - a. If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - b. If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - c. If a specific emission is demonstrated to be continuous (D \ge 98%) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

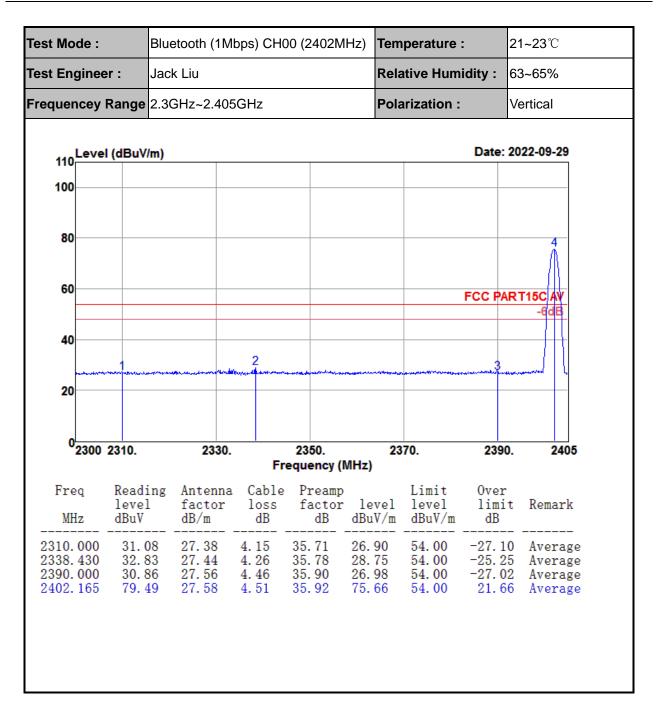
(10) Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission; it is not based on an average across ON and OFF times of the transmitter.


Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1Mbps	15.69	2.94	0.48	1kHz
Image: Second	402000000 GHz PN0: Fast → Trig. V PN0: Fast → Trig. V PN0: Fast → Trig. V #Atten Offset 7.87 dB 5.00 dBm 22Δ1 ■ut////v/1% estat → orde v.t.71 list/h-d-v = ut////v/1% estat → orde v.t.71 list/h-d-v = ut///v/1% estat → orde v.t.71 list/h-d-v = ut///v/1% estat → orde v.t.71 list/h-d-v = ut//v/1% estat →	Image: Second	Span 0 Hz state The state of t	

4.8.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

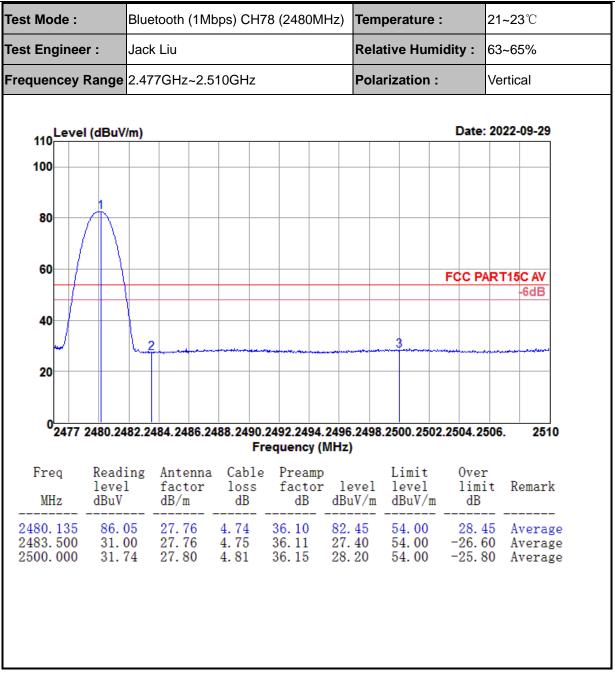
The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

4.8.4 Test Result of Radiated Spurious at Band Edges



Test Engineer : Jack Liu Relative Humidity : 63~65% Frequencey Range 2.3GHz-2.405GHz Polarization : Horizontal 100 Date: 2022-09-2 100 0 0 4 80 0 0 7 60 FCC PART15C A - 60 FCC PART15C A - 60 - - - 60 - - - 60 - - - 60 - - - 60 - - - 60 - - - 60 - - - 70 2300 2310. 2330. 2350. 2370. 2390. 24 7 - - - - - - - 7 - - - - - - - - 70 - - - - - - - - - - - -	
Date: 2022-09-2 100 100 100 100 100 100 100 10	
110 100 80 60 60 60 60 60 60 60 60 60 6	
80 60 60 60 60 60 60 60 60 60 6	29
80 60 60 60 60 60 60 60 60 60 6	_
40 40 20 20 2300 2310. 2330. 2350. 2370. 2390. 24 Frequency (MHz) Freq Reading Antenna Cable Preamp Limit Over	+
20 20 20 20 2300 2310. 2330. 2350. 2370. 2390. 24 Frequency (MHz) Freq Reading Antenna Cable Preamp Limit Over	N
20 0 2300 2310. 2330. 2350. 2370. 2390. 24 Frequency (MHz) Freq Reading Antenna Cable Preamp Limit Over	
Frequency (MHz) Freq Reading Antenna Cable Preamp Limit Over	
	2405
MHz dBuV dB/m dB dB dBuV/m dBuV/m dB	ırk
2310.000 31.05 27.38 4.15 35.71 26.87 54.00 -27.13 Aver 2388.830 32.34 27.56 4.46 35.89 28.47 54.00 -25.53 Aver 2390.000 31.40 27.56 4.46 35.90 27.52 54.00 -26.48 Aver 2402.270 92.33 27.58 4.51 35.93 88.49 54.00 34.49 Aver	rage rage

est Mode :	BI	uetooth (11	Mbps) CH00	(2402MHz)	Temper	rature :	21~23	₿℃
est Enginee	er: Ja	ack Liu			Relativ	e Humidity	/ : 63~65	5%
requencey	Range 2.	3GHz~2.4(05GHz		Polariz	ation :	Vertica	al
110	l (dBuV/m	1)				1	Date: 20)22-09-29
100								
80						FC	C PAR T15	
60								-605
	1							
40	Warter Martin Appendices	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 manifestation	nen, manter marter all	f.s.qualer.sector	honderstations and		
40 ,	there and the second	~~~		nerennereter verende	haan maalomaan ha	Lis,	nour montener	
20	2310.	23:	50.	2350. equency (M	23		3 	2405
20		233	30. Fre	2350. equency (M Preamp factor	23			



	Diueio	oth (1Mbp	s) CH78	(2480MHz) Tempe	erature :	21~2	2 3℃
t Engineer :	Jack L	.iu			Relativ	e Humidity	/ : 63~6	5%
quencey Rang	e 2.4770	GHz~2.51(OGHz		Polariz	zation :	Verti	cal
110 Level (dB	uV/m)						Date: 20	022-09-29
100								
1								
80						FCC	PART15	C PEAK
-								
60	mag	Men Lu						
40		miner way	Almanatur			and the market and the second second	-	tanin (18 katasi Palata
20								
⁰ 2477 2480	.2482.24	84.2486.24				.2500.2502.	2504.2506	6. 2510
D D				equency (N	/IHz)		0	
	ading vel uV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2483.500 49 2483.831 50		27.76 27.76 27.76	4.74 4.75 4.76	36.10 36.11 36.11	88.09 45.94 46.64	74.00 74.00 74.00	14.09 -28.06 -27.36	Peak Peak
2500.000 42	2.80	27.80	4.81	36. 15	39. 26	74.00	-34. 74	Peak

Report No.: EC2209032RF01

est Mode :	В	luetooth (1N	lbps) CH7	78 (2480M	Hz) Tem	perature :		21~23 ℃
est Engineer	r: J	ack Liu			Rela	ative Humi	dity :	63~65%
Frequencey R	ange 2	.477GHz~2.	510GHz		Pola	arization :		Horizontal
110 Level ((dBuV/m)					Date:	2022-09-29
100	1							
80						FC		15C PEAK
60								-6dB
		and an and a second	warmen warde			4		
40				ertilleriteterierierierierierierierierierierierierie	48944 ⁴ 44,4478944 ⁴⁴⁴ 47	an a	Hel-anglages/1944erapi	an a
20								
0 2477 2	480.2482	2.2484.2486.2				3.2500.2502	2504.25	506. 2 510
Freq	Readin	g Antenna		equency(I Preamp		Limit	0ver	
-	level dBuV	factor dB/m	loss dB	factor dB		level	limi dB	
2479.739 2483.500 2483.666	92.38 51.56 52.51 43.16	27.76 27.76	4.74 4.75 4.76 4.81	36. 10 36. 11 36. 11 36. 15	88.78 47.96 48.92 39.62	$\begin{array}{c} 74.\ 00\\ 74.\ 00\\ 74.\ 00\\ 74.\ 00\\ 74.\ 00 \end{array}$	-25.0	4 Peak

est Mo	ode :		Blue	tooth	(1Mb	ops) Cl	H78	(2480	MHz	Tem	npera	ature	:	21	~23	°C	
est En	ginee	·:	Jack	Liu						Rela	Relative Humidity :			: 63	63~65%		
requer	ncey F	lange	2.47	7GH	z~2.5	10GHz	2			Pola	ariza	tion	•	Н	orizo	ntal	
110	_evel (dBuV/	m)											Date:	2022	2-09-29	
100																	
80																	
60													F	C PA	RT1	5C AV -6dB	
40																FOUL	
-	1		2	3					·····			4					
20																	
0 ₂	2477 24	180.24	82.24	84.24	486.24			92.24 Juenc			98.25	00.2	502.25	04.25	i06.	2510	0
Free MH:		Readi level dBuV		Anto fact dB/n		Cab los dB	s	Prea fact dB	or	leve BuV/r	1 1	imit evel BuV/	1	Over limi dB		Remark	ĩ
2480. 2483. 2485. 2500. (500 250	90. 3 31. 3 33. 4 32. 1	9 5	27. 27. 27. 27.	76 77	4.74 4.75 4.76 4.81		36.10 36.11 36.12 36.15	2	86. 74 27. 79 29. 86 28. 62	5 5	4. 00 4. 00 4. 00 4. 00	0 - 0 -	32. 7 26. 2 24. 1 25. 3	1 . 4 .	Averag Averag Averag Averag Averag	e e

4.8.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

	Blu	ietooth (1Mb	ops) CH00	(2402MHz) Temp	erature	:	21~2	3 °C
est Enginee	r: Ja	ck Liu			Relati	ve Hun	nidity :	63~6	5%
Frequencey I	Range 1G	Hz~3GHz			Polari	zation	•	Horiz	ontal
110	(dBuV/m)						D	ate: 20	22-09-29
100						4			
80							FCC P	ART15	
60							FC		-6dB T15C AV
40	wound	(MARAMAN AND AND AND AND AND AND AND AND AND A	vester jitertyr vir akers	างสาวอาริสาราราชาวาร	hannara	attern weat	unan terretori	~~~	-6dB
20									
0 <mark>1000</mark>	1300	1500.		1900. 210 equency (N		00. 2	500. 2	2700.	3000
	Reading		. Cable	Preamp	level	Limi leve	1 1)ver .imit	Remark
Freq MHz	level dBuV		loss dB	dB	dBuV/m		/m	dB	

t Mode :	Bluetoo	oth (1Mbp	s) CH00	(2402M⊦	lz) Ten	nperatur	e :	21~23 ℃
t Engineer :	Jack Li	u			Rela	ative Hu	midity :	63~65%
quencey Rang	e 3GHz~	18GHz			Pola	arizatior	ı :	Horizontal
110	dBuV/m)	I	I				Date:	2022-09-29
100								
80						F	CC PART	15C PEAK
60			(5			FCC P/	-6dB ART15C AV
40		4		5				-6dB
20								
0	60	00. 80	000. 1	10000.	12000.	1400	0. 160	00. 18000
			Fre	quency (l	MHz)			
-	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m		limi	
4804.000 4804.000 7206.000 7206.000 9608.000 9608.000	44. 11 45. 59 25. 42 38. 31 32. 15 40. 14		6.26 8.59 8.59 11.36	36.02 36.02 34.31 34.31 34.24 34.24 34.24	$\begin{array}{r} 45.\ 28\\ 46.\ 76\\ 35.\ 09\\ 47.\ 98\\ 47.\ 66\\ 55.\ 65\end{array}$	54.0074.0054.0074.0054.0074.0074.00	-27.2 -18.9 -26.0 -6.3)2 Peak 34 Average

est Mode :	Blu	uetooth (1Mb	ops) CH00	(2402MHz)	Tempe	rature :	21~2	23 ℃
est Enginee	r: Ja	ck Liu			Relativ	e Humidi	t y : 63~6	65%
requencey F	Range 10	Hz~3GHz			Polariz	ation :	Verti	cal
110	(dBuV/m)					Date: 2	2022-09-29
100								
80						1 F(CC PART1	5C PEAK
								-6dB
60							FCC PAP	RT15C AV -6dB
40					1	1		torrange the start
40	ngana sanahana ang	nonlikensemennet	manut	ntalnast.endertymyberganter	havennow	y and problematic	M/1-menseagedrametri	han an a
40 40 20	reproduction the	ndmlifenissionerhand	manna	analas, saita ay maharana a	Haynemen	y.ayu <mark>l</mark> anyi ^{lla} nyina	Mir-miranda	haannen attoo an attoo
	eypoconsistentifelige 1300		1700. 1	1900. 210	0. 230			
20		. 1500.	1700. 1 Fr	1900. 210 equency (M	10. 230 IHz)	0. 2500 Limit level	0. 2700. Over limit	3000

est Engineer :			ops) CH0	0 (24	02MHz	Tem	peratu	ıre :		21~23 ℃	ŕ
	: Jack	: Liu				Rela	ative H	umi	dity :	63~65%)
requencey Ra	ange 3G⊢	lz~18GHz				Pola	arizatio	on :		Vertical	
	d Ru V/m)								Date	: 2022-09	-29
110 Level (d	ubuvinij								Date	. 2022-03	
100											
80											
								FCC		T15C PEA -6d	
60				6					FCC P	ART15C	AV
	2	4		5						-6d	
40											
-											
20											
03000							4.40		400		
3000	60	UU. 8U		1000 eque	ncy (MH	2000. z)	140	00.	160	000. 18	B000
	Reading level	Antenna factor	Cable loss		eamp ctor	level	Limi leve		Over lim:		ark
MHz d	dBuV	dB/m	dB			BuV/m			dB		
	44.63 45.31	30. 93 30. 93	6.26 6.26	36. 36.		5.80 6.48			-8. -27.	20 Ave 52 Peal	
7206.000	33.52 38.69	35.39 35.39	8.59 8.59		31 4	3.19 8.36		00	-10.8		rage
9608.000	34.68 41.81	38.39	11.36	34.	24 5	0.19	54.0)0	-3.8		rage

	Blueto	ooth (1Mbps	s) CH39 (2	2441MHz)	Temper	ature :	21~23	3℃
est Engineer :	: Jack L	_iu			Relative	e Humidity	y : 63~65	5%
requencey Ra	I nge 1GHz	~3GHz			Polariza	ation :	Horizo	ontal
Level	(dBuV/m)						Date: 2	2022-09-29
100						1		
80						FC		
60							FCC PAF	-6dB RT15C AV
40	mburnanuman	nddellanddlanion alwyr	manhantent	mannantu	strandoria	topour thereas	donether and the o	-6dB
20								
0 <mark>-1000</mark>	1300.	1500.		900. 210 equency (N		0. 2500	. 2700.	3000
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable	Preamp factor	level	Limit level dBuV/m	Over limit dB	Remark
2441.000	97.10	27.67	4.63	36.01	93. 39	74.00	19.39) Peak

fest Mode :	Blueto	oth (1Mbp	os) CH39	(2441MHz)	Temper	ature :	21~	23 ℃
fest Engineer :	Jack L	iu			Relative	e Humidity	y : 63~	65%
Frequencey Rar	n ge 3GHz~	18GHz			Polariza	ation :	Hor	izontal
110	(dBuV/m)						Date:	2022-09-29
	(,							
100								
80						E0		15C PEAK
							CPART	-6dB
60				6			FCC PA	RT15C AV
	2	4						-6dB
40	1	3		- 1				
20								
0								
°3000	60	00. 8	8000. Fi	10000. requency (N	12000. IHz)	14000.	1600	00. 18000
Freq MHz	Reading level dBuV	Antenna factor dB/m		factor	level dBuV/m	Limit level dBuV/m	Over limi dB	
4882.000 4882.000 7323.000 7323.000 9764.000 9764.000	29.53 43.94 26.16 39.95 25.75 39.11	31. 03 31. 03 35. 68 35. 68 38. 51 38. 51 38. 51	6.91 6.91 9.10 9.10 11.27 11.27	35.97 34.42	31.50 45.91 36.52 50.31 41.22 54.58	54.0074.0054.0074.0054.0074.0074.00	-28.0 -17.4 -23.6 -12.7	8 Average

est Mode :		Bluetoo	oth (1M	bps) CH3	9 (2441MF	lz)	Temp	perat	ure	:	21-	-23 ℃
est Engine	er :	Jack Li	u				Rela	tive I	Hum	idity :	63-	-65%
requencey	Range	1GHz~	3GHz				Pola	rizati	ion :	:	Ver	tical
110	l (dBuV/	m)								Da	te: 20	22-09-29
100												
80									1 F		RT15	C PEAK
												-6dB
60										FCC	PAR	T15C AV
												-6dB
40	Angelander der State	enhan-modeline.	moundal	-	and and a start and a start a s	Wtwww.	N	anab	show	www.energendan		,
20												
				1700. 1	900. 21		230	0.	250	0. 27	700.	300
0 <mark></mark>	130	00. 1	500.		equency (A	(H7)						
				Fre	equency(N Preamp	/HZ)		Lin	nit	0v	er	
Freq	Readi level	ng Ar fa	ntenna actor	Fro Cable loss	Preamp factor	le	vel	lev		li	er mit B	Remar
	Readi level dBuV	ng Ar fa	ntenna actor 3/m	Fro Cable loss dB	Preamp	le dBu	vel	lev dBu	vel 1V/m	li 1 d	mit B	Remari Peak

Fest Mode :		Bluet	ooth (1N	/bps)	CH39	(244	1MHz	<u>z)</u>	Tempe	eratur	e:	2	1~2	3 ℃
Fest Enginee	r :	Jack	Liu					F	Relativ	ve Hu	midi	ty : 6	3~6	5%
Frequencey F	Range	3GH:	3GHz~18GHz				F	Polarization :			V	Vertical		
Level	(dBu\	//m)										Date	: 202	22-09-29
110		,												
100														
80														
											FC		T150	-6dB
														-oub
60						6						FCC F	ART	15C AV
	2		4			4								-6dB
40						.								
	1													
20														
20														
⁰ 3000		60	00.	8000.		10000			000.	14	000.	16	000.	18000
						eque		/IHZ)					
Freq	Read leve		Anten: facto:		able oss			14	evel	Lim		Ove lim		Remark
MHz	dBuV		dB/m		dB		ΗB		uV/m			dB		Remark
4882.000	28.	42	31.03	6.	91	35. 9		30.	. 39	54.	00	-23.	61	Averag
4882.000 7323.000	46. 25.		31.03 35.68		91 10	35. 9 34. 4		47.	. 99 . 10	74. 54.	00	-26. -17.	01	
7323.000	38.	90	35.68	9.	10	34.4	42	49.	. 26	74.	00	-24.	74	Peak
9764.000 9764.000	26. 41.		38.51 38.51	11. 11.	27	34. 34.			. 05 . 14	54. 74.		-11. -16.		Averag Peak
9104.000	41.	07	30.01	11.	21	54	51	57.	. 14	(4.	00	10.	00	reak

:

est Engineer :		• •	z) Temper	ature :	21~23 ℃		
_	Jack Liu		Relative	e Humidity :	63~65%		
requencey Range	1GHz~3GHz		Polariza	ation :	Horizontal		
110 Level (dBu)	//m)			D)ate: 2022-09-29		
110							
100							
80				1			
				FCCP	ART15C PEAK -6dB		
60				EC			
				FC	C PART15C AV -6dB		
20		1700. 1900. 210 Frequency (N	0. 2300.		2700. 3000		
Freq Read leve MHz dBuV	l factor		level dBuV/m	level 1)ver limit Remark dB		
2480.000 90.	41 27.76	4.74 36.10	86. 81	74.00 1	12.81 Peak		

									EC2209032
est Mode :		uetooth (11	Vbps) CH	78 (2480M		perature		21~2	
est Engineer	r: Ja	ick Liu			Relat	tive Hum	idity :	63~6	5%
requencey R	Range 30	GHz~18GH	z		Pola	rization :		Horiz	ontal
110	(dBuV/m)					Date	: 202	2-09-29
100									
80									
						F	CC PAR	T15C	-6dB
60				6			FCC F	PART1	
	2			5					-6dB
40									
20									
0 <mark>3000</mark>		5000.	8000. F	10000. requency (12000. MHz)	14000	. 16	000.	18000
Freq MHz	Readin level dBuV	g Antenr factor dB/m				Limit level dBuV/n	Ove lim 1 dB	it 🛛	Remark
4960.000	40.15			35. 92	42. 93				 Average
7440.000	40.56 31.41	35.96	7.56 8.97	34.54	43.34 41.80	54.00	-12.		Average
7440.000	40.27 30.49 39.66			34.54 34.37			-7.		Average
9920.000 9920.000		38 64	11.98	34.37	55.91	74.00	-18.	09	Peak

est Mode :		Blueto	oth (1M	bps) CH7	78 (2480MI	Hz) T	emp	eratu	ire :		21-	-23 ℃
est Engine	ər:	Jack L	.iu			R	elati	ve H	umic	lity :	63-	~65%
requencey	Range	1GHz-	~3GHz			Р	Polarization :				Vertical	
110 Leve	l (dBuV/	m)								Date	: 202	22-09-29
100												
80									1			
80									FCC	PAR	T15C	-6dB
60												
00									I	FCC P	ART	15C AV -6dB
							-					
40	in the second stand	waterconnert	unionical	-	niprotecture	Warner	horner	Hourseal ^W	e in a second	r think works	anther with	hunterhand
20												
⁰ 1000	13)0. 1	1500.		1900. 21 equency (N		2300.	2	500.	270	0.	300
Freq	Readi		Intenna					Limi		0ve		
TTEQ	1	. f	actor	loss dB	factor dB	lev dBuV				lim dB		Remark
MHz	level dBuV		lB/m	uр								

Test Mo	de :	Blu	etooth (1	IMbps) C⊢	178 (2480	MHz)	[empera	ture :	2	1~23 ℃
lest Eng	gineer :	Jac	k Liu			F	Relative	Humidity	: 6	3~65%
requen	icey Rang	e 3G	Hz~18G	Hz		F	Polariza	tion :	V	/ertical
110	evel (dBu\	//m)						Dat	e: 20	22-09-29
100										
80								FCC PAR	T15	
60			4		6			FCC	PART	-6dB [15C AV -6dB
40	2		3							-000
20										
0 <mark>_3</mark>	000	600	DO.	8000. Fr	10000. equency (12000 MHz)	. 14	000. 16	5000.	18000
Frec MHz	leve	1	Antenn factor dB/m		Preamp factor dB			el lin	nit	Remark
4960. 0 4960. 0 7440. 0 7440. 0 9920. 0 9920. 0	000 42. 000 36. 000 41. 000 34.	24 43 73 72	$\begin{array}{c} 31.\ 14\\ 31.\ 14\\ 35.\ 96\\ 35.\ 96\\ 38.\ 64\\ 38.\ 64\\ 38.\ 64\\ \end{array}$	7.56 7.56 8.97 8.97 11.98 11.98	35. 92 35. 92 34. 54 34. 54 34. 37 34. 37	40. 42 45. 02 46. 82 52. 12 50. 97 59. 55	74. 54. 74. 54.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	98 18 88 03	Average Peak Average Peak Average Peak

4.8.6	Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)	
T.U.U	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	

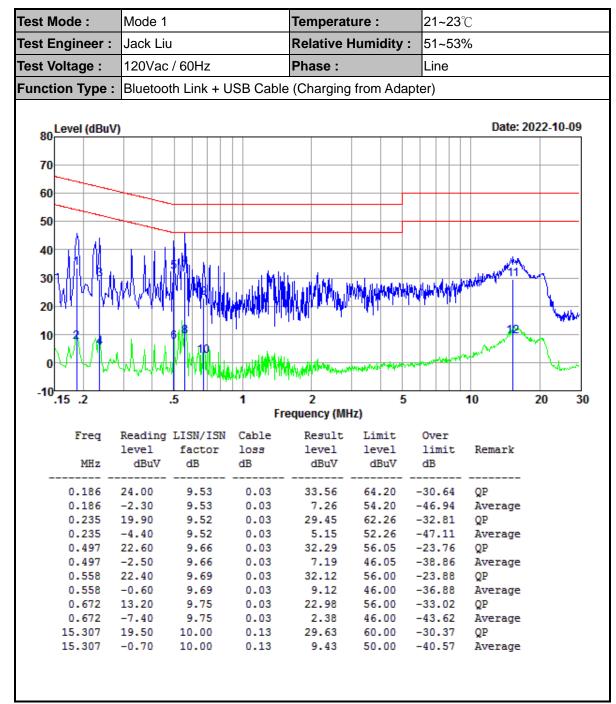
est Mod	de :	В	lueto	oth (1Mb	ps) CH78	3 (2480MHz	z) Temp	erature :	2	21~23°	Ϋ́C
est Eng	jineer	: Ja	ack L	iu			Relati	ve Humid	ity : 6	63~65%	%
requen	cey R	ange 3	0MHz	z~1GHz			Polari	ization :	F	Horizor	ntal
110	Level	(dBuV/r	n)						Date	2022	2-09-29
100											
80											
60								FC		T15C	PEAK -6dB
40	ſ										
20	WANNA	2 1 M	Hennerth	3 whileway	1. Holoman Malanda	and the state of t	valuation to the production	hhadronaskutterake	endy the rise do	nutininaitte	a Naturan Magy
0											
,	30 10	0. 2	200.	300.	400. Fr	500. equency (N	600. /Hz)	700.	800.	900.	1000
				300. Antenna	Fr	equency (N		700.	800 . 0ve		1000
Fre MH	q	0. 2 Readin level dBuV	ng /		Fr	equency (N				er Nit H	1000 Remark
Fre <u>MH</u> 119.	q z 240	Readin level dBuV 39.14	ng 1 1 4	Antenna factor dB/m 11.41	Cable loss dB 2.03	Preamp factor dB 32.66	/Hz) level dBuV/m 19.92	Limit level dBuV/m 43.50	0ve lim dB 	er hit H 58 (Remark QP
Fre MH 119. 167. 263.	q z 240 740 770	Readin level dBuV 39.14 42.13 39.93	ng /	Antenna factor dB/m 11.41 13.61 11.97	Fr Cable loss dB 2.03 2.50 3.18	Preamp factor dB 32.66 32.67 32.65	AHz) level dBuV/m 19.92 25.57 22.43	Limit level dBuV/m 43.50 43.50 46.00	0ve lim dB -23. -17. -23.	er lit H 58 G 93 G 57 G	Remark QP QP QP
Fre <u>MH</u> 119. 167.	q 240 740 770 300	Readin level dBuV 39.14 42.13	ng // 	Antenna factor dB/m 11.41 13.61	Fr Cable loss dB 2.03 2.50	Preamp factor dB 32.66 32.67	AHz) level dBuV/m 19.92 25.57	Limit level dBuV/m 43.50 43.50	0ve lim dB 	er lit H 58 0 93 0 57 0 97 0	Remark QP QP

est Mode :	Bluetooth	(1Mbps) CH	78 (2480MH	z) Temp	erature :	21	~23 ℃	
est Engineer :	Jack Liu			Relat	ive Humid	ity: 63	~65%	
equencey Rang	ge 30MHz~1	GHz		Polar	ization :	Ve	Vertical	
110 Level (dBu	V/m)					Date: 2	2022-09-29	
100								
80								
60								
					FC	C PART1	5C PEAK -6dB	
							-oub	
40							-000	
40	3	4		5			6	
20	3	- 4 Martine And	onderson and well when	5 Inocranaliza	and weeks building	waterterenter	6	
1 7	3 Manushu du	- A Marken and A Marken	ontrometerstersterstersters	5 Inocratica	wheely block	walantan	6	
20	1 Wanter		militarian de ales	5 			6 www.engwall.w	
20	1 Wanter	00. 400.	500. requency (N	5 600. 1Hz)			6 wheneywaldyn	
20 0 30 100. Freq Rea	200. 3	Fi enna Cable	requency(N e Preamp	lHz)	700. 8 Limit	00. 9 Over	6 whimewaldwi 000. 1000	
20 0 30 100.	200. 3 ding Ante	F enna Cable tor loss	requency (N		700. 8	00. 9	6 white white whit	
20 0 0 0 0 0 0 0 0 0 0 0 0 0	200. 3 ding Ante el fact V dB/r .51 15.0	F enna Cable tor loss n dB 	requency(N Preamp factor dB 32.65	level dBuV/m 23.12	700. 8 Limit level dBuV/m 	00. 9 Over limit dB -16.88	6 	
20 0 30 100. Freq Rea lev MHz dBu 43.580 39 119.240 43	200. 3 ding Ante el fact V dB/r .51 15.0 .23 11.4	Finna Cable tor loss n dB 	requency (N Preamp factor dB 	level dBuV/m 23.12 24.01	700. 8 Limit level dBuV/m 40.00 43.50	00. 9 Over limit dB -16.88 -19.49	6 	
20 0 0 0 0 0 0 0 0 0 0 0 0 0	200. 3 ding Ante el fact V dB/r .51 15.0	Fanna Cable tor loss n dB 	requency(N Preamp factor dB 32.65	level dBuV/m 23.12	700. 8 Limit level dBuV/m 	00. 9 Over limit dB -16.88	6 www.www.www. 000. 1000 t Remark 3 QP 9 QP 9 QP 9 QP 3 QP	

4.9 AC Conducted Emission Measurement

4.9.1 Limit of AC Conducted Emission

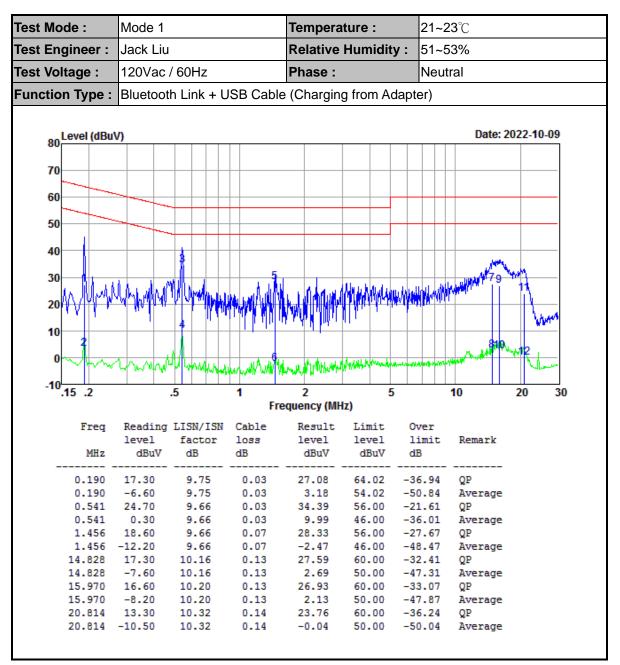
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.


Frequency of emission (MHz)	Conducted	l limit (dBμV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

4.9.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8.Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



4.9.3 Test Result of AC Conducted Emission

Result Level= Reading Level + LISN Factor + Cable Loss

4.10 Antenna Requirements

4.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.10.2 Antenna Connected Construction

An PCB antenna design is used.

4.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2021-12-28	2022-12-27	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2021-12-30	2022-12-29	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2021-12-30	2022-12-29	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2021-12-30	2022-12-29	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2021-12-30	2022-12-29	Conducted
Thermal Chamber	Howkin	UHL-34	19111801	2022-04-18	2023-04-17	Conducted
Base Station	R&S	CMW 270	101231	2021-12-28	2022-12-27	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2021-12-28	2022-12-27	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2021-12-28	2022-12-27	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2021-12-29	2022-12-28	Radiation
Amplifier	Sonoma	310	363917	2021-12-29	2022-12-28	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2021-12-30	2022-12-29	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2021-11-17	2022-11-16	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2020-02-14	2023-02-13	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2020-09-27	2023-09-26	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2020-02-14	2023-02-13	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2021-06-05	2024-06-04	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2021-12-29	2022-12-28	Conducted
LISN	R&S	ENV432	101327	2021-12-29	2022-12-28	Conducted
EMI Test	R&S	ESR3	102143	2021-12-30	2022-12-29	Conducted
Receiver	Rao	LONG	102140	2021 12 30		Conducted
EMI Test	Audix	F 2	N/A	N/A	N/A	Conducted
Software	Audix	E3	IN/A	IN/A	IN/A	Conducted

N/A: No Calibration Required

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	3.29dB
	30MHz ~ 1GHz	5.40dB
Radiated emission	1GHz ~ 18GHz	5.03dB
	18GHz ~ 40GHz	5.21dB

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±57.212Hz
RF output power, conducted	±1.04dB
Power density, conducted	±2.31dB
Emissions, conducted	±2.18dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Appendix A: 20dB Emission Bandwidth

Test Result

TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.014	2401.475	2402.489		
DH5	Ant1	2441	1.035	2440.481	2441.516		
		2480	1.002	2479.493	2480.495		

Test Graphs

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com

Appendix B: Occupied Channel Bandwidth

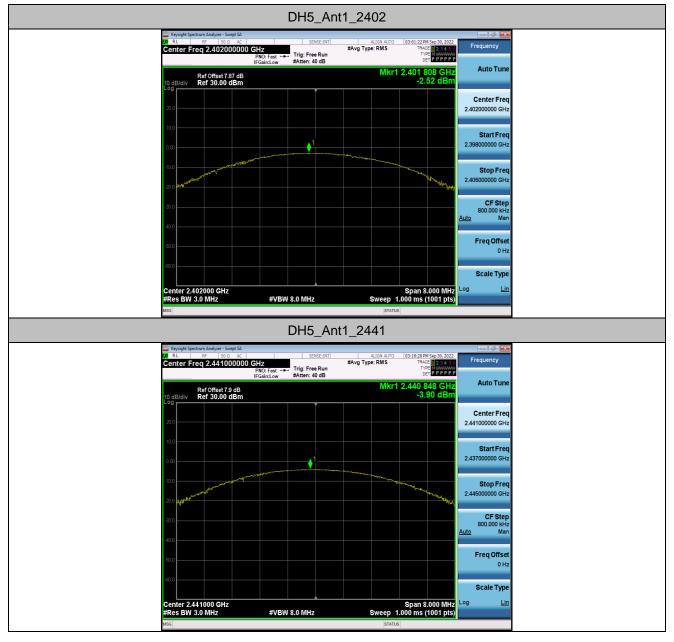
Test Result

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.92785	2401.5366	2402.4644		
DH5	Ant1	2441	0.97113	2440.5159	2441.4870		
		2480	0.98455	2479.5107	2480.4952		

Test Graphs

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com



Appendix C: Maximum conducted output power

Test Result

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-2.52	≤20.97	PASS
DH5	Ant1	2441	-3.9	≤20.97	PASS
		2480	-5.34	≤20.97	PASS

Test Graphs

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com

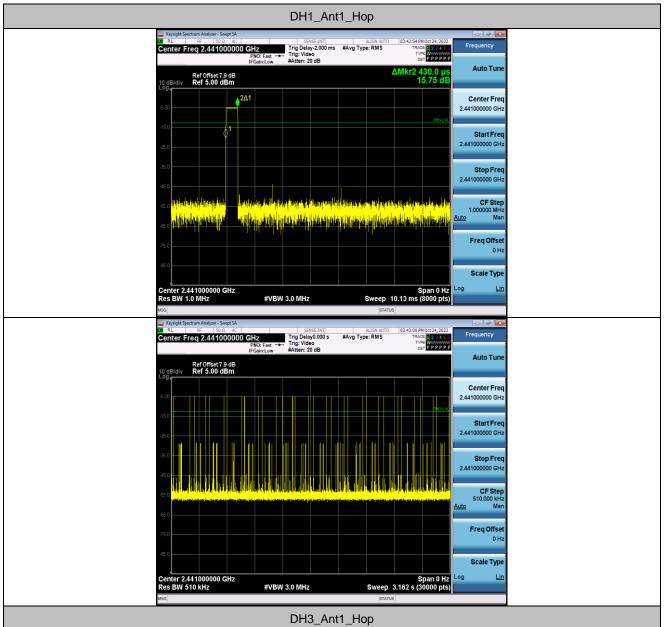
Appendix D: Carrier frequency separation

Test Result

TestMode	Antenna	Channel	Result[KHz]	Limit[KHz]	Verdict
DH5	Ant1	Нор	0.986	≥0.690	PASS

Test Graphs

	DH5_Ant	1_Hop	
Center Freq 2.4415000	SENSE:INT	ALIGN AUTO 10:03:51 AM Oct 09, 2022 #Avg Type: RMS TRACE 2 34 5.0 Avg[Hold:>5000/5000 TVPE DET	Frequency
Ref Offset 7.9 dB 10 dB/div Ref 30.00 dBm		ΔMkr2 986 kHz -0.011 dB	Auto Tune
20.0			Center Freq 2.441500000 GHz
0.00		2Δ1	Start Freq 2.440500000 GHz
-10.0			Stop Freq 2.442500000 GHz
-30.0			CF Step 200.000 kHz <u>Auto</u> Man
-50.0			Freq Offset 0 Hz
Start 2.440500 GHz		Stop 2.442500 GHz	Scale Type Log <u>Lin</u>
#Res BW 300 kHz	#VBW 300 kHz	Sweep 1.000 ms (1001 pts)	

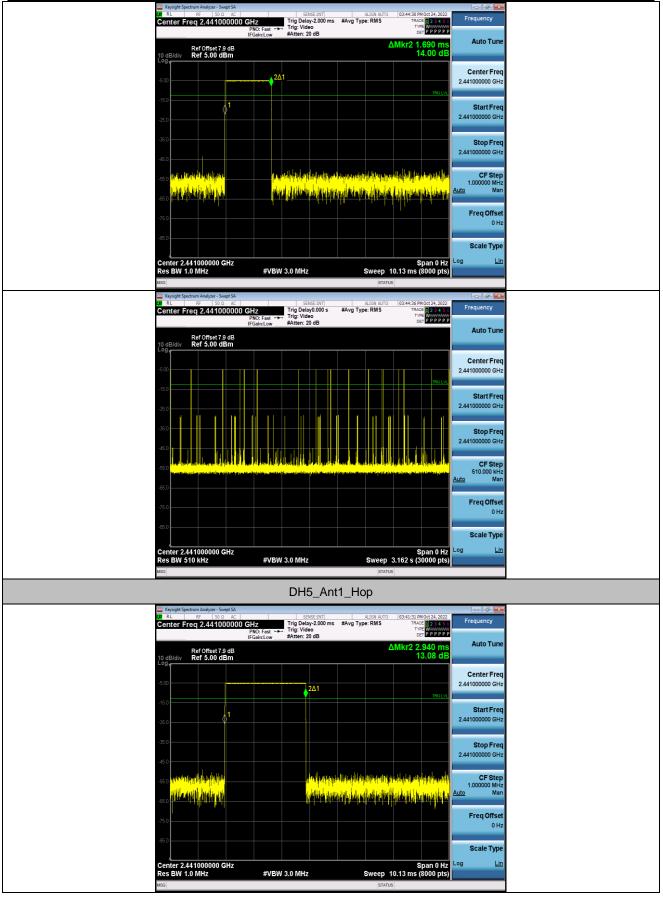


Appendix E: Time of occupancy

Test Result

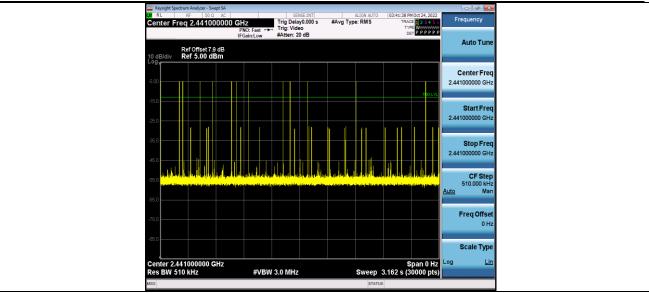
TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.43	330	0.142	≤0.4	PASS
DH3	Ant1	Нор	1.69	180	0.304	≤0.4	PASS
DH5	Ant1	Нор	2.94	130	0.382	≤0.4	PASS

Test Graphs



Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com


Report No.: EC2209032RF01

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com

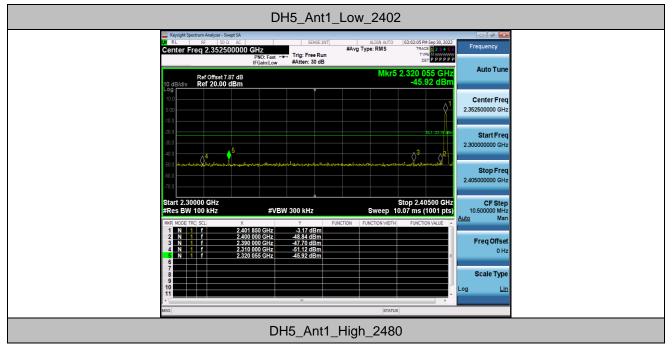
Appendix F: Number of hopping channels

Test Result

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS

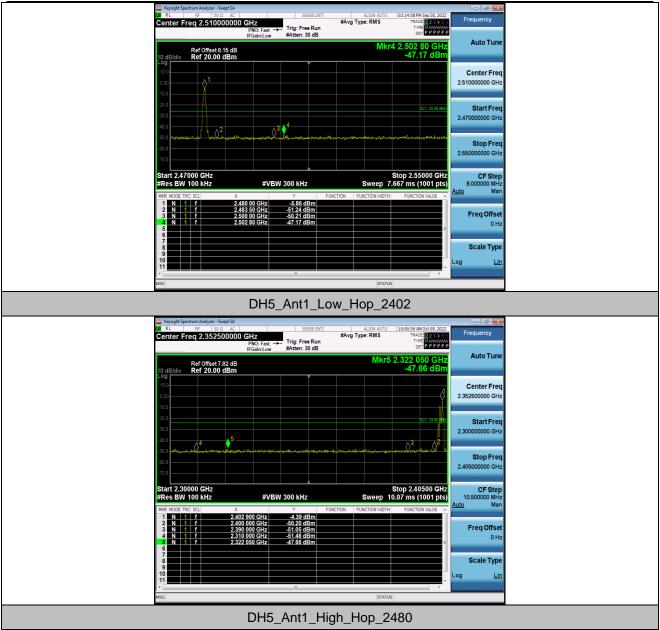
Test Graphs

	DH5	_Ant1_Hop		
Leysight Spectrum Analyzer - Swept SA	PNO: Fast Free IFGain:Low #Atten: 40	SE:INT ALIGN AUTO #Avg Type: RMS Run) dB	10:26:06 AM Oct 09, 2022 TRACE 123456 TYPE DET PPPPP	Sweep/Control Sweep Time 8.00 ms
Ref Offset 7.75 dE 10 dB/div Ref 30.00 dBm Log				<u>Auto</u> Man
20.0				Sweep Setup ►
	AMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
-20.0				
-30.0				
-50.0				Gate [Off,LO]
Start 2.40000 GHz			Stop 2.48350 GHz	Points 1001
#Res BW 100 kHz	#VBW 300 kHz	Sweep 8	.000 ms (1001 pts)	

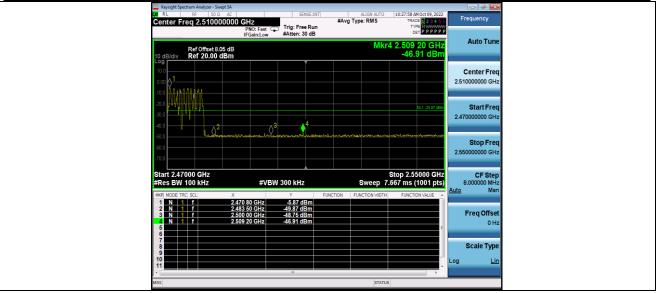


Appendix G: Band edge measurements

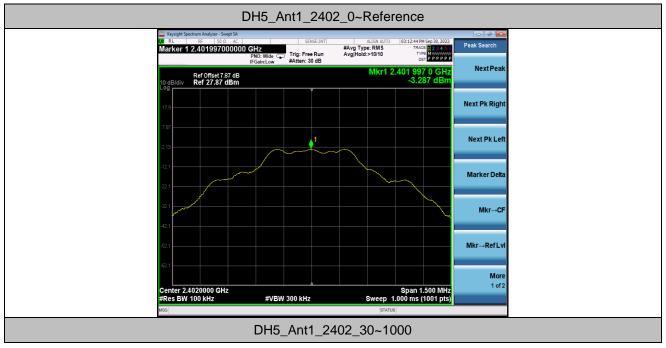
Test Result


TestMode	Antenna	ChName	Channel	RefLevel	Result	Limit	Verdict
				[dBm]	[dBm]	[dBm]	
DH5	Ant1	Low	2402	-3.18	-45.92	≤-23.18	PASS
		High	2480	-5.86	-47.17	≤-25.86	PASS
		Low	Hop_2402	-4.40	-47.66	≤-24.4	PASS
		High	Hop_2480	-5.87	-46.91	≤-25.87	PASS

Test Graphs

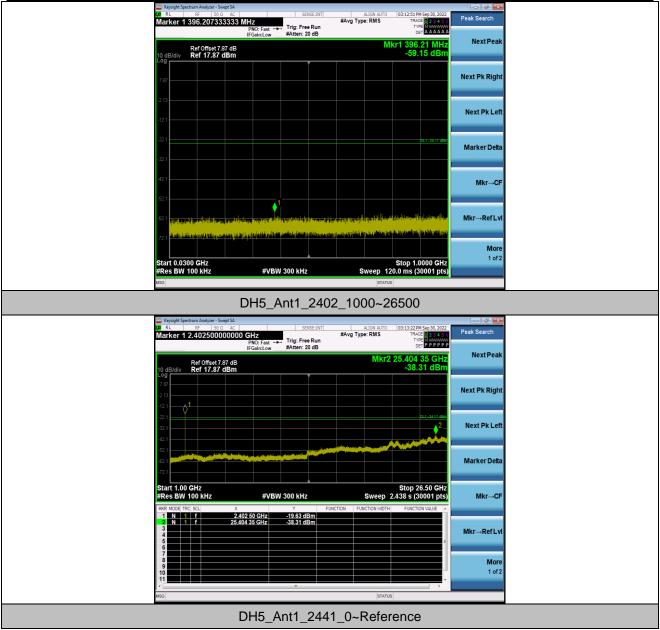


Report No.: EC2209032RF01



Appendix H: Conducted Spurious Emission

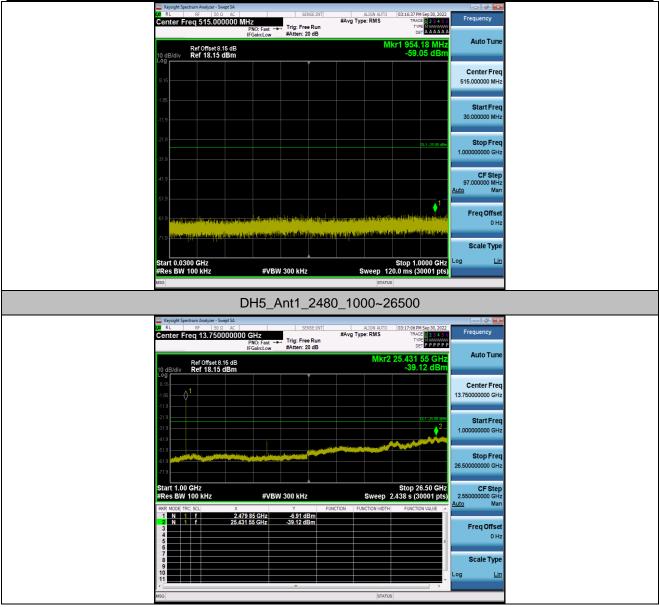
Test Result


TestMode	Antenna	Channel	FreqRange	RefLevel	Result	Limit	Verdict
			[MHz]	[dBm]	[dBm]	[dBm]	
DH5	Ant1	2402	Reference	-4.11	-4.11		PASS
			30~1000	-4.11	-59.15	≤-24.11	PASS
			1000~26500	-4.11	-38.31	≤-24.11	PASS
		2441	Reference	-4.60	-4.60		PASS
			30~1000	-4.60	-59.22	≤-24.6	PASS
			1000~26500	-4.60	-37.85	≤-24.6	PASS
		2480	Reference	-5.88	-5.88		PASS
			30~1000	-5.88	-59.05	≤-25.88	PASS
			1000~26500	-5.88	-39.12	≤-25.88	PASS

Test Graphs

Report No.: EC2209032RF01

Report No.: EC2209032RF01



Report No.: EC2209032RF01

Report No.: EC2209032RF01

Appendix I. Setup Photographs

Fig. 1 Radiated emission setup photo(Below 30MHz)

Fig. 2 Radiated emission setup photo(30MHz-1GHz)

Fig. 3 Radiated emission setup photo(Above 1GHz)

Fig. 4 Power line conducted emission setup photo

-----End of the report-----

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-HB334 www.hn-ecloud.com