Hestan

TEST REPORT FOR

Hestan Smart Cooking Induction Module HSCIM-1

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.249

Report No.: 101326-8

Date of issue: June 6, 2018

Test Certificate #803.05

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.215(c) Occupied Bandwidth (20dB BW)	7
15.249(a) Field Strength of Fundamental	10
15.249(a) Radiated Emissions and Band Edge	18
15.207 AC Conducted Emissions	35
Supplemental Information	43
Measurement Uncertainty	43
Fmissions Test Details	43

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Hestan Terri Rayle
1 Meyer Plaza CKC Laboratories, Inc.
Vallejo, CA 94590 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Katie Rieschick Project Number: 101326

Customer Reference Number: 051618-1

DATE OF EQUIPMENT RECEIPT: May 18, 2018 **DATE(S) OF TESTING:** May 18-22, 2018

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve I Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 44 Report No.: 101326-8

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park Bothell, WA	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

Page 4 of 44 Report No.: 101326-8

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.249

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.249(a)	Field Strength of Fundamental	NA	Pass
15.249(a)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions	
No modifications were made during testing.	

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

	<u> </u>	
Summary of Conditions		
None		

Page 5 of 44 Report No.: 101326-8

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Hestan Smart Cooking	Hestan	HSCIM-1	NA
Induction Module			

Support Equipment:

Device	Manufacturer	Model #	S/N	
DC Power Supply	YescomUSA	DCP305D	NA	

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Hestan Smart Cooking	Hestan	HSCIM-1	NA
Induction Module			

Support Equipment:

Device	Manufacturer	Model #	S/N
AC/DC Adapter	UpBright	GEO151UB-5025	NA

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Radio Module	
Modulation Type(s):	GFSK	
Maximum Duty Cycle:	100%	
Antenna Type(s) and Gain:	Trace antenna, -10dBi	
Antenna Connection Type:	Integral	
Nominal Input Voltage:	5.0V nominal (3.6 to 6.0VDC)	
Firmware / Software used for Test:	Firmware version cooktop_sdk15_fcc_1.0	

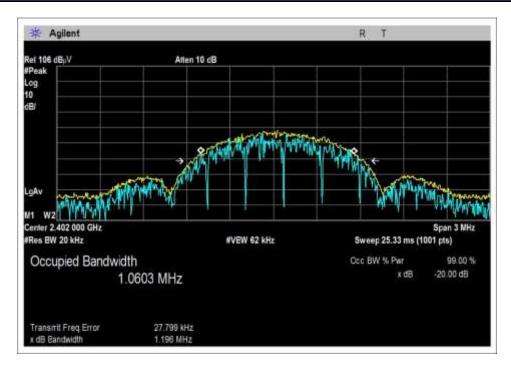
Page 6 of 44 Report No.: 101326-8

FCC Part 15 Subpart C

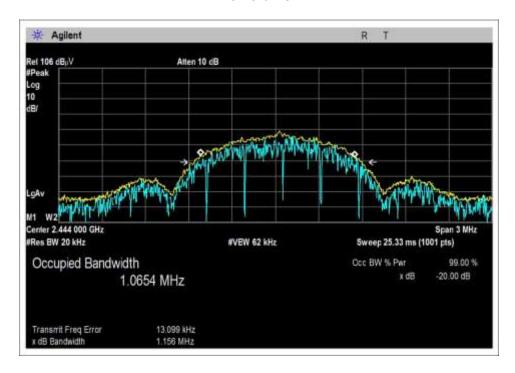
15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Canyon Park Lab C3	Test Engineer:	M. Atkinson	
Test Method:	ANSI C63.10 (2013) Test Date(s): 5/18/2018			
Configuration:	Configuration: 1			
Test Conditions: The EUT is continuously transmitting modulated data.				
Low, Mid, and High channels investigated.				

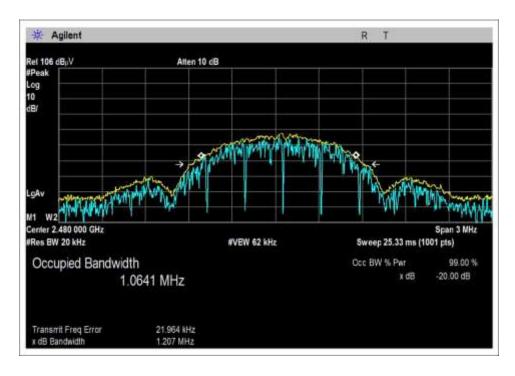
Environmental Conditions							
Temperature (ºC)	22-24	Relative Humidity (%):	40-41				


	Test Equipment										
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due						
02871	Spectrum Analyzer	Agilent	E4440A	1/17/2018	1/17/2020						
P05959	Cable	Andrews	Heliax	4/11/2018	4/11/2020						
P05544	Cable	Andrews	Heliax	4/12/2018	4/12/2020						
03540	Preamp	HP	83017A	5/2/2017	5/2/2019						
P06934	Cable	Astrolab	32026-29801- 29801-18	3/13/2018	3/13/2020						
P07229	Attenuator	Pasternack	PE7004-20	12/1/2017	12/1/2019						
01467	Horn Antenna	EMCO	3115	7/21/2017	7/21/2019						

	Test Data Summary									
Frequency (MHz)	Antenna Port	Modulation	Measured (MHz)	Limit (kHz)	Results					
2402	1	GFSK	1.196	None	NA					
2444	1	GFSK	1.156	None	NA					
2480	1	GFSK	1.207	None	NA					


Page 7 of 44 Report No.: 101326-8

Plots



Low Channel

Middle Channel

High Channel

Test Setup Photo

Page 9 of 44 Report No.: 101326-8

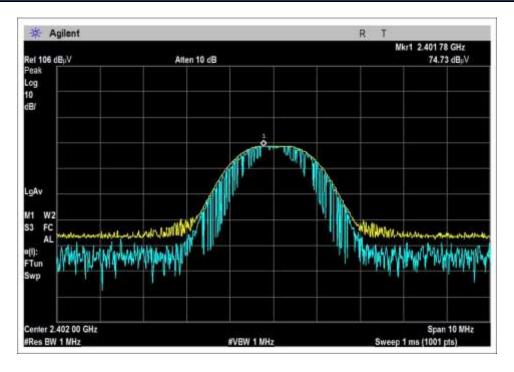
15.249(a) Field Strength of Fundamental

	Test Data Summary - Voltage Variations									
Frequency (MHz)	Modulation	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)					
2402	GFSK	92.5	92.5	92.6	0.1					
2444	GFSK	92.0	92.0	92.0	0.0					
2480	GFSK	89.7	89.7	89.9	0.2					

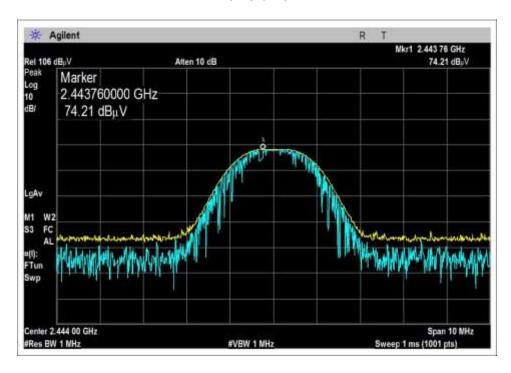
Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

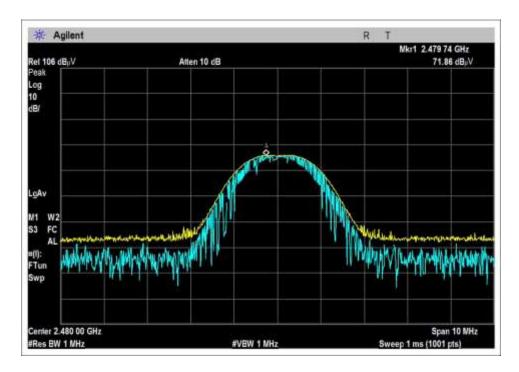
Measurements performed at input voltage according to manufacturer specification.


Parameter	Value
V _{Nominal} :	5.0VDC
V _{Minimum} :	3.6VDC
V _{Maximum} :	6.0VDC

	Test Data Summary – Radiated Field Strength Measurement										
Frequency (MHz) Modulation Ant. Type (dBuV/m @ 3m) (dBuV/m @ 3m)											
2402	GFSK	Internal Trace	92.5	≤94	Pass						
2444	GFSK	Internal Trace	92.0	≤94	Pass						
2480	GFSK	Internal Trace	89.7	≤94	Pass						


Page 10 of 44 Report No.: 101326-8

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Hestan**

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: 101326 Date: 5/18-21/2018
Test Type: Radiated Scan Time: 11:17:42

Tested By: Michael Atkinson Sequence#: 1

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 22-24°C Humidity: 40-41% Pressure: 102.0-102.2kPa

Frequency Range: 2402-2480

Frequency tested: 2402, 2444, 2480MHz

Firmware power setting: -4

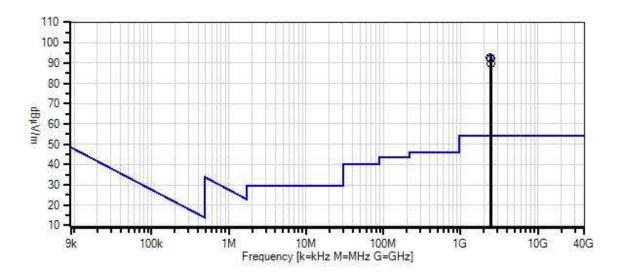
Test Location: Canyon Park Lab C3 Test Method: ANSI C63.10 (2013)

Duty Cycle: 100%

Test Mode: Continuously transmitting

Test Setup: The EUT is a module, connected to DC power from power supply remotely located outside of chamber.

The EUT is on a test table 1.5m high.


X, Y, and Z EUT axes investigated, as well as both horizontal and vertical measurement antenna polarities, only

worst case reported.

Page 13 of 44 Report No.: 101326-8

Hestan WO#: 101326 Sequence#: 1 Date: 5/21/2018 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Horiz

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

- 1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	ANP05959	Cable	Heliax	4/11/2018	4/11/2020
T2	ANP05544	Cable	Heliax	4/12/2018	4/12/2020
T3	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T4	ANP06934	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-18		
T5	ANP07229	Attenuator	PE7004-20	12/1/2017	12/1/2019
T6	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			

Measi	irement Data:	Re	eading lis	ted by ma	margin. Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2401.780M	74.7	+1.0	+2.2	-34.0	+0.4	+0.0	92.5	94.0	-1.5	Horiz
			+20.1	+28.1					X		
2	2443.780M	74.2	+1.0	+2.2	-34.0	+0.4	+0.0	92.0	94.0	-2.0	Horiz
			+20.1	+28.1					X		
3	2479.740M	71.9	+1.0	+2.2	-34.0	+0.4	+0.0	89.7	94.0	-4.3	Horiz
			+20.1	+28.1					X		

Page 15 of 44 Report No.: 101326-8

Test Setup Photos

Above 1GHz Cone placement

X Axis

Y Axis

Z Axis

15.249(a) Radiated Emissions and Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Hestan

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: 101326 Date: 5/22/2018
Test Type: Radiated Scan Time: 14:36:10
Tested By: Michael Atkinson Sequence#: 3

Tested By: Michael Atkinson Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 22-24°C Humidity: 40-41% Pressure: 102.0-102.2kPa

Frequency Range: 0.09-24800MHz Frequency tested: 2402, 2444, 2480MHz

Firmware power setting: -4

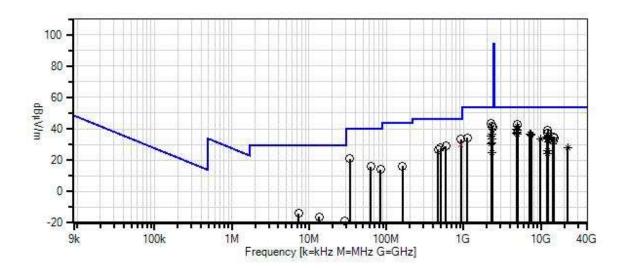
Test Location: Canyon Park Lab C3 Test Method: ANSI C63.10 (2013)

Duty Cycle: 100%

Test Mode: Continuously transmitting

Test Setup: The EUT is a module, connected to DC power from power supply remotely located outside of chamber.

X, Y, and Z EUT axes investigated, only worst case reported.


Below 30MHz there were 3 orthogonal polarities investigated, above 30MHz horizontal and vertical antenna

polarities investigated, only worst case reported.

Page 18 of 44 Report No.: 101326-8

Hestan WO#: 101326 Sequence#: 3 Date: 5/22/2018 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Ground Para

- ---- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T2	ANP05959	Cable	Heliax	4/11/2018	4/11/2020
T3	ANP05544	Cable	Heliax	4/12/2018	4/12/2020
T4	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T5	ANP06934	Cable	32026-29801- 29801-18	3/13/2018	3/13/2020
Т6	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/21/2017	7/21/2019
T7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20-10P	3/30/2017	3/30/2019
T8	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20-10P	10/7/2016	10/7/2018
Т9	ANP06678	Cable	32026-29801- 29801-144	3/13/2018	3/13/2020
T10	ANP06503	Cable	32026-29801- 29801-36	3/13/2018	3/13/2020
T11	AN02763-69	Waveguide	Multiple	4/23/2018	4/23/2020
T12	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T13	AN02307	Preamp	8447D	1/15/2018	1/15/2020
T14	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T15	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T16	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T17	AN00052	Loop Antenna	6502	5/7/2018	5/7/2020

Meas	surement Data:	R	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2278.430M	45.8	+0.0	+1.0	+2.1	-34.1	+0.0	43.3	54.0	-10.7	Horiz
			+0.4	+28.1	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	2 4960.000M	38.2	+0.0	+1.2	+3.7	-33.2	+0.0	43.1	54.0	-10.9	Horiz
			+0.7	+32.5	+0.0	+0.0			Y		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 20 of 44 Report No.: 101326-8

3 2350.000M	44.2	+0.0	+1.0	+2.1	-34.1	+0.0	41.7	54.0	-12.3	Horiz
		+0.4	+28.1	+0.0	+0.0			X		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
4 4888.045M	36.5	+0.0	+1.2	+3.7	-33.2	+0.0	41.4	54.0	-12.6	Vert
Ave		+0.8	+32.4	+0.0	+0.0			Y		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4888.000M	40.2	+0.0	+1.2	+3.7	-33.2	+0.0	45.1	54.0	-8.9	Vert
		+0.8	+32.4	+0.0	+0.0			Y		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
6 000 50015	26.1	+0.0	.0.6	.0.0	. 0. 0	.0.0	22.4	460	10.6	TT .
6 920.500M	26.1	+0.0	+0.6	+0.0	+0.0	+0.0	33.4	46.0	-12.6	Horiz
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+1.6					
		-27.3	+2.0	+5.9	+24.5					
7 2297 000M	12.5	+0.0	+1.0	.2.2	24.0	. 0. 0	41.2	5 4.0	12.0	IIi.
7 2386.000M	43.5	+0.0	$+1.0 \\ +28.1$	+2.2	-34.0	+0.0	41.2	54.0 Z	-12.8	Horiz
		+0.4 +0.0	+28.1	$+0.0 \\ +0.0$	$+0.0 \\ +0.0$			L		
		+0.0 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0					
		+0.0	+0.0	+0.0	±0.0					
8 4804.241M	35.1	+0.0	+1.1	+3.7	-33.2	+0.0	39.9	54.0	-14.1	Vert
Ave	55.1	+0.9	+32.3	+0.0	+0.0	10.0	37.7	Y 34.0	17.1	, 011
11,0		+0.0	+0.0	+0.0	+0.0			-		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
9 12216.000	44.1	+0.0	+2.1	+6.3	+0.0	+0.0	39.3	54.0	-14.7	Horiz
M		+0.0	+0.0	-13.2	+0.0					
		+0.0	+0.0	+0.0	+0.0			X		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
10 4960.000M	34.0	+0.0	+1.2	+3.7	-33.2	+0.0	38.9	54.0	-15.1	Vert
Ave		+0.7	+32.5	+0.0	+0.0			Y		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4960.000M	40.6	+0.0	+1.2	+3.7	-33.2	+0.0	45.5	54.0	-8.5	Vert
		+0.7	+32.5	+0.0	+0.0			Y		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

12	4888.143M	33.0	+0.0	+1.2	+3.7	-33.2	+0.0	37.9		54.0	-16.1	Horiz
	Ave	33.0	+0.8	+32.4	+0.0	+0.0	+0.0	31.9	X	34.0	-10.1	110112
	Ave		+0.0	+0.0	+0.0	+0.0			71			
			+0.0	+0.0	+0.0	+0.0						
			+0.0	10.0	10.0	10.0						
^	4888.143M	39.2	+0.0	+0.0	+0.0	+0.0	+0.0	44.6		54.0	-9.4	Horiz
	10001110111	U / 1.2	+0.0	+0.0	+0.0	+0.0	. 0.0		X	<i>c</i>	· · ·	110112
			+3.8	+1.6	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
14	920.500M	22.5	+0.0	+0.6	+0.0	+0.0	+0.0	29.8		46.0	-16.2	Vert
	QP		+0.0	+0.0	+0.0	+0.0		_,				
			+0.0	+0.0	+0.0	+1.6						
			-27.3	+2.0	+5.9	+24.5						
			+0.0									
15	12011.620	42.4	+0.0	+2.1	+6.2	+0.0	+0.0	37.4		54.0	-16.6	Horiz
	M		+0.0	+0.0	-13.3	+0.0						
			+0.0	+0.0	+0.0	+0.0			X			
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
16	4804.075M	32.3	+0.0	+1.1	+3.7	-33.2	+0.0	37.1		54.0	-16.9	Horiz
	Ave		+0.9	+32.3	+0.0	+0.0			X			
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
^	4804.075M	40.8	+0.0	+0.0	+0.0	+0.0	+0.0	46.0		54.0	-8.0	Horiz
			+0.0	+0.0	+0.0	+0.0			X			
			+3.7	+1.5	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
18	588.700M	27.8	+0.0	+0.5	+0.0	+0.0	+0.0	29.1		46.0	-16.9	Vert
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+1.3						
			-28.2	+1.5	+5.9	+20.3						
			+0.0									
19	2351.989M	39.2	+0.0	+1.0	+2.1	-34.1	+0.0	36.7	_	54.0	-17.3	Vert
	Ave		+0.4	+28.1	+0.0	+0.0			Y			
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
	4960.352M	31.6	+0.0	+1.2	+3.7	-33.2	+0.0	36.5		54.0	-17.5	Horiz
	Ave		+0.7	+32.5	+0.0	+0.0			X			
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									

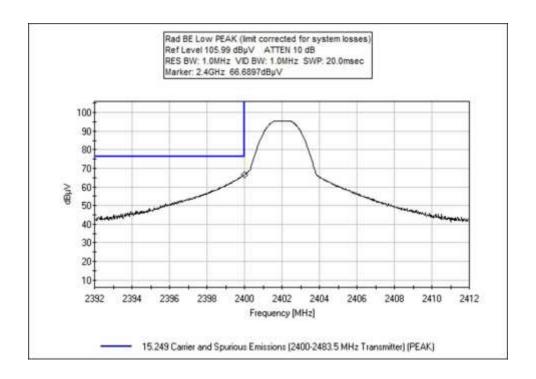
21 7439.459M	27.8	+0.0	+1.5	+4.2	-34.4	+0.0	36.4	54.0	-17.6	Horiz
Ave	27.0	+0.5	+36.8	+0.0	+0.0	+0.0	30.4	X X	-17.0	HOHZ
Avc		+0.0	+0.0	+0.0	+0.0			Λ		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	10.0	10.0	10.0					
^ 7439.380M	39.1	+0.0	+1.5	+4.2	-34.4	+0.0	47.7	54.0	-6.3	Horiz
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	+0.5	+36.8	+0.0	+0.0			X		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
23 7206.657M	28.4	+0.0	+1.4	+3.8	-33.9	+0.0	36.4	54.0	-17.6	Horiz
Ave		+0.5	+36.2	+0.0	+0.0			X		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 7206.700M	38.9	+0.0	+1.4	+3.8	-33.9	+0.0	46.9	54.0	-7.1	Horiz
		+0.5	+36.2	+0.0	+0.0			X		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
27 400 700) 7	20.4	+0.0	0.4	0.0	0.0	0.0	25.5	4.5.0	10.0	** .
25 498.500M	28.4	+0.0	+0.4	+0.0	+0.0	+0.0	27.7	46.0	-18.3	Horiz
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+1.2					
		-28.1	+1.3	+5.9	+18.6					
26 7222 24614	27.3	+0.0	. 1 5	+40	-34.1	. 0. 0	25.7	54.0	10.2	II
26 7332.246M Ave	21.3	$+0.0 \\ +0.5$	+1.5 +36.5	+4.0 +0.0	-34.1 +0.0	+0.0	35.7	34.0 X	-18.3	Horiz
Ave		+0.0	+30.3	+0.0	+0.0 +0.0			Λ		
		+0.0	+0.0	+0.0	+0.0 +0.0					
		+0.0	10.0	10.0	10.0					
^ 7332.340M	38.2	+0.0	+1.5	+4.0	-34.1	+0.0	46.6	54.0	-7.4	Horiz
7332.3 10111	30.2	+0.5	+36.5	+0.0	+0.0	10.0	10.0	X	,	HOHE
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
28 2273.946M	37.6	+0.0	+1.0	+2.1	-34.1	+0.0	35.1	54.0	-18.9	Vert
Ave		+0.4	+28.1	+0.0	+0.0			Y		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
29 33.900M	28.4	+0.0	+0.1	+0.0	+0.0	+0.0	20.8	40.0	-19.2	Horiz
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.3					
		-28.0	+0.3	+5.9	+13.8					
		+0.0								
30 463.600M	28.1	+0.0	+0.4	+0.0	+0.0	+0.0	26.7	46.0	-19.3	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+1.1					
1		-28.0	+1.3	+5.9	+17.9					
		+0.0	11.5	13.7	117.5					

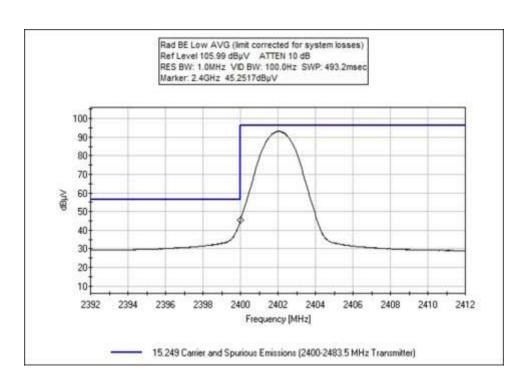
M +0.0 +0.0 -13.3 +0.0 +0.0 +0.0 +0.0 +0.0 Y +0.0 +0.0 +0.0 +0.0 +0.0	Vert Vert
Ave	Vort
+0.0 +0.0 +0.0 +0.0 +0.0	Vort
+0.0 ^ 12008.960	Vort
^ 12008.960	Vort
	Vart
M +0.0 +0.0 -13.3 +0.0	v CII
+0.0 +0.0 +0.0 +0.0 Y	
+0.0 +0.0 +0.0 +0.0	
+0.0	, ·
	Horiz
M +0.0 +0.0 -14.6 +0.0	
+0.0 +0.0 +0.0 +0.0 Y	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
+0.0 34 1117.000M 44.1 +0.0 +0.6 +1.4 -36.3 +0.0 34.4 54.0 -19.6	Joriz
34 1117.000M 44.1 +0.0 +0.6 +1.4 -36.3 +0.0 34.4 54.0 -19.6 1 +0.3 +24.3 +0.0 +0.0 X	Horiz
+0.5 +24.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	
+0.0	
	Horiz
M +0.0 +0.0 -14.2 +0.0	IOIIZ
+0.0 +0.0 +0.0 +0.0 X	
+0.0 +0.0 +0.0 +0.0	
+0.0	
	Horiz
M +0.0 +0.0 -13.2 +0.0	
Ave $+0.0 +0.0 +0.0 +0.0 $ X	
+0.0 +0.0 +0.0 +0.0	
+0.0	
37 2352.027M 36.2 +0.0 +1.0 +2.1 -34.1 +0.0 33.7 54.0 -20.3	Horiz
Ave +0.4 +28.1 +0.0 +0.0 X	
+0.0 +0.0 +0.0 +0.0	
+0.0 +0.0 +0.0 +0.0	
+0.0	
	Horiz
M +0.0 +0.0 -13.3 +0.0	
Ave +0.0 +0.0 +0.0 +0.0 X	
+0.0 +0.0 +0.0 +0.0	
+0.0	. .
	Horiz
Ave +0.9 +37.7 +0.0 +0.0 X	
+0.0 +0.0 +0.0 +0.0 +0.0	
+0.0 +0.0 +0.0 +0.0	
+0.0 +0.0 +0.0 +0.0 +0.0	To al
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0	Horiz
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0	Horiz
+0.0 +0.0 +0.0 +0.0 +0.0 ^ 9919.440M 32.6 +0.0 +1.9 +4.9 -33.7 +0.0 44.3 54.0 -9.7 1 +0.9 +37.7 +0.0 +0.0 X +0.0 +0.0 +0.0 +0.0	Horiz
+0.0 +0.0 +0.0 +0.0 +0.0 ^ 9919.440M 32.6 +0.0 +1.9 +4.9 -33.7 +0.0 44.3 54.0 -9.7 1 +0.9 +37.7 +0.0 +0.0 X	Horiz

41	14413.520	37.7	+0.0	+2.7	+6.3	+0.0	+0.0	32.1	54.0	-21.9	Horiz
41	14413.320 M	31.1	+0.0	+2.7	+0.5 -14.6	+0.0 +0.0	+0.0	32.1	34.0	-21.9	HOHZ
	IVI		+0.0	+0.0 +0.0	+0.0	+0.0 +0.0			X		
			+0.0	+0.0	+0.0	+0.0			Λ		
			+0.0	10.0	10.0	10.0					
42	12398.960	36.6	+0.0	+2.1	+6.4	+0.0	+0.0	31.7	54.0	-22.3	Horiz
	M	20.0	+0.0	+0.0	-13.4	+0.0	. 0.0	0117	0		110112
	Ave		+0.0	+0.0	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	12398.940	38.8	+0.0	+2.1	+6.4	+0.0	+0.0	33.9	54.0	-20.1	Horiz
	M		+0.0	+0.0	-13.4	+0.0					
			+0.0	+0.0	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
44	2316.039M	33.6	+0.0	+1.0	+2.1	-34.1	+0.0	31.1	54.0	-22.9	Vert
	Ave		+0.4	+28.1	+0.0	+0.0			Y		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
4.7	225405035		+0.0	1.0		211	0.0	20.2		22.0	** .
	2274.069M	32.7	+0.0	+1.0	+2.1	-34.1	+0.0	30.2	54.0	-23.8	Horiz
	Ave		+0.4	+28.1	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
1.0	62 000M	30.1	+0.0	· O 1	.00	.00	. 0. 0	15.0	40.0	24.1	Mont
46	63.000M	30.1	+0.0 +0.0	$+0.1 \\ +0.0$	$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	+0.0	15.9	40.0	-24.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			-27.9	+0.0	+5.9	+6.9					
			+0.0	10.4	13.7	10.7					
47	22352.000	27.5	+0.0	+0.0	+0.0	+0.0	+0.0	28.1	54.0	-25.9	Horiz
.,	M	27.5	+0.0	+0.0	+0.0	-14.5	10.0	20.1	2	20.9	HOHE
	Ave		+8.9	+4.4	+1.8	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	22352.000	44.3	+0.0	+0.0	+0.0	+0.0	+0.0	44.9	54.0	-9.1	Horiz
	M		+0.0	+0.0	+0.0	-14.5					
			+8.9	+4.4	+1.8	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
49	84.300M	28.1	+0.0	+0.2	+0.0	+0.0	+0.0	14.0	40.0	-26.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.5					
			-27.8	+0.5	+5.9	+6.6					
	4 64 0000		+0.0								••
50	161.900M	26.4	+0.0	+0.3	+0.0	+0.0	+0.0	16.2	43.5	-27.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.6					
			-27.5	+0.7	+5.9	+9.8					
			+0.0								

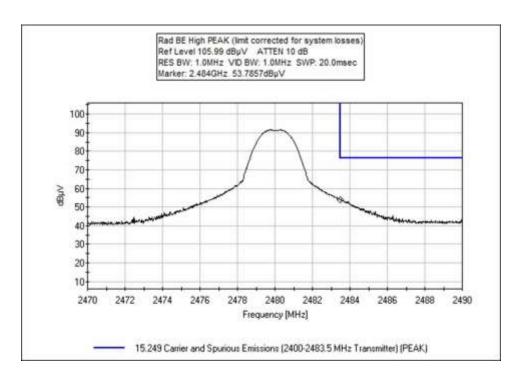
<i>E</i> 1	12000 002	21.2	. 0. 0	. 2.1		. 0. 0	. 0. 0	26.2	540	27.7	тт
51	12008.983	31.3	+0.0	+2.1	+6.2	+0.0	+0.0	26.3	54.0	-27.7	Horiz
	M		+0.0	+0.0	-13.3	+0.0			X 7		
	Ave		+0.0	+0.0	+0.0	+0.0			Y		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	12000.700	39.3	+0.0	+2.1	+6.2	+0.0	+0.0	34.3	54.0	-19.7	Horiz
	M		+0.0	+0.0	-13.3	+0.0					
			+0.0	+0.0	+0.0	+0.0			Y		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
53	2353.559M	27.4	+0.0	+1.0	+2.1	-34.1	+0.0	24.9	54.0	-29.1	Horiz
	Ave		+0.4	+28.1	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
54	12220.060	28.8	+0.0	+2.1	+6.3	+0.0	+0.0	24.0	54.0	-30.0	Horiz
	M		+0.0	+0.0	-13.2	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0			X		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
55	7.297M	16.4	+0.0	+0.1	+0.1	+0.0	-40.0	-14.0	29.5	-43.5	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.4								
56	13.505M	14.5	+0.0	+0.0	+0.2	+0.0	-40.0	-16.2	29.5	-45.7	Groun
	10.0001.1	2	+0.0	+0.0	+0.0	+0.0		10.2	->.5	,	210411
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.1	. 0.0		. 0.0					
57	29.190M	15.0	+0.0	+0.1	+0.2	+0.0	-40.0	-18.9	29.5	-48.4	Perp
	27.1701.1	15.0	+0.0	+0.0	+0.0	+0.0	10.0	10.7	27.5	10.1	1 01 P
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+5.8	10.0	10.0	10.0					
			±2.0								

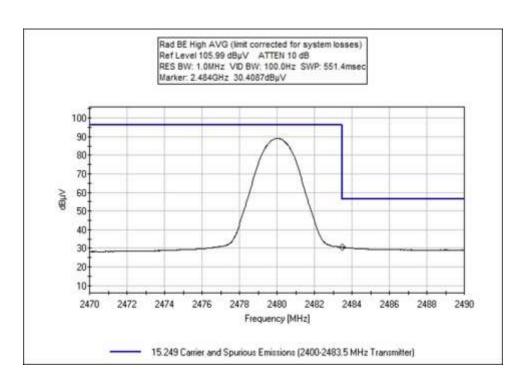
Page 26 of 44 Report No.: 101326-8


Band Edge


	Band Edge Summary												
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results								
2400 (PEAK)	GFSK	Internal Trace	64.4	<74	Pass								
2400 (AVG)	GFSK	Internal Trace	42.8	<54	Pass								
2483.5 (PEAK)	GFSK	Internal Trace	51.5	<74	Pass								
2483.5 (AVG)	GFSK	Internal Trace	28.1	<54	Pass								

Page 27 of 44 Report No.: 101326-8


Band Edge Plots



Page 28 of 44 Report No.: 101326-8

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Hestan**

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: 101326 Date: 5/22/2018
Test Type: Radiated Scan Time: 09:25:51
Tested By: Michael Atkinson Sequence#: 2

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 22-24°C Humidity: 40-41% Pressure: 102.0-102.2kPa

Frequency Range: Band Edge

Frequency tested: 2402, 2444, 2480MHz

Firmware power setting: -4

Test Location: Bothell Lab C3 Test Method: ANSI C63.10 (2013)

Duty Cycle: 100%

Test Mode: Continuously transmitting

Test Setup: The EUT is a module, connected to DC power from power supply remotely located outside of chamber.

The EUT is on a test table 1.5m high.

X, Y, and Z EUT axes investigated, as well as both horizontal and vertical measurement antenna polarities, only

worst case reported.

Page 30 of 44 Report No.: 101326-8

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T2	ANP05959	Cable	Heliax	4/11/2018	4/11/2020
T3	ANP05544	Cable	Heliax	4/12/2018	4/12/2020
T4	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T5	ANP06934	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-18		
T6	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m \\$	dB	Ant
	1 2400.000M	45.1	+0.0	+1.0	+2.2	-34.0	+0.0	42.8	54.0	-11.2	Horiz
	Ave		+0.4	+28.1					X		
,	^ 2400.000M	66.7	+0.0	+1.0	+2.2	-34.0	+0.0	64.4	74.0	-9.6	Horiz
			+0.4	+28.1					X		
3	3 2483.500M	30.4	+0.0	+1.0	+2.2	-34.0	+0.0	28.1	54.0	-25.9	Horiz
	Ave		+0.4	+28.1					X		
,	^ 2483.500M	53.8	+0.0	+1.0	+2.2	-34.0	+0.0	51.5	74.0	-22.5	Horiz
			+0.4	+28.1					X		

Page 31 of 44 Report No.: 101326-8

Test Setup Photos

Below 1GHz

Above 1GHz Cone placement

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Hestan**

Specification: 15.207 AC Mains - Average

 Work Order #:
 101326
 Date: 5/22/2018

 Test Type:
 Conducted Emissions
 Time: 14:59:34

Tested By: Michael Atkinson Sequence#: 5

Software: EMITest 5.03.11 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Temperature: 22-24°C Humidity: 40-41% Pressure: 102.0-102.2kPa

Frequency Range: 0.15-30MHz

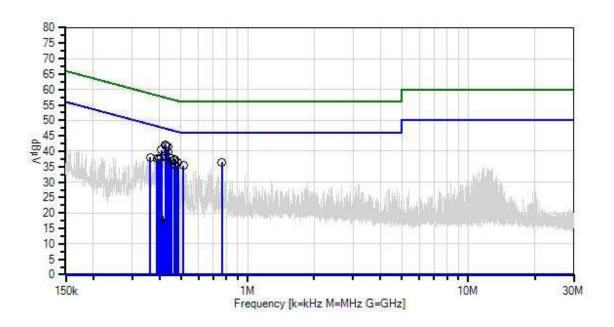
Frequency tested: 2402, 2444, 2480MHz

Firmware power setting: -4

Test Location: Bothell Lab C3 Test Method: ANSI C63.10 (2013)

Duty Cycle: 100%

Test Mode: Continuously transmitting


Test Setup: The EUT is a module, connected to AC/DC adapter.

The EUT is continuously transmitting modulated data.

Page 35 of 44 Report No.: 101326-8

Hestan WO#: 101326 Sequence#: 5 Date: 5/22/2018 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Sweep Data × QP Readings Software Version: 5.03.11 Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	AN02611	High Pass Filter	HE9615-150K-	1/15/2018	1/15/2020
			50-720B		
T2	ANP05959	Cable	Heliax	4/11/2018	4/11/2020
T3	ANP05544	Cable	Heliax	4/12/2018	4/12/2020
T4	ANP06219	Attenuator	768-10	4/13/2018	4/13/2020
T5	AN01311	50uH LISN-Line1 (L)	3816/2	3/16/2018	3/16/2020
	AN01311	50uH LISN-Line2 (N)	3816/2	3/16/2018	3/16/2020

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	425.156k	32.2	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	41.9	47.3	-5.4	Line
2	427.292k	32.1	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	41.8	47.3	-5.5	Line
3	438.555k	31.7	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	41.5	47.1	-5.6	Line
4	408.423k	30.7	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	40.4	47.7	-7.3	Line
5	434.321k	30.1	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	39.9	47.2	-7.3	Line
6	443.090k	28.2	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	38.0	47.0	-9.0	Line
7	469.398k	27.5	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	37.2	46.5	-9.3	Line
8	763.954k	26.8	+0.2 +0.3	+0.1	+0.0	+9.1	+0.0	36.5	46.0	-9.5	Line
9	464.257k	27.3	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	37.0	46.6	-9.6	Line
10	405.752k	28.1	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	37.8	47.7	-9.9	Line
11	483.307k	26.7	+0.2 +0.4	+0.0	+0.0	+9.1	+0.0	36.4	46.3	-9.9	Line
12	451.255k	27.1	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	36.8	46.9	-10.1	Line
13	397.920k	27.9	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	37.6	47.9	-10.3	Line

Page 37 of 44 Report No.: 101326-8

14	389.375k	27.8	+0.1	+0.0	+0.0	+9.1	+0.0	37.5	48.1	-10.6	Line
			+0.5								
15	363.207k	28.2	+0.1	+0.0	+0.0	+9.1	+0.0	38.0	48.7	-10.7	Line
			+0.6								
16	512.941k	25.6	+0.2	+0.0	+0.0	+9.1	+0.0	35.3	46.0	-10.7	Line
			+0.4								
17	474.841k	25.6	+0.2	+0.0	+0.0	+9.1	+0.0	35.3	46.4	-11.1	Line
			+0.4								
18	415.366k	8.0	+0.1	+0.0	+0.0	+9.1	+0.0	17.7	47.5	-29.8	Line
	Ave		+0.5								
٨	415.365k	33.5	+0.1	+0.0	+0.0	+9.1	+0.0	43.2	47.5	-4.3	Line
			+0.5								
٨	417.857k	32.5	+0.1	+0.0	+0.0	+9.1	+0.0	42.2	47.5	-5.3	Line
			+0.5								
٨	412.517k	30.4	+0.1	+0.0	+0.0	+9.1	+0.0	40.1	47.6	-7.5	Line
			+0.5								

Page 38 of 44 Report No.: 101326-8

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Hestan**

Specification: 15.207 AC Mains - Average

 Work Order #:
 101326
 Date:
 5/22/2018

 Test Type:
 Conducted Emissions
 Time:
 15:41:44

Tested By: Michael Atkinson Sequence#: 6

Software: EMITest 5.03.11 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Temperature: 22-24°C Humidity: 40-41% Pressure: 102.0-102.2kPa

Frequency Range: 0.15-30MHz

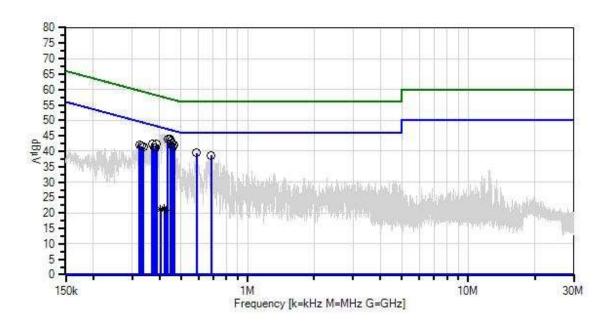
Frequency tested: 2402, 2444, 2480MHz

Firmware power setting: -4

Test Location: Bothell Lab C3 Test Method: ANSI C63.10 (2013)

Duty Cycle: 100%

Test Mode: Continuously transmitting


Test Setup: The EUT is a module, connected to AC/DC adapter.

The EUT is continuously transmitting modulated data.

Page 39 of 44 Report No.: 101326-8

Hestan WO#: 101326 Sequence#: 6 Date: 5/22/2018 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Return

Sweep Data × QP Readings Software Version: 5.03.11 Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	AN02611	High Pass Filter	HE9615-150K-	1/15/2018	1/15/2020
			50-720B		
T2	ANP05959	Cable	Heliax	4/11/2018	4/11/2020
T3	ANP05544	Cable	Heliax	4/12/2018	4/12/2020
T4	ANP06219	Attenuator	768-10	4/13/2018	4/13/2020
	AN01311	50uH LISN-Line1 (L)	3816/2	3/16/2018	3/16/2020
T5	AN01311	50uH LISN-Line2 (N)	3816/2	3/16/2018	3/16/2020

Measui	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Return		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	446.114k	34.0	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	43.8	46.9	-3.1	Retur
2	435.833k	34.1	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	43.9	47.1	-3.2	Retur
3	449.743k	33.4	+0.2 +0.5	+0.0	+0.0	+9.1	+0.0	43.2	46.9	-3.7	Retur
4	456.698k	33.1	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	42.8	46.8	-4.0	Retur
5	465.769k	32.6	+0.1 +0.4	+0.0	+0.0	+9.1	+0.0	42.2	46.6	-4.4	Retur
6	459.117k	31.7	+0.1 +0.4	+0.0	+0.0	+9.1	+0.0	41.3	46.7	-5.4	Retur
7	386.883k	32.6	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	42.3	48.1	-5.8	Retur
8	370.684k	32.7	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	42.4	48.5	-6.1	Retur
9	586.722k	29.7	+0.2 +0.4	+0.0	+0.0	+9.1	+0.0	39.4	46.0	-6.6	Retur
10	377.982k	31.4	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	41.1	48.3	-7.2	Retur
11	380.830k	31.4	+0.1 +0.5	+0.0	+0.0	+9.1	+0.0	41.1	48.3	-7.2	Retur
12	323.510k	32.4	+0.1 +0.6	+0.0	+0.0	+9.1	+0.0	42.2	49.6	-7.4	Retur
13	684.391k	29.0	+0.2 +0.3	+0.0	+0.0	+9.1	+0.0	38.6	46.0	-7.4	Retur

Page 41 of 44 Report No.: 101326-8

14	331.165k	31.9	+0.1	+0.0	+0.0	+9.1	+0.0	41.7	49.4	-7.7	Retur
			+0.6								
15	338.107k	31.5	+0.1	+0.0	+0.0	+9.1	+0.0	41.3	49.2	-7.9	Retur
			+0.6								
16	419.994k	11.9	+0.1	+0.0	+0.0	+9.1	+0.0	21.6	47.4	-25.8	Retur
I	Ave		+0.5								
^	419.993k	36.2	+0.1	+0.0	+0.0	+9.1	+0.0	45.9	47.4	-1.5	Retur
			+0.5								
18	425.512k	11.1	+0.1	+0.0	+0.0	+9.1	+0.0	20.8	47.3	-26.5	Retur
I	Ave		+0.5								
^	423.376k	35.4	+0.1	+0.0	+0.0	+9.1	+0.0	45.1	47.4	-2.3	Retur
			+0.5								
^	425.512k	35.3	+0.1	+0.0	+0.0	+9.1	+0.0	45.0	47.3	-2.3	Retur
			+0.5								
^	430.496k	35.0	+0.2	+0.0	+0.0	+9.1	+0.0	44.8	47.2	-2.4	Retur
			+0.5								
22	404.151k	11.5	+0.1	+0.0	+0.0	+9.1	+0.0	21.2	47.8	-26.6	Retur
A	Ave		+0.5								
٨	404.150k	35.8	+0.1	+0.0	+0.0	+9.1	+0.0	45.5	47.8	-2.3	Retur
			+0.5								

Test Setup Photo

Page 42 of 44 Report No.: 101326-8

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

Page 43 of 44 Report No.: 101326-8

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 44 of 44 Report No.: 101326-8