

# FCC TEST REPORT

# FCC ID: 2AKG7-XP120

On Behalf of

Associated Electrics, Inc.

2.4G Transmitter

Model No.: XP120

| Prepared for | : Associated Electrics, Inc.                                  |
|--------------|---------------------------------------------------------------|
| Address      | : 26021 Commercentre Dr. Lake Forest, CA 92630, United States |

| Prepared By | : Shenzhen Alpha Product Testing Co., Ltd.                            |
|-------------|-----------------------------------------------------------------------|
| A 11        | Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, |
| Address     | Shenzhen, Guangdong, China                                            |

| Report Number   | : | A1907040-C01-R02      |
|-----------------|---|-----------------------|
| Date of Receipt | : | July 10, 2019         |
| Date of Test    | : | July 10-July 19, 2019 |
| Date of Report  | : | July 19, 2019         |
| Version Number  | : | V0                    |

# TABLE OF CONTENTS

| De | escription                                                  | Page |
|----|-------------------------------------------------------------|------|
| 1. | Summary of Standards And Results                            | 6    |
|    | 1.1. Description of Standards and Results                   | 6    |
| 2. | General Information                                         | 7    |
|    | 2.1. Description of Device (EUT)                            | 7    |
|    | 2.2. Accessories of Device (EUT)                            | 8    |
|    | 2.3. Tested Supporting System Details                       | 8    |
|    | 2.4. Block Diagram of connection between EUT and simulators | 8    |
|    | 2.5. Test Mode Description                                  | 8    |
|    | 2.6. Test Conditions                                        | 8    |
|    | 2.7. Additional instructions                                | 9    |
|    | 2.8. Test Facility                                          |      |
|    | 2.9. Measurement Uncertainty                                |      |
|    | 2.10. Test Equipment List                                   |      |
| 3. | Maximum Peak Output power                                   |      |
|    | 3.1. Limit                                                  |      |
|    | 3.2. Test Procedure                                         |      |
|    | 3.3. Test Setup                                             |      |
|    | 3.4. Test Result                                            |      |
| 4. | Bandwidth                                                   |      |
|    | 4.1. Limit                                                  |      |
|    | 4.2. Test Procedure                                         |      |
|    | 4.3. Test Result                                            |      |
| 5. | Carrier Frequency Separation                                |      |
|    | 5.1. Limit                                                  |      |
|    | 5.2. Test Procedure                                         |      |
|    | 5.3. Test Result                                            | 15   |
| 6. | Number Of Hopping Channel                                   |      |
|    | 6.1. Limit                                                  |      |
|    | 6.2. Test Procedure                                         |      |
|    | 6.3. Test Result                                            | 16   |
| 7. | Dwell Time                                                  |      |
|    | 7.1. Test limit                                             |      |
|    | 7.2. Test Procedure                                         |      |
|    | 7.3. Test Result                                            |      |
| 8. | Radiated emissions                                          |      |
|    | 8.1. Limit                                                  |      |
|    | 8.2. Block Diagram of Test setup                            |      |
|    | 8.3. Test Procedure                                         |      |
|    | 8.4. Test Result                                            |      |

| 9.  | Band Edge Compliance              | 25 |
|-----|-----------------------------------|----|
|     | 9.1. Block Diagram of Test Setup  | 25 |
|     | 9.2. Limit                        |    |
|     | 9.3. Test Procedure               | 25 |
|     | 9.4. Test Result                  | 25 |
| 10. | Power Line Conducted Emissions    |    |
|     | 10.1. Block Diagram of Test Setup | 29 |
|     | 10.2. Limit                       |    |
|     | 10.3. Test Procedure              | 29 |
|     | 10.4. Test Result                 | 29 |
| 11. | Antenna Requirements              |    |
|     | 11.1. Limit                       |    |
|     | 11.2. Result                      | 30 |
| 12. | Test setup photo                  |    |
|     | 12.1. Photos of Radiated emission |    |
| 13. | Photos of EUT                     |    |

# TEST REPORT DECLARATION

| Applicant       | : | Associated Electrics, Inc.                                                       |  |  |
|-----------------|---|----------------------------------------------------------------------------------|--|--|
| Address         | : | 26021 Commercentre Dr. Lake Forest, CA 92630, United States                      |  |  |
| Manufacturer    | : | NEWSTONE TECHNOLOGY CO., LTD                                                     |  |  |
| Address         | : | B2 blvd, YuHong Industrial Park, No.20, XingYe West Road, ShaJing Town, ShenZhen |  |  |
| EUT Description | : | 2.4G Transmitter                                                                 |  |  |
|                 |   | (A) Model No. : XP120                                                            |  |  |
|                 |   | (B) Trademark : N/A                                                              |  |  |

Measurement Standard Used:

# FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Lucas Pang **Project Engineer** 

Approved by (name + signature).....:

Simple Guan Project Manager

Lucas Poung

Date of issue.....:

July 19, 2019

# **Revision History**

| Revision   | Issue Date    | Revisions              | Revised By  |
|------------|---------------|------------------------|-------------|
| <b>V</b> 0 | July 19, 2019 | Initial released Issue | Simple Guan |

# 1. SUMMARY OF STANDARDS AND RESULTS

# 1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

| Test Item                      | Standards Paragraph                                                | Result |
|--------------------------------|--------------------------------------------------------------------|--------|
| Maximum Peak Output Power      | FCC Part 15: 15.247(b)(1)<br>ANSI C63.10 :2013                     | Р      |
| Bandwidth                      | FCC Part 15: 15.215<br>ANSI C63.10 :2013                           | Р      |
| Carrier Frequency Separation   | FCC Part 15: 15.247(a)(1)<br>ANSI C63.10 :2013                     | Р      |
| Number Of Hopping Channel      | FCC Part 15: 15.247(a)(1)(iii)<br>ANSI C63.10 :2013                | Р      |
| Dwell Time                     | FCC Part 15: 15.247(a)(1)(iii)<br>ANSI C63.10 :2013                | Р      |
| Radiated Emission              | FCC Part 15: 15.209<br>FCC Part 15: 15.247(d)<br>ANSI C63.10 :2013 | Р      |
| Band Edge Compliance           | FCC Part 15: 15.247(d)<br>ANSI C63.10 :2013                        | Р      |
| Power Line Conducted Emissions | FCC Part 15: 15.207<br>ANSI C63.10 :2013                           | N/A    |
| Antenna requirement            | FCC Part 15: 15.203                                                | Р      |
| Note:                          | 1. P is an abbreviation for Pass.                                  |        |
|                                | 2. F is an abbreviation for Fail.                                  |        |
|                                | 3. N/A is an abbreviation for Not Applicable.                      |        |

# 2. GENERAL INFORMATION

# 2.1.Description of Device (EUT)

| Description          | : | 2.4G Transmitter                         |
|----------------------|---|------------------------------------------|
| Model Number<br>Diff | : | XP120<br>N/A                             |
| Trademark            | : | N/A                                      |
| Test Voltage         | : | DC 6V from battery                       |
| Operation frequency  | : | 2405-2478MHz                             |
| Channel No.          | : | 74 Channels(Channel Spacing 1MHz)        |
| Modulation type      | : | GFSK                                     |
| Antenna Type         | : | Internal Antenna, Maximum Gain is 2.5dBi |

## 2.2.Accessories of Device (EUT)

Accessory 1 : N/A

# 2.3. Tested Supporting System Details

| No. | Description | Manufacturer | Model | Serial Number | Certification or<br>DOC |
|-----|-------------|--------------|-------|---------------|-------------------------|
| 1   | N/A         | N/A          | N/A   | N/A           | N/A                     |

# 2.4.Block Diagram of connection between EUT and simulators



## 2.5.Test Mode Description

| Tested mode, channel, and data rate information |              |                    |  |  |
|-------------------------------------------------|--------------|--------------------|--|--|
| Mode                                            | Channel      | Frequency<br>(MHz) |  |  |
| GFSK                                            | Low :CH1     | 2405               |  |  |
|                                                 | Middle: CH37 | 2441               |  |  |
|                                                 | High: CH74   | 2478               |  |  |
|                                                 | Hopping      | 2405-2478          |  |  |

# 2.6.Test Conditions

| Items              | Required  | Actual |
|--------------------|-----------|--------|
| Temperature range: | 15-45°C   | 27℃    |
| Humidity range:    | 25-75%    | 56%    |
| Pressure range:    | 86-106kPa | 98kPa  |

# 2.7. Additional instructions

The operation (Used for test) from client

|                               | Special operate                                                       | ed method is used. |                             |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------|--------------------|-----------------------------|--|--|--|--|
| Mode                          | The operation provided by client to enable the EUT under transmission |                    |                             |  |  |  |  |
|                               | condition continuously at specific channel frequencies individually.  |                    |                             |  |  |  |  |
| Power level setup in software | Power level setup in software                                         |                    |                             |  |  |  |  |
| Mode                          | Channel                                                               | Frequency (MHz)    | Soft Set                    |  |  |  |  |
| GFSK                          | CH1                                                                   | 2405               |                             |  |  |  |  |
|                               | CH37                                                                  | 2441               | TX level is set as defaults |  |  |  |  |
|                               | CH74                                                                  | 2478               | value.                      |  |  |  |  |
|                               | Hopping                                                               | 2405-2478          |                             |  |  |  |  |

## 2.8.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961 Designation Number: CN1236

July 15, 2019 Certificated by IC Registration Number: CN0085

## 2.9. Measurement Uncertainty

(95% confidence levels, k=2)

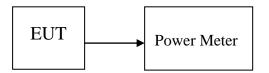
| Item                                                  | Uncertainty          |
|-------------------------------------------------------|----------------------|
| Uncertainty for Power point Conducted Emissions Test  | 2.77dB               |
| Uncertainty for Radiation Emission test in 3m chamber | 2.16 dB(Polarize: V) |
| (below 30MHz)                                         | 2.62dB(Polarize: H)  |
| Uncertainty for Radiation Emission test in 3m chamber | 3.76dB(Polarize: V)  |
| (30MHz to 1GHz)                                       | 3.82dB(Polarize: H)  |
| Uncertainty for Radiation Emission test in 3m chamber | 4.22dB(Polarize: H)  |
| (1GHz to 25GHz)                                       | 4.18dB(Polarize: V)  |
| Uncertainty for radio frequency                       | 5.6×10-8             |
| Uncertainty for conducted RF Power                    | 0.39dB               |
| Uncertainty for temperature                           | 0.2°C                |
| Uncertainty for humidity                              | 1%                   |
| Uncertainty for DC and low frequency voltages         | 0.06%                |

# 2.10.Test Equipment List

| Equipment                      | Manufacture       | Model No.            | Serial No.                 | Last cal.  | Cal<br>Interval |
|--------------------------------|-------------------|----------------------|----------------------------|------------|-----------------|
| 9*6*6 anechoic<br>chamber      | CHENYU            | 9*6*6                | N/A                        | 2018.09.21 | 1 Year          |
| Spectrum analyzer              | ROHDE&SCHW<br>ARZ | FSU                  | 1166.1660.26               | 2018.09.21 | 1 Year          |
| Receiver                       | ROHDE&SCHW<br>ARZ | ESR                  | 1316.3003K03-10208<br>2-Wa | 2018.09.21 | 1 Year          |
| Receiver                       | R&S               | ESCI                 | 101165                     | 2018.09.21 | 1 Year          |
| Bilog Antenna                  | Schwarzbeck       | VULB 9168            | VULB9168-438               | 2018.04.13 | 2Year           |
| Horn Antenna                   | SCHWARZBEC<br>K   | BBHA 9120 D          | BBHA 9120 D(1201)          | 2018.04.13 | 2Year           |
| Active Loop<br>Antenna         | SCHWARZBEC<br>K   | FMZB 1519B           | 00059                      | 2018.09.26 | 2Year           |
| Cable                          | Resenberger       | N/A                  | No.1                       | 2018.09.21 | 1 Year          |
| Cable                          | Resenberger       | N/A                  | No.2                       | 2018.09.21 | 1 Year          |
| Cable                          | Resenberger       | N/A                  | No.3                       | 2018.09.21 | 1 Year          |
| Pre-amplifier                  | HP                | HP8347A              | 2834A00455                 | 2018.09.21 | 1Year           |
| Pre-amplifier                  | Agilent           | 8449B                | 3008A02664                 | 2018.09.21 | 1 Year          |
| L.I.S.N.#1                     | Schwarzbeck       | NSLK8126             | 8126466                    | 2018.09.21 | 1 Year          |
| L.I.S.N.#2                     | ROHDE&SCHW<br>ARZ | ENV216               | 101043                     | 2018.09.21 | 1 Year          |
| 20db Attenuator                | ICPROBING         | IATS1                | 82347                      | 2018.09.21 | 1 Year          |
| Horn Antenna                   | A-INFOMW          | LB-180100-KF         | J211020657                 | 2018.09.21 | 2 Year          |
| Preamplifier                   | SKET              | LNPA_1840-50         | SK2018101801               | 2018.09.21 | 1 Year          |
| Power Meter                    | Agilent           | E9300A               | MY41496625                 | 2018.09.21 | 1 Year          |
| Temp. & Humid.<br>Chamber      | Weihuang          | WHTH-1000-40-8<br>80 | 100631                     | 2018.09.11 | 1 Year          |
| Switching Mode<br>Power Supply | JUNKE             | JK12010S             | 20140927-6                 | 2018.09.11 | 1 Year          |

# 3. MAXIMUM PEAK OUTPUT POWER

# 3.1.Limit


Please refer section15.247.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

#### **3.2.Test Procedure**

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

# 3.3.Test Setup



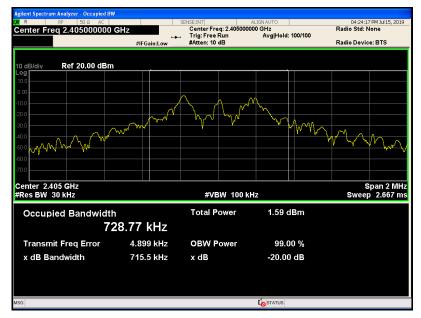
# 3.4.Test Result

| Mode        | Freq<br>(MHz)    | PK Output<br>Power<br>(dBm) | PK Output<br>Power<br>(mW) | Limit<br>(dBm) | Result |  |  |  |
|-------------|------------------|-----------------------------|----------------------------|----------------|--------|--|--|--|
|             | 2405             | 6.569                       | 4.538                      | 21.00          | Pass   |  |  |  |
| GFSK        | 2441             | 6.794                       | 4.780                      | 21.00          | Pass   |  |  |  |
|             | 2478             | 5.771                       | 3.777                      | 21.00          | Pass   |  |  |  |
| Conclusion: | Conclusion: PASS |                             |                            |                |        |  |  |  |

# 4. BANDWIDTH

## 4.1.Limit

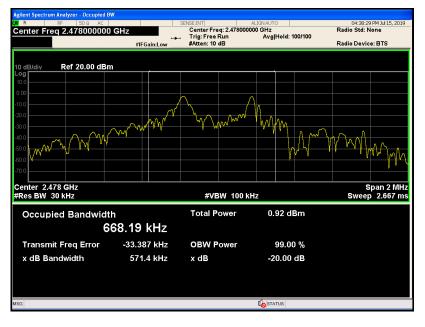
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.


## 4.2.Test Procedure

The transmitter output was directly connected to a spectrum analyzer with a  $50\Omega$  cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

## 4.3.Test Result

| Frequency | Antenna | 99% OBW | -20 dB    | Limit -20 dB    | Verdict |
|-----------|---------|---------|-----------|-----------------|---------|
| (MHz)     |         | (MHz)   | Bandwidth | Bandwidth (MHz) |         |
|           |         |         | (MHz)     |                 |         |
| 2405      | Ant 1   | 0.7288  | 0.7155    | /               | Pass    |
| 2441      | Ant 1   | 0.7443  | 0.7232    | /               | Pass    |
| 2478      | Ant 1   | 0.6682  | 0.5714    | /               | Pass    |


OBW NVNT user 2405MHz Ant1





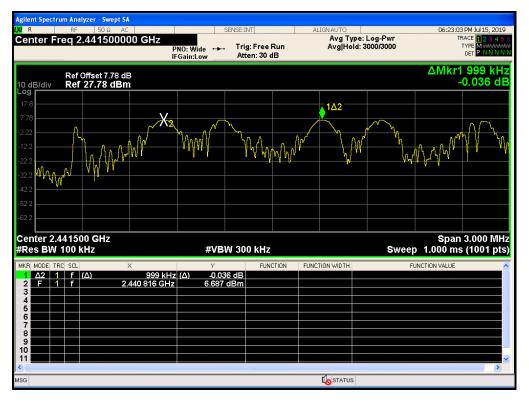
#### OBW NVNT user 2441MHz Ant1

OBW NVNT user 2478MHz Ant1



# 5. CARRIER FREQUENCY SEPARATION

## 5.1.Limit


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

## 5.2.Test Procedure

The transmitter output was directly connected to a spectrum analyzer with a  $50\Omega$  cable. The carrier frequency was measured by spectrum analyzer with 100kHz RBW and 300kHz VBW.

## 5.3.Test Result

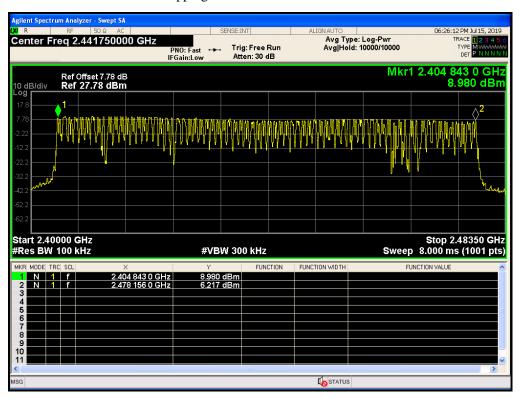
| Condition | Mode | Hopping Freq1 (MHz) | Hopping Freq2 (MHz) | HFS (MHz) | Limit | Verdict |
|-----------|------|---------------------|---------------------|-----------|-------|---------|
|           |      |                     |                     |           | (MHz) |         |
| NVNT      | user | 2440.816            | 2441.815            | 0.999     | 0.482 | Pass    |



#### CFS NVNT user 2441MHz

# 6. NUMBER OF HOPPING CHANNEL

# 6.1.Limit


Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

## 6.2.Test Procedure

The transmitter output was directly connected to a spectrum analyzer with a  $50\Omega$  cable. The number of hopping channel was measured by spectrum analyzer with 100kHz RBW and 300KHz VBW.

## 6.3.Test Result

| Condition | Mode | Hopping Number | Limit | Verdict |
|-----------|------|----------------|-------|---------|
| NVNT      | user | 74             | 15    | Pass    |



#### Hopping No. NVNT user 2441MHz

# 7. DWELL TIME

## 7.1.Test limit

Please refer section15.247

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 sec- onds multiplied by the number of hopping channel employed.

## 7.2.Test Procedure

- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW=1MHz, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.

#### 7.3.Test Result

PASS.

Detailed information please see the following page.

| Mode  | Frequency<br>(MHz) | Pulse Duration<br>(ms) | Dwell Time<br>(ms) | Limit<br>(ms) | Conclusion |
|-------|--------------------|------------------------|--------------------|---------------|------------|
| GFSK  | 2478               | 1.348                  | 26.96              | <400          | PASS       |
| Note: |                    |                        |                    |               |            |

Dwell time=pulse time\* (hopping times/time slot/74) \* (0.4\*74) =1.348\*(50/74)\*(0.4\*74)= 26.96ms

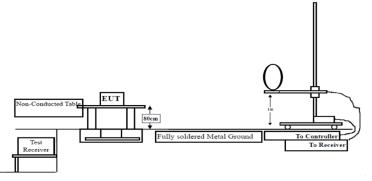
| u I            | RF 50 Ω AC                                                                                                      |                                                    | NSE:INT | ALIGNAUTO    | 05:34:39 PM Jul 19, 2019                  | E                                    |
|----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|--------------|-------------------------------------------|--------------------------------------|
| Center F       | req 2.478000000 0                                                                                               | Hz<br>PNO: Fast ↔ Trig: Vid<br>FGain:Low #Atten: 3 | eo      | vg Type: RMS | TRACE 123456<br>TYPE WANNER<br>DET ANNNNN | Frequency                            |
| 0 dB/div       | Ref Offset 6.5 dB<br>Ref 20.00 dBm                                                                              | Comicow and a                                      |         | Δ            | Mkr1 1.348 ms<br>-2.11 dB                 | Auto Tur                             |
| .og            |                                                                                                                 | X2                                                 |         | 1Δ2          | *                                         | Center Fre<br>2.478000000 GI         |
| 0.00           |                                                                                                                 |                                                    |         |              |                                           |                                      |
| 10.0           |                                                                                                                 |                                                    |         |              |                                           | Start Fr<br>2.478000000 G            |
| 0.0            |                                                                                                                 |                                                    |         |              | TRIG LVL                                  | Stop Fr                              |
| 30.0           |                                                                                                                 |                                                    |         |              |                                           | 2.478000000 G                        |
| 10.0           |                                                                                                                 |                                                    |         |              |                                           | CF St<br>1.000000 M<br><u>Auto</u> N |
| 50.0<br>•••••• | hilling the second s | rithor darweith                                    |         | white        | culture alternation                       | Freq Offs                            |
| 70.0           |                                                                                                                 |                                                    |         |              |                                           | 0                                    |
| enter 2        | 478000000 GHz                                                                                                   |                                                    |         |              | Span 0 Hz                                 |                                      |
| es BW 1        |                                                                                                                 | #VBW 1.0 MHz                                       | *       | Sweep 4      | .000 ms (1001 pts)                        |                                      |
|                |                                                                                                                 |                                                    |         |              |                                           |                                      |

# 8. RADIATED EMISSIONS

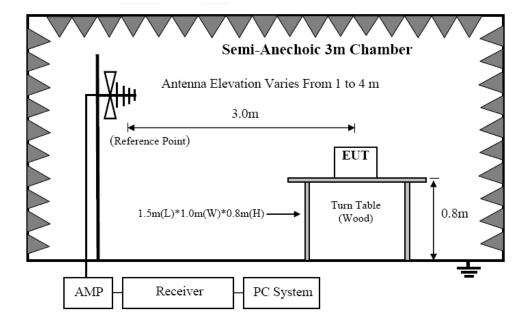
# 8.1.Limit

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

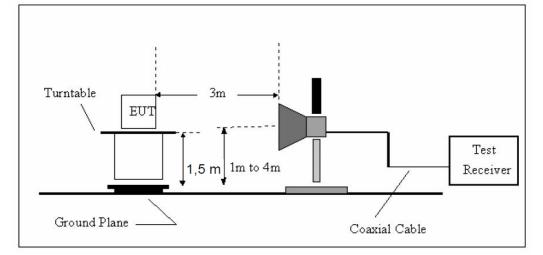
| 15.205 Restricted f | frequency | band |
|---------------------|-----------|------|
|---------------------|-----------|------|


| MHz                        | MHz                   | MHz              | GHz           |
|----------------------------|-----------------------|------------------|---------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410      | 4.5 - 5.15    |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 <b>-</b> 614 | 5.35 - 5.46   |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240       | 7.25 - 7.75   |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427      | 8.025 - 8.5   |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5    | 9.0 - 9.2     |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5  | 9.3 - 9.5     |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710      | 10.6 - 12.7   |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2  | 13.25 - 13.4  |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300      | 14.47 - 14.5  |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390      | 15.35 - 16.2  |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500    | 17.7 - 21.4   |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2690 - 2900      | 22.01 - 23.12 |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267      | 23.6 - 24.0   |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339      | 31.2 - 31.8   |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358    | 36.43 - 36.5  |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400      | (2)           |

15.209 Limit


| FREQUEN   | ICY  | DISTANCE | FIELD STRENG                  | GTHS LIMIT |
|-----------|------|----------|-------------------------------|------------|
| MHz       | MHz  |          | μV/m                          | dB(µV)/m   |
| 0.009-0.4 | 90   | 300      | 2400/F(KHz)                   | /          |
| 0.490-1.7 | 05   | 30       | 24000/F(KHz)                  | /          |
| 1.705-30  |      | 30       | 30                            | 29.5       |
| 30 ~      | 88   | 3        | 100                           | 40.0       |
| 88 ~      | 216  | 3        | 150                           | 43.5       |
| 216 ~     | 960  | 3        | 200                           | 46.0       |
| 960 ~     | 1000 | 3        | 500                           | 54.0       |
| Above     | 1000 | 3        | 74.0 dB(µV)                   | /m (Peak)  |
| Above     | 1000 | 3        | 54.0 dB( $\mu$ V)/m (Average) |            |

## 8.2.Block Diagram of Test setup


8.2.1 In 3m Anechoic Chamber Test Setup Diagram for 9KHzHz to 30MHz



8.2.2 In 3m Anechoic Chamber Test Setup Diagram for 30MHz to 1GHz

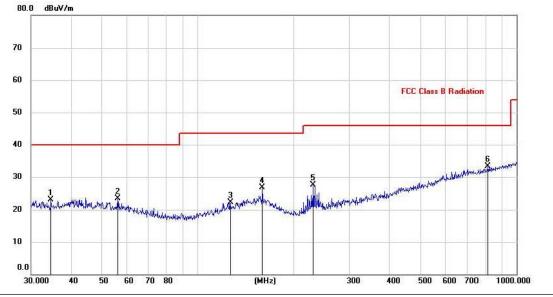


8.2.3 In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz



Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

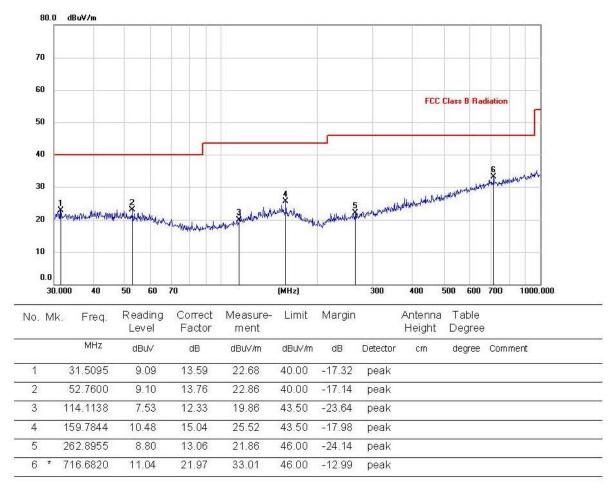
## 8.3.Test Procedure


- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz test, 150 cm above the ground plane inside a semi-anechoic chamber for above 1GHz test
- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.
- 8.4.Test Result

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency.. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


# From 30MHz to 1000MHz: Conclusion: PASS Polarization: *Vertical*



| No. | Mk. | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∨             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 34.6385  | 9.28             | 13.72             | 23.00            | 40.00  | -17.00 | peak     |                   |                 |         |
| 2   |     | 56.0007  | 9.72             | 13.57             | 23.29            | 40.00  | -16.71 | peak     |                   |                 |         |
| 3   | 0   | 126.3286 | 8.62             | 13.39             | 22.01            | 43.50  | -21.49 | peak     |                   |                 |         |
| 4   | 1   | 159.7844 | 11.66            | 15.04             | 26.70            | 43.50  | -16.80 | peak     |                   |                 |         |
| 5   |     | 230.0985 | 15.16            | 12.31             | 27.47            | 46.00  | -18.53 | peak     |                   |                 |         |
| 6   | *   | 813.1115 | 10.17            | 23.09             | 33.26            | 46.00  | -12.74 | peak     |                   |                 |         |

Note:1. \*:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.



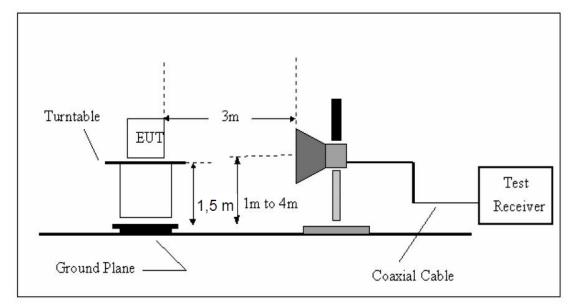
#### Polarization: Horizontal

Note:1. \*:Maximum data; x:Over limit; I:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Remark: All modes have been tested, and only worst data of GFSK Channel High mode was listed in this report.

# From 1G-25GHz


| Freq<br>(MHz) | Read<br>Level<br>(dBuV/m) | Polar<br>(H/V) | Antenna<br>Factor<br>(dB/m) | Cable<br>loss(dB) | Amp<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|---------------|---------------------------|----------------|-----------------------------|-------------------|-----------------------|--------------------|-------------------|----------------|--------|
| 4810          | 43.54                     | V              | 33.95                       | 10.18             | 34.26                 | 53.41              | 74                | 20.59          | PK     |
| 4810          | 30.32                     | V              | 33.95                       | 10.18             | 34.26                 | 40.19              | 54                | 13.81          | AV     |
| 7215          | /                         |                | /                           |                   |                       |                    |                   |                |        |
| 9620          | /                         |                | /                           |                   |                       |                    |                   |                |        |
| 4810          | 42.32                     | Н              | 33.95                       | 10.18             | 34.26                 | 52.19              | 74                | 21.81          | РК     |
| 4810          | 32.34                     | Н              | 33.95                       | 10.18             | 34.26                 | 42.21              | 54                | 11.79          | AV     |
| 7215          |                           |                |                             |                   |                       |                    |                   |                |        |
| 9620          |                           |                |                             |                   |                       |                    |                   |                |        |
| Test Mo       | ode: GFSK                 | TX Mid         |                             |                   |                       |                    |                   |                |        |
| 4882          | 44.86                     | V              | 33.93                       | 10.18             | 34.26                 | 54.71              | 74                | 19.29          | РК     |
| 4882          | 32.28                     | V              | 33.93                       | 10.18             | 34.26                 | 42.13              | 54                | 11.87          | AV     |
| 7323          | /                         |                |                             |                   |                       |                    |                   |                |        |
| 9764          | /                         |                |                             |                   |                       |                    |                   |                |        |
| 4882          | 43.42                     | Η              | 33.93                       | 10.18             | 34.26                 | 53.27              | 74                | 20.73          | PK     |
| 4882          | 32.33                     | Η              | 33.93                       | 10.18             | 34.26                 | 42.18              | 54                | 11.82          | AV     |
| 7323          |                           |                |                             |                   |                       |                    |                   |                |        |
| 9764          |                           |                |                             |                   |                       |                    |                   |                |        |
| Test Mo       | ode: GFSK                 | TX High        | L                           |                   |                       |                    |                   |                |        |
| 4956          | 42.23                     | V              | 33.98                       | 10.18             | 34.26                 | 52.13              | 74                | 21.87          | РК     |
| 4956          | 33.86                     | V              | 33.98                       | 10.18             | 34.26                 | 43.76              | 54                | 10.24          | AV     |
| 7434          | /                         |                |                             |                   |                       |                    |                   |                |        |
| 9912          | /                         |                |                             |                   |                       |                    |                   |                |        |
| 4956          | 43.54                     | Η              | 33.98                       | 10.18             | 34.26                 | 53.44              | 74                | 20.56          | PK     |
| 4956          | 31.44                     | Η              | 33.98                       | 10.18             | 34.26                 | 41.34              | 54                | 12.66          | AV     |
| 7434          | /                         |                |                             |                   |                       |                    |                   |                |        |
| 9912          | /                         |                |                             |                   |                       |                    |                   |                |        |

1, Result = Read level + Antenna factor + cable loss-Amp factor

2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

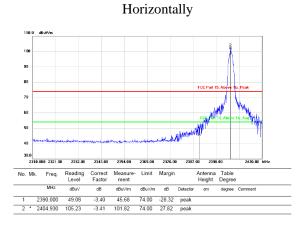
# 9. BAND EDGE COMPLIANCE

# 9.1.Block Diagram of Test Setup

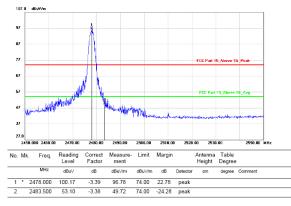


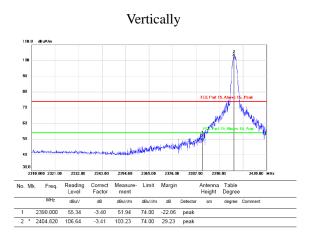
## 9.2.Limit

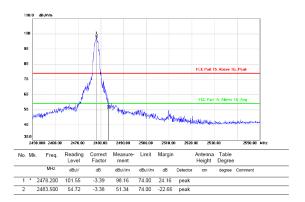
All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.


## 9.3.Test Procedure

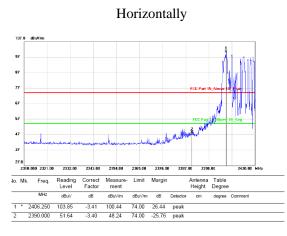
All restriction band and non- restriction band have been tested, only worse case is reported.


## 9.4.Test Result

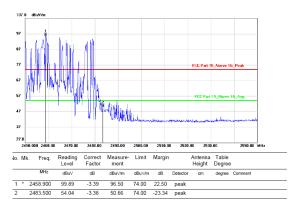

PASS. (See below detailed test data)

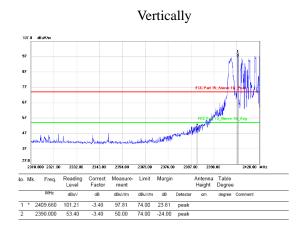

# No-hopping CH-L

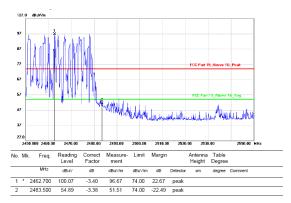



#### CH-H





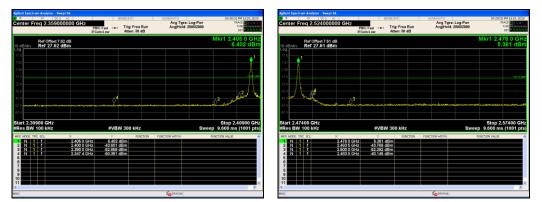





## Hopping CH-L



#### CH-H








# No-hopping

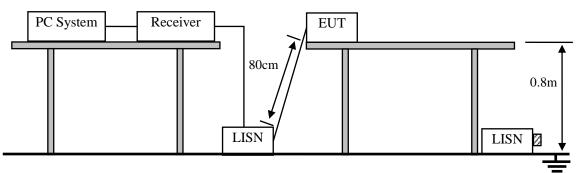
CH-L

CH-H



Hopping






| Start Freq 2.31000                                 | Q AC                            | Trig: Free Run<br>#Atten: 30 dB | Aug Type: Log-Pwr<br>Avg[Hold>100/100 | 04:38:17 PM 34 19, 2019<br>TRACE 2 3 4 5 0<br>TYPE 2 3 4 5 0<br>DET 2 N N N N | Frequency                            | Agilent Spectrum Analyzer Swe<br>UK RF 150 Q<br>Start Freq 2.472000 | AC                                                         |
|----------------------------------------------------|---------------------------------|---------------------------------|---------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|
| Ref Offset                                         | 7.62 dB<br>) dBm                |                                 | Mk                                    | r1 2.409 8 GHz<br>6.269 dBm                                                   | Auto Tune                            | Ref Offset 7.<br>10 dB/dly Ref 20.00                                | 62 dB<br>dBm                                               |
|                                                    |                                 |                                 |                                       |                                                                               | Center Freq<br>2.36000000 GHz        |                                                                     |                                                            |
| 00 0<br>30 0<br>40 0                               |                                 |                                 |                                       | 2/H                                                                           | Start Freq<br>2.310000000 GHz        | -20.0                                                               |                                                            |
| 40.0<br>40.0<br>-70.0                              | ~                               |                                 | n-,                                   |                                                                               | Stop Freq<br>2.410000000 GHz         | 40.0<br>40.0<br>-70.0                                               | and the protocological protocological and the state of the |
| Start 2.31000 GHz<br>#Res BW 100 kHz               | #VB                             | W 300 kHz                       | Sweep 9.                              | Stop 2.41000 GHz<br>600 ms (1001 pts)                                         | CF Step<br>10.000000 MHz<br>Auto Man | Start 2.47200 GHz<br>#Res BW 100 kHz                                | #VBW                                                       |
| MKR MODE TRC SCL<br>1 N 1 f<br>2 N 1 f<br>3 4<br>5 | ×<br>2.409 8 GHz<br>2.400 0 GHz | Y<br>6.269 dBm<br>-46.489 dBm   | FUNCTION FUNCTION WADTH               | FUNCTION WALUE                                                                | Auto Man<br>Freq Offset<br>0 Hz      | HUR MODE TRC SCL<br>1 N 1 F<br>2 N 1 F<br>3 4 5                     | ×<br>2.478 077 GHz<br>2.483 500 GHz                        |
| 6<br>7<br>8<br>9<br>10                             |                                 |                                 |                                       |                                                                               |                                      | 6<br>7<br>8<br>9<br>10                                              |                                                            |
| 4<br>195                                           |                                 |                                 | <b>Co</b> status                      |                                                                               |                                      | K MSC                                                               |                                                            |

| t Spectru       |           | alyzer - Swept SA |                          |                               |               |                                            |                                                       |                                      |
|-----------------|-----------|-------------------|--------------------------|-------------------------------|---------------|--------------------------------------------|-------------------------------------------------------|--------------------------------------|
| t Fred          | ₽₹<br>2.4 | 472000000         | GHZ<br>PNO: Fast         |                               | Avg<br>in Avg | ALIGNAUTO<br>Type: Log-Pwr<br>Hold>100/100 | D4:46:49 PM 3ul 10, 2019<br>TRACE 1 2 3 4 5 0<br>TYPE | Frequency                            |
| _               | Ref       | Offset 7.62 dB    | IFGain:Low               | #Atten: 30 dE                 | 3             | Mkr1                                       | 2.478 077 GHz<br>3.407 dBm                            | Auto Tune                            |
| BJdiv           | Rel       | f 20.00 dBm       |                          |                               |               |                                            | 3.407 GBm                                             | Center Freq<br>2.523500000 GHz       |
|                 | k.        | 2<br>K            |                          |                               |               |                                            |                                                       | Start Free<br>2.472000000 GH         |
|                 |           |                   |                          |                               |               | enterbiederektioe <sup>n</sup> terb        |                                                       | Stop Free<br>2.575000000 GH:         |
| t 2.472<br>s BW |           |                   | #V                       | BW 300 kHz                    |               | Sweep 9                                    | Stop 2.57500 GHz<br>.867 ms (1001 pts)                | CF Step<br>10.300000 MH:<br>Auto Mar |
| NODE TRI        | 1         | 2.4               | 78 077 GHz<br>83 500 GHz | 7<br>3.407 dBm<br>-45.761 dBm | FUNCTION      | FUNCTION WIDTH                             | FUNCTION VALUE                                        | Auto Man<br>Freg Offsel              |
|                 |           |                   |                          |                               |               |                                            |                                                       | 0 Hz                                 |
|                 | _         |                   |                          | 4                             |               | [ STATUS                                   | 2                                                     |                                      |

# **10.POWER LINE CONDUCTED EMISSIONS**

10.1.Block Diagram of Test Setup



🛛 :50Ω Terminator

## 10.2.Limit

|                 | Maximum RF Line Voltage |               |  |  |  |  |
|-----------------|-------------------------|---------------|--|--|--|--|
| Frequency       | Quasi-Peak Level        | Average Level |  |  |  |  |
|                 | $dB(\mu V)$             | $dB(\mu V)$   |  |  |  |  |
| 150kHz ~ 500kHz | 66 ~ 56*                | 56 ~ 46*      |  |  |  |  |
| 500kHz ~ 5MHz   | 56                      | 46            |  |  |  |  |
| 5MHz ~ 30MHz    | 60                      | 50            |  |  |  |  |

Notes: 1. \* Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

## 10.3.Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1

(3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 :2013on conducted Emission test.

(4) The bandwidth of test receiver is set at 10KHz.

(5) The frequency range from 150 KHz to 30MHz is checked.

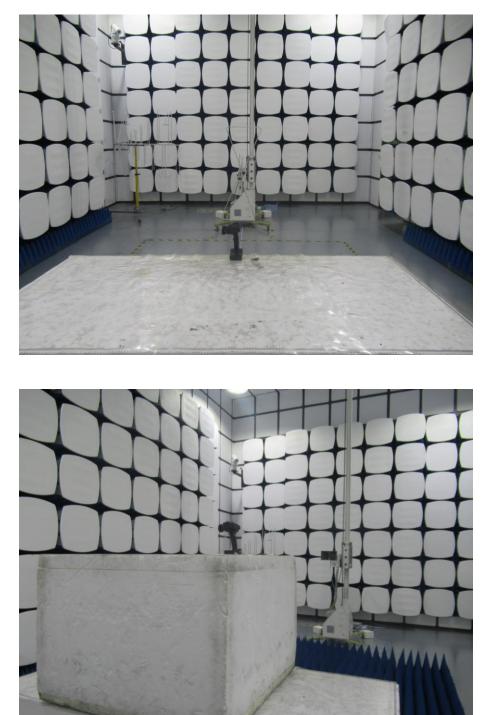
#### 10.4.Test Result

Not applicable.

The EUT is supplied by battery only, so this item does not applicable.

# **11.ANTENNA REQUIREMENTS**

## 11.1.Limit


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

## 11.2.Result

The EUT antenna is integrated Antenna. It complies with the standard requirement.

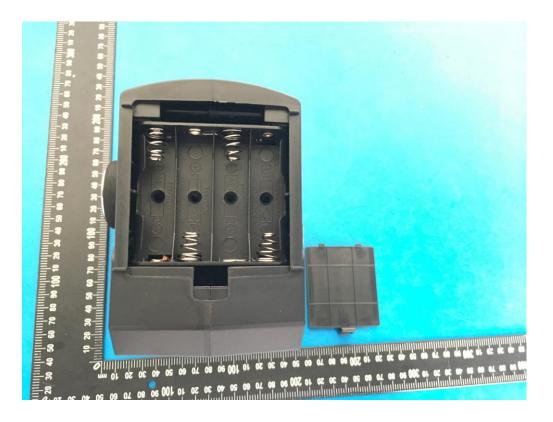
# **12.TEST SETUP PHOTO**

# 12.1.Photos of Radiated emission

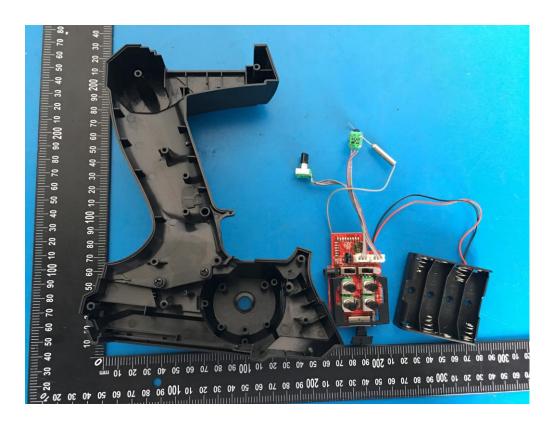


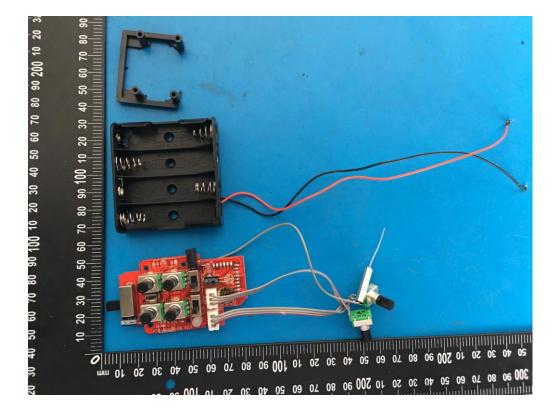
# **13.PHOTOS OF EUT**

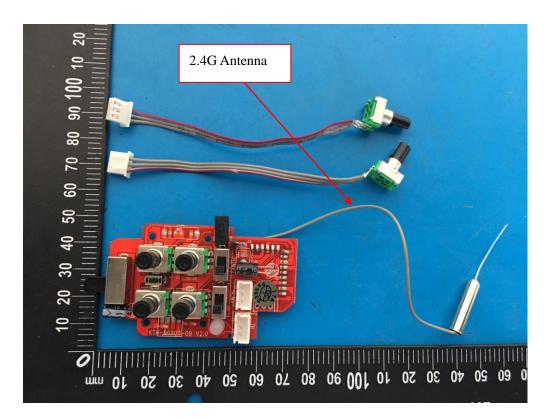


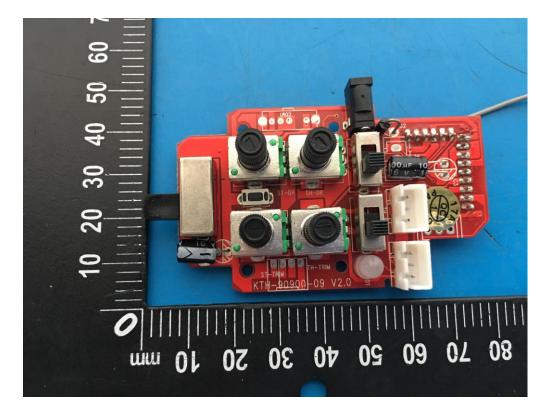


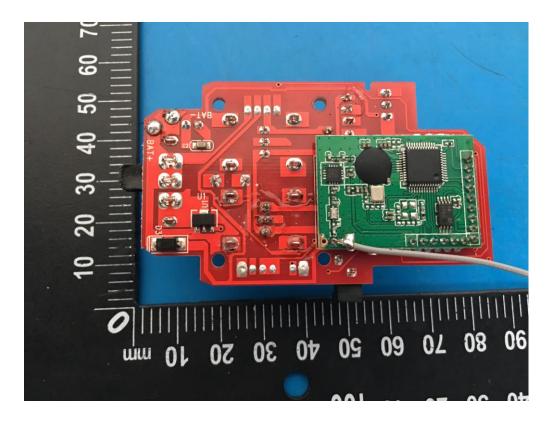













-----THE END OF REPORT------