Hestan

TEST REPORT FOR

Hestan Cue Smart Cookware Model: 31520

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.249

Report No.: 100774-9

Date of issue: March 29, 2018

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 28 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	7
15.215(c) Occupied Bandwidth (20dB BW)	7
15.249(a) Field Strength of Fundamental1	0
15.249(a) Radiated Emissions and Band Edge1	6
Supplemental Information2	7
Measurement Uncertainty2	7
Emissions Test Details2	7

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

Hestan 1080 W Ewing Pl. Suite 300 Seattle, WA 98119 Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 100774

Customer Reference Number: 362018

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

Representative: Kathleen McVey

February 9, 2018 February 9, 2018 - March 5, 2018

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148
Bothell, WA	030081	3LZ-IIN-E-1143K	50620-1	031022	A-0146

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.249

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.249(a)	Field Strength of Fundamental	NA	Pass
15.249(a)	Radiated Emissions and Band Edge	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Hestan Cue Smart Cookware	Hestan	31520	NA	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Modulation Type(s):	GFSK (G1D)
Maximum Duty Cycle:	Tested 100% as worst case
Antenna Type(s) and Gain:	Internal Trace -10dBi
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery, 1.5V nominal (0.7-3.0V)
Firmware / Software used for Test:	EUT Firmware 0.1/ TeraTerm 4.77

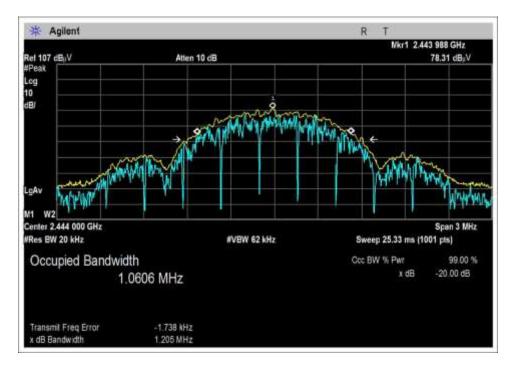
FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

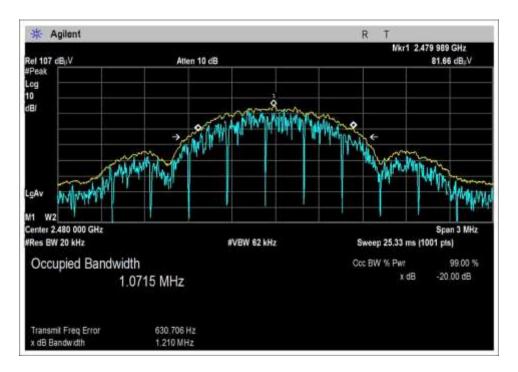
	Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	Steven M. Pittsford & Mike Atkinson			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	2/23/2018 & 3/5/2018			
Configuration:	Configuration: 1					
Test Setup: Low, Mid, and High channels investigated. The EUT is battery powered with a fresh battery installed.						

Environmental Conditions				
Temperature (^o C)	20-22	Relative Humidity (%):	20-30	

	Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
01467	Horn Antenna	EMCO	3115	7/21/2017	7/21/2019			
P05305	Cable	Andrews	ETSI-50T	10/24/2017	10/24/2019			
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2017	2/3/2019			
P06540	Cable	Andrews	Heliax	10/30/2017	10/30/2019			
03540	Preamp	HP	83017A	5/2/2017	5/2/2019			
P06934	Cable	Astrolab	32026-29801- 29801-18	3/11/2016	3/11/2018			
P07033	Cable	Andrews	Heliax	12/11/2017	12/11/2019			


	Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
2402	1	GFSK	1163	None	NA		
2444	1	GFSK	1205	None	NA		
2480	1	GFSK	1210	None	NA		

NA = Not applicable, because FCC 15.215 does not give any limits so there is no criteria for pass or fail.



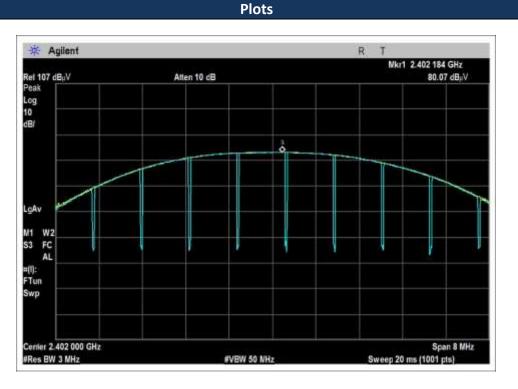
Low Channel

Middle Channel

High Channel

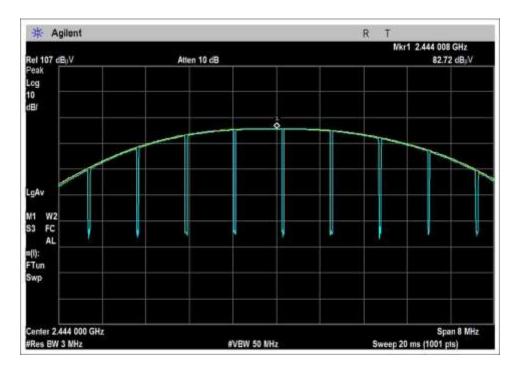
Above 1GHz Cone placement

Test Setup Photo

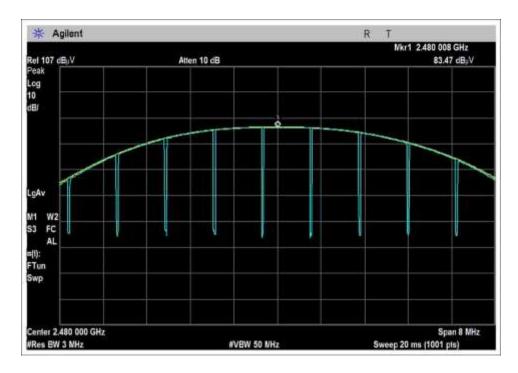


15.249(a) Field Strength of Fundamental

Test Data Summary - Voltage Variations


This equipment is battery powered. Power output tests were performed using a fresh battery.

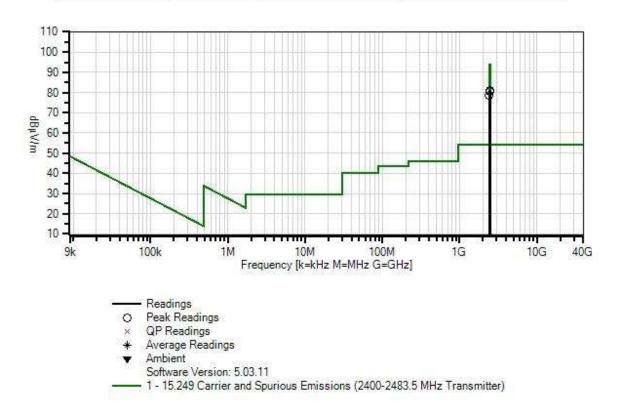
Test Data Summary – Radiated Field Strength Measurement						
See data shee	See data sheet for corrections from raw reading seen in plot to corrected reading reported.					
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 3m)	Limit (dBuV/m @ 3m)	Results	
2402	GFSK	Internal Trace	78.5	≤94	Pass	
2444	GFSK	Internal Trace	80.4	≤94	Pass	
2480	GFSK	Internal Trace	81.2	≤94	Pass	



Low Channel

Middle Channel

High Channel



Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 22116 2 Hestan 15.249 Carrier and Spurious Er 100774 Maximized Emissions Steven Pittsford EMITest 5.03.11	nissions (2400-2483.5 I Date	MHz Transmitter) e: 3/5/2018 e: 11:11:26	
<i>Equipment Test</i> Device	<i>ed:</i> Manufacturer	Model #	S/N	
Configuration 1		initial in		
Support Equipn	nent:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions	/ Notes:			
Frequency Rang				
1 *	: 2402, 2444, 2480MHz			
Firmware power	6			
Temperature (°C)				
Relative Humidit	y (%): 20-30			
Test Location:	Canyon Park Lab C3			
Test Date(s):	2/23/2018 & 3/5/2018			
Test Method:	ANSI C63.10 (2013)			
Duty Cycle: 1009	%			
Test Setup: the E	inuously transmitting UT has a fresh battery installed. test table 1.5m high.			

Hestan WO#: 100774 Sequence#: 1 Date: 3/5/2018 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vert

Test Equipment:

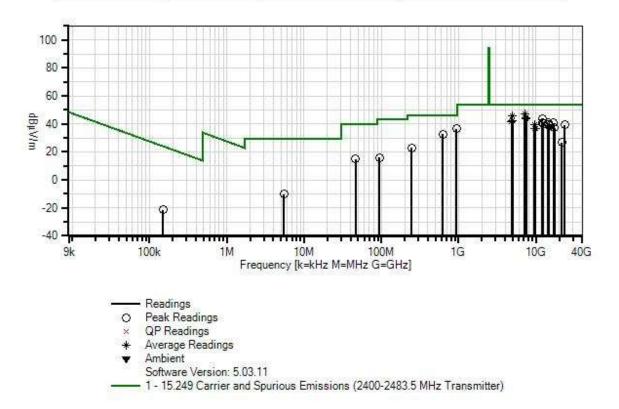
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T2	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/21/2017	7/21/2019
Т3	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T4	ANP06934	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T5	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
Т6	ANP07033	Cable	Heliax	12/11/2017	12/11/2019

Meası	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2480.008M	83.5	-34.0	+28.1	+0.4	+0.4	+0.0	81.2	94.0	-12.8	Horiz
			+2.8	+0.0			20				181
2	2444.008M	82.7	-34.0	+28.1	+0.4	+0.4	+0.0	80.4	94.0	-13.6	Horiz
			+2.8	+0.0			16				154
3	2402.184M	80.7	-34.0	+28.1	+0.4	+0.4	+0.0	78.5	94.0	-15.5	Horiz
			+0.0	+2.9							

Test Setup Photos

Above 1GHz Cone placement

Page 15 of 28 Report No.: 100774-9


15.249(a) Radiated Emissions and Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116	23rd DR SE • Bothell WA,	98021 • (425) 402-1717
Customer:	Hestan		
Specification: Work Order #:	15.249 Carrier and Spurious E	,	(Hz Transmitter) 3/5/2018
	100774		
Test Type:	Maximized Emissions		10:29:39
Tested By: Software:	Steven Pittsford	Sequence#:	1
	EMITest 5.03.11		
Equipment Tes			
Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equips	nent:		
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions	/ Notes:		
Frequency Ran	ge: 9k-25GHz		
Frequency tested	l: 2402, 2444, 2480MHz		
Firmware power	setting: -4		
Temperature (°C			
Relative Humidi			
	Canyon Park Lab C3		
Test Date(s):	2/9/2018, 2/22/22018, 2/23/2018	& 3/5/2018	
Duty Cycle: 100	%		
Tast Model Com	invously transmitting		
	tinuously transmitting		
	EUT has a fresh battery installed.	- 100 hish halas 100	
	test table 1.5m high above 1GHz a	na 0.8m nigh below IGHz	2
Test Method:	ANSI C63.10 (2013)		

Hestan WO#: 100774 Sequence#: 1 Date: 3/5/2018 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T2	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	7/21/2017	7/21/2019
Т3	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T4	ANP06934	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018
T5	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
Т6	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
Τ7	AN02741	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	3/30/2017	3/30/2019
Т8	AN02742	Active Horn Antenna	AMFW-5F- 18002650-20- 10P	10/7/2016	10/7/2018
Т9	ANP06678	Cable	32026-29801- 29801-144	9/19/2016	9/19/2018
T10	AN03122	Cable	32026-2-29801- 36	4/28/2016	4/28/2018
T11	AN02763-69	Waveguide	Multiple	7/14/2017	7/14/2019
T12	AN02307	Preamp	8447D	1/15/2018	1/15/2020
T13	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T14	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T15	AN06963	Cable	Heliax	3/14/2016	3/14/2018
T16	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T17	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T18	ANP07033	Cable	Heliax	12/11/2017	12/11/2019

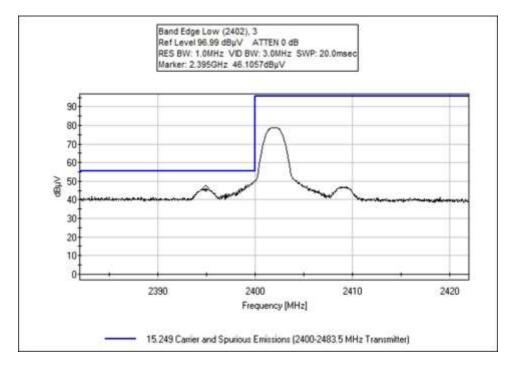
Meası	urement Data:	R	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17	T18							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7206.710M	37.5	-33.9	+36.2	+0.7	+0.6	+0.0	47.5	54.0	-6.5	Horiz
	Ave		+0.0	+0.0	+0.0	+0.0			Low		201
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.4							
^	7206.710M	45.9	-33.9	+36.2	+0.7	+0.6	+0.0	55.9	54.0	+1.9	Horiz
			+0.0	+0.0	+0.0	+0.0	338		Low		112
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.4							

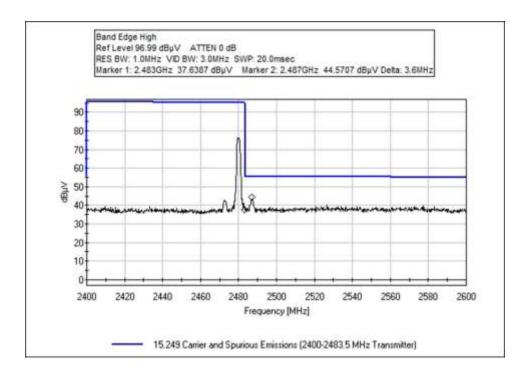
3 4888.000M	41.3	-33.2	+32.4	+0.5	+0.5	+0.0	45.5	54.0	-8.5	Vert
Ave		+0.0	+4.0	+0.0	+0.0	360		Mid		158
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 4887.920M	48.2	-33.2	+32.4	+0.5	+0.5	+0.0	52.4	54.0	-1.6	Vert
		+0.0	+4.0	+0.0	+0.0	360		Mid		155
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
5 942.520M	28.6	+0.0	+0.0	+0.4	+0.0	+0.0	36.7	46.0	-9.3	Vert
		+0.0	+0.0	+0.0	+0.0	360				129
		+0.0	+0.0	+0.0	-27.2					
		+24.9	+5.9	+1.7	+2.4					
		+0.0	+0.0							
6 7439.320M	34.7	-34.4	+36.8	+1.1	+0.6	+0.0	44.2	54.0	-9.8	Horiz
Ave		+0.0	+5.4	+0.0	+0.0			High		211
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 7439.320M	43.4	-34.4	+36.8	+1.1	+0.6	+0.0	52.9	54.0	-1.1	Horiz
		+0.0	+5.4	+0.0	+0.0	360		High		211
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
8 7331.250M	34.5	-34.1	+36.5	+0.9	+0.6	+0.0	43.9	54.0	-10.1	Horiz
Ave		+0.0	+5.5	+0.0	+0.0	360		Mid		126
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 7331.250M	43.9	-34.1	+36.5	+0.9	+0.6	+0.0	53.3	54.0	-0.7	Horiz
		+0.0	+5.5	+0.0	+0.0	360		Mid		126
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
10 12010.710	47.4	+0.0	+0.0	+1.0	+0.0	+0.0	43.6	54.0	-10.4	Vert
М		+0.0	+0.0	-13.3	+0.0			_		
		+0.0	+0.0	+0.0	+0.0			Low		154
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+8.5			0.5				
11 4959.460M	37.7	-33.2	+32.5	+0.5	+0.5	+0.0	42.0	54.0	-12.0	Horiz
Ave		+0.0	+4.0	+0.0	+0.0			High		174
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
	4.5.5	+0.0	+0.0			0.0	#0 /			
^ 4959.460M	46.1	-33.2	+32.5	+0.5	+0.5	+0.0	50.4	54.0	-3.6	Horiz
			+4.0	+0.0	+0.0			High		174
		+0.0						0		
		+0.0	+0.0	+0.0	+0.0			0		
								6		

12 4002 7013 5	27.4	22.0	. 20. 2	.0.5	.0.5		11 0	E 4 0	10.4	X 7
13 4803.781M	37.4	-33.2	+32.3	+0.5	+0.5	+0.0	41.6	54.0	-12.4	Vert
Ave		+0.0	+0.0	+0.0	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		$^{+0.0}_{+0.0}$	$^{+0.0}_{+4.1}$	+0.0	+0.0					
A 4902 701M	12.4			0.5			10.0	54.0	()	Mart
^ 4803.781M	43.4	+0.0	+0.0	+0.5	+0.0	+0.0	48.0	54.0	-6.0	Vert
		$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0	$^{+0.0}_{+0.0}$	332		Low		150
		$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$					
		$^{+0.0}_{+0.0}$	+0.0 +4.1	± 0.0	± 0.0					
15 12218.600	46.2	+0.0 $+0.0$	+4.1 +0.0	+1.0	+0.0	+0.0	41.1	54.0	-12.9	Vert
M	40.2	+0.0 +0.0	+0.0 +7.1	-13.2	$^{+0.0}_{+0.0}$	± 0.0	41.1	54.0	-12.9	ven
141		+0.0 $+0.0$	+0.0	+0.0	+0.0 $+0.0$	360		Mid		169
		+0.0 $+0.0$	+0.0 $+0.0$	+0.0 $+0.0$	+0.0 $+0.0$	500		Ivila		109
		+0.0	+0.0	10.0	10.0					
16 628.300M	29.5	+0.0	+0.0	+0.3	+0.0	+0.0	32.9	46.0	-13.1	Vert
10 020.300141	27.5	+0.0 $+0.0$	+0.0 $+0.0$	+0.3 $+0.0$	+0.0 $+0.0$	10.0	52.7	40.0	13.1	129
		+0.0	+0.0	+0.0	-28.2					12)
		+21.8	+5.9	+1.5	+2.1					
		+0.0	+0.0	110						
17 14412.760	45.6	+0.0	+0.0	+0.7	+0.0	+0.0	40.8	54.0	-13.2	Vert
M	1010	+0.0	+0.0	-14.6	+0.0			0.110	1012	
		+0.0	+0.0	+0.0	+0.0	360		Low		170
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+9.1							
18 16814.760	38.5	+0.0	+0.0	+1.4	+0.0	+0.0	40.6	54.0	-13.4	Vert
М		+0.0	+0.0	-9.9	+0.0					
		+0.0	+0.0	+0.0	+0.0			Low		170
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+10.6							
19 12401.256	45.1	+0.0	+0.0	+1.1	+0.0	+0.0	40.0	54.0	-14.0	Vert
М		+0.0	+7.2	-13.4	+0.0					
		+0.0	+0.0	+0.0	+0.0	360		High		160
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
20 14662.355	45.5	+0.0	+0.0	+0.5	+0.0	+0.0	39.8	54.0	-14.2	Vert
М		+0.0	+8.3	-14.5	+0.0					
		+0.0	+0.0	+0.0	+0.0	287		Mid		170
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
21 9608.710M	27.5	-33.5	+37.5	+0.7	+0.8	+0.0	39.5	54.0	-14.5	Vert
Ave		+0.0	+0.0	+0.0	+0.0	360		Low		153
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
	0.5.1	+0.0	+6.5	~ -		0.0				
^ 9608.710M	35.1	-33.5	+37.5	+0.7	+0.8	+0.0	47.1	54.0	-6.9	Vert
		+0.0	+0.0	+0.0	+0.0			Low		200
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.5							

00 00516 000	41.4		.0.0				20.5	540	14.5	X 7 ·
23 23516.000	41.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.5	54.0	-14.5	Vert
М		+0.0	+0.0	+0.0	-14.1	200		MC 1		1.00
		+8.4	+2.4	+1.4	+0.0	360		Mid		162
		+0.0	+0.0	+0.0	+0.0					
24 22570 000	41.1	+0.0	+0.0	.0.0	.0.0	. 0. 0	20.2	54.0	147	X 7 /
24 23579.000	41.1	+0.0	+0.0	+0.0	+0.0	+0.0	39.3	54.0	-14.7	Vert
М		+0.0	+0.0	+0.0	-13.9	100		TT: 1		1.00
		+8.4	+2.4	+1.3	+0.0	108		High		162
		+0.0	+0.0	+0.0	+0.0					
05 14001 400	4.4.4	+0.0	+0.0	.0.5	.0.0	. 0. 0	20.0	54.0	1 7 1	X 7 /
25 14881.400	44.4	+0.0	+0.0	+0.5	+0.0	+0.0	38.9	54.0	-15.1	Vert
М		+0.0	+8.2	-14.2	+0.0			TT' 1		1.67
		+0.0	+0.0	+0.0	+0.0			High		167
		+0.0	+0.0	+0.0	+0.0					
26 17107 265	20 0	+0.0	+0.0	+1.2			27 4	54.0	166	Vort
26 17107.265 M	38.0	$^{+0.0}_{+0.0}$	+0.0 +9.0	+1.3 -10.9	$^{+0.0}_{+0.0}$	+0.0	37.4	54.0	-16.6	Vert
IVI		$^{+0.0}_{+0.0}$	+9.0 +0.0	+0.0	+0.0 +0.0			Mid		156
		+0.0 +0.0	$^{+0.0}_{+0.0}$	+0.0 +0.0	+0.0 +0.0			WIIU		130
		+0.0 $+0.0$	+0.0 $+0.0$	± 0.0	± 0.0					
27 17356.824	37.7	+0.0 +0.0	+0.0 +0.0	+1.2	+0.0	+0.0	37.3	54.0	-16.7	Vert
M	57.7	+0.0 +0.0	+0.0 +9.2	+1.2 -10.8	+0.0 +0.0	± 0.0	57.5	54.0	-10.7	ven
141		+0.0 +0.0	+9.2 +0.0	+0.0	+0.0 $+0.0$			High		162
		+0.0 $+0.0$	+0.0 $+0.0$	+0.0 $+0.0$	+0.0 $+0.0$			Ingn		102
		+0.0 $+0.0$	+0.0 $+0.0$	± 0.0	± 0.0					
28 9918.970M	25.8	-33.7	+37.7	+0.4	+0.7	+0.0	37.1	54.0	-16.9	Vert
Ave	23.0	+0.0	+57.7	+0.4 +0.0	+0.7 +0.0	+0.0 360	37.1	High	-10.9	217
1100		+0.0	+0.2	+0.0	+0.0	500		mgn		217
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
^ 9918.970M	37.8	-33.7	+37.7	+0.4	+0.7	+0.0	49.1	54.0	-4.9	Vert
<i>))</i> 10. <i>)</i> 70141	57.0	+0.0	+6.2	+0.0	+0.0	30	77.1	High	т.)	163
		+0.0	+0.2	+0.0	+0.0	50		mgn		105
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
30 9776.970M	25.3	-33.6	+37.6	+0.5	+0.7	+0.0	36.8	54.0	-17.2	Horiz
Ave	20.0	+0.0	+6.3	+0.0	+0.0	41	20.0	Mid	17.2	166
		+0.0	+0.0	+0.0	+0.0	••				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 9776.970M	38.3	-33.6	+37.6	+0.5	+0.7	+0.0	49.8	54.0	-4.2	Horiz
2,70,270,01	2010	+0.0	+6.3	+0.0	+0.0	274	0	Mid		221
		+0.0	+0.0	+0.0	+0.0	·				
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	. 5.0	. 0.0					
32 247.080M	29.1	+0.0	+0.0	+0.2	+0.0	+0.0	22.9	46.0	-23.1	Vert
22 217.000141	27.1	+0.0	+0.0	+0.2	+0.0	360	,	10.0	20.1	129
		+0.0	+0.0	+0.0	-27.0	200				12)
		+12.3	+5.9	+0.9	+1.5					
		+0.0	+0.0	10.7	11.0					
1		10.0	10.0							

33	46.660M	28.2	+0.0	+0.0	+0.1	+0.0	+0.0	14.9	40.0	-25.1	Vert
	40.000101	20.2	+0.0 +0.0	$^{+0.0}_{+0.0}$	$^{+0.1}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 360	14.9	40.0	-23.1	129
			+0.0 +0.0	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 -27.9	300				129
			+0.0 +7.6	+0.0 +5.9	+0.0 +0.4	+0.6					
			+7.0 +0.0	+3.9 +0.0	+0.4	+0.0					
34	21618.760	40.8	+0.0 $+0.0$	+0.0 +0.0	+0.0	+0.0	+0.0	26.7	54.0	-27.3	Vert
54		40.8			$^{+0.0}_{+0.0}$		+0.0	20.7	54.0	-27.5	ven
	М		+0.0	$^{+0.0}_{+0.0}$		-14.1	200		T		1.02
			+0.0		+0.0	+0.0	360		Low		162
			+0.0	+0.0	+0.0	+0.0					
25	05.04034	20.6	+0.0	+0.0	.0.1	. 0. 0	. 0. 0	16.0	12.5	27.5	X 7 (
35	95.040M	28.6	+0.0	+0.0	+0.1	+0.0	+0.0	16.0	43.5	-27.5	Vert
			+0.0	+0.0	+0.0	+0.0	360				109
			+0.0	+0.0	+0.0	-27.7					
			+7.5	+5.9	+0.5	+1.1					
	5 40 03 5		+0.0	+0.0	0.0	0.0	10.0	10.0	20.5	20.0	D 1
36	5.493M	20.2	+0.0	+0.0	+0.0	+0.0	-40.0	-10.3	29.5	-39.8	Paral
			+0.0	+0.0	+0.0	+0.0					136
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.4	+0.1							
37	150.000k	48.9	+0.0	+0.0	+0.0	+0.0	-80.0	-21.4	24.1	-45.5	Perpe
			+0.0	+0.0	+0.0	+0.0					136
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.7	+0.0							
38	323.900k	26.7	+0.0	+0.0	+0.0	+0.0	-80.0	-43.7	17.4	-61.1	Perpe
			+0.0	+0.0	+0.0	+0.0	360				136
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
1			+9.6	+0.0							


Band Edge


	Band Edge Summary								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
2395	GFSK	Internal Trace	45.2	<54	Pass				
2487	GFSK	Internal Trace	43.1	<54	Pass				
2400	GFSK	Internal Trace	49.1	<54	Pass				
2483.5	GFSK	Internal Trace	36.1	<54	Pass				

Test performed using operational mode with the highest output power, representing worst case

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22110	5 23rd DR SE • Bothell WA, 9	98021 • (425) 402-1717
Customer:	Hestan		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 M)	Hz Transmitter)
Work Order #:	100774	Date:	3/5/2018
Test Type:	Maximized Emissions	Time:	10:44:02
Tested By:	Steven Pittsford	Sequence#:	1
Software:	EMITest 5.03.11		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 2380-2600MHz Frequency tested: 2402, 2480MHz Firmware power setting: -4 Temperature (°C): 20-22 Relative Humidity (%): 20-30 Test Location: Bothell Lab C3 Test Method: ANSI C63.10 (2013) Duty Cycle: 100%

Test Mode: Continuously transmitting Test Setup: The EUT has a fresh battery installed. The EUT is on a test table 1.5m high.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T2	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			
Т3	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T4	ANP06934	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T5	AN03122	Cable	32026-2-29801-36	4/28/2016	4/28/2018
Т6	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019

Mea	surement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2394.960M	46.8	-34.0	+28.1	+0.4	+0.4	+0.0	45.2	54.0	-8.8	Horiz
			+0.7	+2.8							
	2 2487.000M	44.6	-34.0	+28.1	+0.4	+0.4	+0.0	43.1	54.0	-10.9	Horiz
			+0.8	+2.8							173

Test Setup Photos

Below 1GHz

Above 1GHz Cone placement

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBµV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.