

Application

For

Part 2, Subpart J, Paragraph 2.907 Equipment Authorization of Certification for an Intentional Radiator per Part 15, Subpart C, paragraphs 15.207, 15.209 and 15.249

And

Innovation Science and Economic Development Canada
Certification per
IC RSS-Gen General Requirements for Radio Apparatus (Issue 5)
And
RSS-210, License Exempt Radio Apparatus Category I Equipment (Issue 9)

For the

Cognosos, Inc.

Model: RB-300

FCC ID: 2AKFQ-RB300 IC ID: 22165-RB300

UST Project: 21-0035

Issue Date: April 2, 2021

Total Pages in This Report: 26

3505 Francis Circle, Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

Testing Tomorrow's Technology

I certify that I am authorized to sign for the Test Agency and that all of the statements in this report and in the exhibits attached hereto are true and correct to the best of my knowledge and belief.

US TECH (Agent responsible for test):

By: George Yang

Name:

Title: Laboratory Manager

Date: April 2, 2021

NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

FCC ID: IC:

Test Report Number:

Issue Date: Customer: Model: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

MEASUREMENT TECHNICAL REPORT

Company Name:	Cognosos Inc.
Address:	1100 Spring St NE #300A Atlanta, GA 30309
Model:	RB-300
FCC ID:	2AKFQ-RB300
IC ID:	22165-RB300
Date:	March 31, 2021

This report concerns (check one): ⊠ Original □ Class II Permissive Change							
Equipme	nt type: 2.4 GHz ISM Radio Tran	sceiver					
Technical Information:							
	Radio Technology:	Bluetooth Low Energy					
	Frequency of Operation (MHz):	2402 - 2480					
	Output Power (measured):	97.54 dBuV/m (2.28 dBm)					
	Type of Modulation:	GFSK					
	Data Rate (Mbps):	1					
	Antenna Gain (dBi):	3.3					
Software used to program EUT		Generic UART Terminal Application					
	EUT firmware:	8416c0a					
	Power setting:	4.0 dBm					

Report prepared by:

US Tech

3505 Francis Circle, Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

Issue Date:
Customer:
Model:

Table of Contents

P	<u>aragra</u>	<u>Paph Title</u> Pa	ge
1	Ger	neral Information	6
	1.1	Purpose of this Report	
	1.2	Characterization of Test Sample	
	1.3	Product Description	
	1.4	Configuration of Tested System	
	1.5	Test Facility	8
	1.6	Related Submittals	
2	Tes	sts and Measurements	9
	2.1	Test Equipment	
	2.2	Modifications to EUT Hardware	10
	2.3	Number of Measurements for Intentional Radiators (CFR 15.31(m), RSS-	
		Gen 6.8)	
	2.4	Frequency Range of Radiated Measurements (CFR 15.33, RSS-Gen 6.13)	
	2.4		10
	2.5	Measurement Detector Function and Bandwidth (CFR 15.35, RSS-Gen 6.9, 6.13)	11
	2.5	,	
	_	.2 Corresponding Peak and Average Requirements	
	_	.3 Pulsed Transmitter Averaging	
	2.6	EUT Antenna Requirements (CFR 15.203, RSS-Gen 6.7)	
	2.7	Restricted Bands of Operation (CFR 15.205, RSS-Gen 8.10)	
	2.8	Intentional Radiator, Power Line Conducted Emissions (CFR 15.207, RSS-	
		8.8)	12
	2.9	Intentional Radiator, Radiated Emissions (CFR 15.209, 15.249(a),(c), RSS	
		210, A2.9 (a))	
	2.10	Band Edge Measurements (CFR 15.249(d), RSS-Gen 8.10)	
	2.11	99% Occupied Bandwidth (CFR 2.1049, RSS-Gen 6.6)	
		Measurement Uncertainty	
	2.1		
	2.1	2.2 Radiated Emissions Measurement Uncertainty	26
3	Conc	lusions	26

US Tech Test Report: FCC ID: IC:

Test Report Number: Issue Date:

Customer: Model: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

List of Figures

<u>Title</u>	<u>Page</u>
Figure 1. Test Configuration Diagram	7
Figure 2. Band Edge Compliance – Low Channel	18
Figure 3. Restricted Band Edge: 2310 MHz to 2390 MHz	19
Figure 4. Band Edge Compliance – High Channel	
Figure 5. Restricted Band Edge: 2483.5 MHz to 2500 MHz	21
Figure 6. 99% Occupied Bandwidth – Low Channel	
Figure 7. 99% Occupied Bandwidth – Mid Channel	24
Figure 8. 99% Occupied Bandwidth – High Channel	25
<u>List of Tables</u> <u>Title</u>	<u>Page</u>
Table 1. EUT and Peripherals	7
Table 2. Test Instruments	
Table 3. Number of Test Frequencies for Intentional Radiators	10
Table 4. Allowed Antenna(s)	
Table 5. Spurious Radiated Emissions Below 30 MHz	
Table 6. Spurious Radiated Emissions (30 MHz – 1 GHz)	14
Table 7. Spurious Radiated Emissions (1 GHz – 25 GHz)	14
Table 8. Intentional Radiated Emissions – Fundamental	15

List of Attachments

FCC Agency Agreement FCC Application Forms Letter of Confidentiality Equipment Label(s) ISED Agency Agreement Canadian Rep Letter ISED Application Forms FCC to IC Cross Reference Theory of Operation
User's Manual
External Photographs
Internal Photographs
Block Diagram(s)
Schematic(s)
Test Configuration Photographs

US Tech Test Report: FCC Part 15 Certification/ RSS 210

RB-300

2AKFQ-RB300 FCC ID: IC: 22165-RB300 Test Report Number: 21-0035 Issue Date: April 2, 2021

Customer: Cognosos Inc. Model:

1 General Information

1.1 **Purpose of this Report**

This report is prepared as a means of conveying test results and information concerning the suitability of this exact product for public distribution according to the FCC Rules and Regulations Part 15, Section 249 and RSS-210 Issue 9.

1.2 **Characterization of Test Sample**

The sample used for testing was received by US Tech on March 2, 2021 in good operating condition.

1.3 **Product Description**

The Equipment under Test (EUT) is the Cognosos Inc., Model: RB-300. It is a battery powered device that broadcasts BLE advertisement packets to provide location data to client devices. Every tag broadcasts its unique ID at a maximum of 10 Hz on a fixed, install time configurable interval which is stored in non-volatile memory. The tag is typically installed indoors on ceiling tiles or similar structures.

1.4 **Configuration of Tested System**

The Test Sample was tested per ANSI C63.10.2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and ANSI C63.4:2014. Methods of Measurement of Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (2014).

A list of EUT and Peripherals is found in Table 1 below. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices.

FCC ID: IC:

Test Report Number:

Issue Date: Customer: Model:

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021

Cognosos Inc.

RB-300

Table 1. EUT and Peripherals

EUT MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC/IC ID	CABLES P/D
EUT Cognosos	RB-300	Engineering Sample	FCC ID: 2AKFQ-RB300 IC ID: 22165-RB300	N/A
PERIPHERALS MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC/IC ID	CABLES P/D
Tag Adaptor Cognosos	2485350A	Y17-210122	N/A	PD
Antenna See antenna details				

U= Unshielded S= Shielded P= Power D= Data

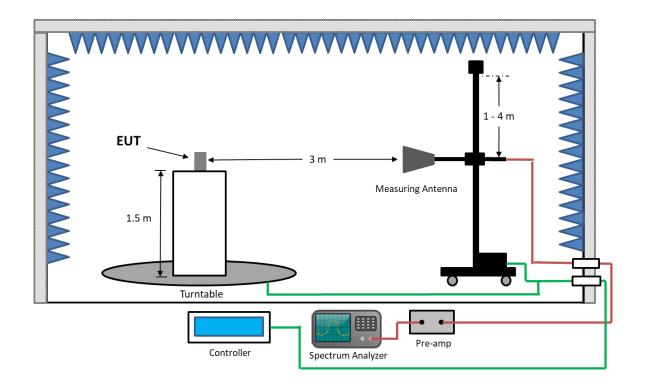


Figure 1. Test Configuration Diagram

US Tech Test Report: FCC Part 15 Certification/ RSS 210

21-0035

RB-300

FCC ID: 2AKFQ-RB300 IC: 22165-RB300 Test Report Number: Issue Date: April 2, 2021 Customer: Cognosos Inc. Model:

1.5 **Test Facility**

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC under designation number US5301. Additionally, this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number 9900A-1.

1.6 **Related Submittals**

The EUT is subject to the following additional FCC authorizations:

- a) Certification under section 15.209 as a transmitter.
- SDoC under 15.101 as a digital device. The results of the required tests b) performed under this rule part are provided in a separate report: US Tech report number 21-0036.

US Tech Test Report: FCC Part 15 Certification/ RSS 210

FCC ID:

Model:

IC: Test Report Number:

Issue Date: Customer: 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc. RB-300

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

Table 2. Test Instruments

TEST INSTRUMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	CALIBRATION DUE DATE
SPECTRUM ANALYZER	E4407B	AGILENT	US41442935	9/2/2022 2 yr.
LOOP ANTENNA	6502	ETS LINDGREN	9810-3246	4/6/2021
BICONICAL ANTENNA	3110B	EMCO	9306-1708	6/27/2021
LOG PERIODIC ANTENNA	3146	EMCO	9110-3236	8/22/2021 2 yr
HORN ANTENNA	3115	EMCO	9107-3723	2/3/2023 2 yr
RF PREAMP 100 kHz to 1.3 GHz	8447D	HEWLETT- PACKARD	1937A02980	5/13/2021
RF PREAMP 1.0 GHz to 26.5 GHz	8449B	HEWLETT- PACKARD	3008A00480	5/13/2021
HIGH PASS FILTER	H3R020G2	MICROWAVE CIRCUITS	001DC9528	5/11/2021

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

US Tech Test Report: FCC Part 15 Certification/ RSS 210

FCC ID: 2AKFQ-RB300
IC: 22165-RB300
Test Report Number: 21-0035
Issue Date: April 2, 2021

Customer: Cognosos Inc. Model: RB-300

2.2 Modifications to EUT Hardware

No physical modifications were made by US Tech in order to bring the EUT into compliance with FCC Part 15, Subpart C Intentional Radiator Limits for the transmitter portion of the EUT.

2.3 Number of Measurements for Intentional Radiators (CFR 15.31(m), RSS-Gen 6.8)

Measurements of intentional radiators or receivers shall be performed and reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in Table 3 below.

Table 3. Number of Test Frequencies for Intentional Radiators

Operating Frequency Range of the Device	Number of Frequencies	Location in the Range of Operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near the top 1 near the bottom
Greater than 10 MHz	3	1 near top 1 near middle 1 near bottom

Because the EUT operates at 2402 MHz to 2480 MHz, three test frequencies were used.

2.4 Frequency Range of Radiated Measurements (CFR 15.33, RSS-Gen 6.13)

2.4.1 Intentional Radiator

The spectrum was investigated for the intentional radiator from the lowest RF signal generated in the EUT without going below 9 kHz to the 10th harmonic of the highest fundamental frequency generated or 40 GHz, whichever is the lowest.

US Tech Test Report: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300

FCC ID:
IC:
Test Report Number:
Issue Date:

Customer:

Model:

22165-RB300 21-0035 April 2, 2021 Cognosos Inc. RB-300

2.5 Measurement Detector Function and Bandwidth (CFR 15.35, RSS-Gen 6.9, 6.13)

The radiated and conducted emissions limits shown herein are based on the parameters listed below.

2.5.1 Detector Function and Associated Bandwidth

On frequencies below 1000 MHz, the limits herein are based upon measurement equipment employing a CISPR Quasi-peak detector function and related measurement bandwidths (i.e. 200 Hz RBW for 9 kHz to 150 kHz, 9 kHz RBW for 150 kHz to 30 MHz and 120 kHz RBW from 30 MHz to 1000 MHz). Alternatively, measurements may be made with equipment employing a peak detector function as long as the same bandwidths specified for the Quasi-peak device are used.

2.5.2 Corresponding Peak and Average Requirements

Above 1000 MHz, radiated limits are based on measuring instrumentation employing an average detector function. When average radiated emissions are specified there is also a corresponding Peak requirement measured using a peak detector, of 20 dB greater than the average limit. For all measurements above 1000 MHz the RBW shall be at least 1 MHz.

2.5.3 Pulsed Transmitter Averaging

When the radiated emissions limit is expressed as an average value, and the transmitter is pulsed, the measured field strength shall be determined by applying a Duty Cycle Correction Factor based upon dividing the total ON time during the first 100 ms period by 100 ms (or by the period if less than 100 ms). The duty cycle may be expressed logarithmically in dB.

NOTE: If the transmitter was programmed to transmit at >98% duty cycle, then, wherever applicable (where the detection mode was AVG), the duty cycle factor calculated will be applied. The duty cycle for the EUT is 4.8 percent; therefore, a correction factor of -26.4 dB is applied to measurements exceeding average limits when the average detector was used. Cognosos, Inc. has provided data for duty cycle calculations in the Theory of Operation exhibit.

US Tech Test Report: FCC Part 15 Certification/ RSS 210

FCC ID: 2AKFQ-RB300 IC: 22165-RB300

Test Report Number: 21-0035 Issue Date: April 2, 2021 Customer: Cognosos Inc. Model: RB-300

2.6 EUT Antenna Requirements (CFR 15.203, RSS-Gen 6.7)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this device.

Table 4. Allowed Antenna(s)

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB _i	TYPE OF CONNECTOR
Antenna	Cognosos	PCB, Inverted F type	None	3.3	Trace

2.7 Restricted Bands of Operation (CFR 15.205, RSS-Gen 8.10)

Only spurious emissions can fall in the frequency bands of CFR 15.205. The field strength of these spurious emissions cannot exceed the limits of CFR 15.209. Radiated harmonics and other spurious emissions are examined for this requirement. See paragraph 2.1

2.8 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207, RSS-8.8)

The EUT is battery powered; therefore, this test is not applicable.

FCC ID:

IC: Test Report Number:

Issue Date: Customer: Model: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300

22165-RB300

21-0035 April 2, 2021 Cognosos Inc. RB-300

2.9 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.249(a),(c), RSS 210, A2.9 (a))

Radiated Spurious measurements: the EUT was programmed to transmit at its maximum rated output power level, +4.0 dBm and placed into a continuous transmit mode of operation transmitting at >98% duty cycle and tested per ANSI C63.10:2013. A preliminary scan was performed on the EUT to find signal frequencies that were caused by the transmitter portion of the device. To obtain worse case results, the EUT was tested in X, Y and Z axis.

Radiated measurements were then conducted between the frequency range of 9 kHz (or lowest frequency used/generated by the device) up to the 10th harmonic of the device (no greater than 40 GHz).

The EUT was investigated for compliance to CFR 15.209, general requirements for unwanted spurious emissions. The results are presented in the following tables:

Table 5. Spurious Radiated Emissions Below 30 MHz

	9 kHz to 30 MHz						
	Test: Radiated Emissions: CFR 15.209						
Frequency (MHz)							
2.76	34.33	11.49	45.82	69.5	m./meters.	23.7	PK
	All other emissions were greater than 20 dB below the limit.						

Sample calculation at 2.76 MHz:

Magnitude of Measured Frequency	34.33	dBuV
+Antenna Factor + Cable Loss - Amplifier Gain	11.49	dB/m
Duty Cycle Correction Factor	None	dB
Corrected Result	45.82	dBuV/m

Test Date: March 11, 2021

Signature: Name: Mark Afroozi

FCC ID:

IC: Test Report Number:

Issue Date:

Customer: Model:

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300

22165-RB300

21-0035

April 2, 2021 Cognosos Inc. RB-300

Table 6 Spurious Radiated Emissions (30 MHz = 1 GHz)

Table 6. Spurious Radiated Effissions (30 MHz – 1 GHz)								
	30 MHz to 1 GHz							
	Test: Radiated Emissions: CFR 15.209							
Frequency (MHz)							Detector	
46.10	43.27	-15.11	28.16	40.0	3m./HORZ	11.8	PK	
95.21	44.81	-17.04	27.77	43.5	3m./HORZ	15.7	PK	
138.76								
No	No additional emissions other than fundamental and harmonics were detected.							

Sample calculation at 46.10 MHz:

Magnitude of Measured Frequency	43.27	dBuV
+Antenna Factor + Cable Loss – Amplifier Gain	-15.11	dB/m
Duty Cycle Correction Factor	None	dB
Corrected Result	28.16	dBuV/m

Test Date: March 11, 2021

Name: Mark Afroozi Signature: _

Table 7. Spurious Radiated Emissions (1 GHz – 25 GHz)

	1 GHz to 25 GHz								
Test: Radiated Emissions: CFR 15.209									
Frequency (MHz)									
No emissions other than fundamental and harmonics were detected.									

Test Date: March 11, 2021

Signature: ___ wom Name: Mark Afroozi

FCC ID:

Model:

IC: Test Report Number:

Issue Date: Customer: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035

April 2, 2021 Cognosos Inc. RB-300

Table 8. Intentional Radiated Emissions – Fundamental

Test: FCC Part 15, Paragraph 15.209, 15.249(a)					Client: Cog	nosos		
Frequency (MHz)	Test Data (dBuV)	Corr. Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	PK/AVG Limits (dBuV/m)	Antenna Distance/ Polarity	Margin (dB)	Detector
	•			Low Chan	nel		•	
2402.00	68.71		28.83	97.54	114.0	3.0m./HORZ	16.4	PK
2402.00	64.08	-26.40	28.83	66.51	94.0	3.0m./HORZ	27.5	AVG
				Mid Chan	nel			
2440.00	68.30		28.98	97.28	114.0	3.0m./HORZ	16.7	PK
2440.00	64.79	-26.40	28.98	67.37	94.0	3.0m./HORZ	26.6	AVG
	High Channel							
2480.00	67.95		28.99	96.94	114.0	3.0m./HORZ	17.0	PK
2480.00	64.35	-26.40	28.99	66.94	94.0	3.0m./HORZ	27.0	AVG

Notes:

- 1. A duty cycle correction factor of -26.4 dB was applied to the average for emissions that were exceeding average limits.
- 2. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the table is worst case.

Sample calculation at 2402.00 MHz (AVG):

Magnitude of Measured Frequency	64.08	dBuV
+Antenna Factor + Cable Loss – Amplifier Gain	28.83	dB/m
Duty Cycle Correction Factor	-26.40	dB
Corrected Result	66.51	dBuV/m

Test Date: March 9, 2021

Signature: Name: Mark Afroozi

FCC ID:

IC: Test Report Number:

Issue Date: Customer: Model: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300

22165-RB300

21-0035 April 2, 2021 Cognosos Inc.

RB-300

Table 9. Intentional Radiated Emissions - Harmonics

Test: FCC Part 15, Paragraph 15.209, 15.249(a)						Client: Cog	nosos	
Frequency (MHz)	Test Data (dBuV)	Corr. Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	PK/AVG Limits (dBuV/m)	Antenna Distance/ Polarity	Margin (dB)	Detector
				Low Chan	nel			
4804.00	51.33		3.55	54.88	74.0	3.0m./HORZ	19.1	PK
4804.00	30.90		3.55	34.45	54.0	3.0m./HORZ	19.6	AVG
7206.00	65.47	-9.50	8.69	64.66	74.0	1.0m./HORZ	9.3	PK
7206.00	57.47	-26.40	8.69	39.76	54.0	1.0m./HORZ	14.2	AVG
9608.00	52.81		8.88	61.69	74.0	1.0m./HORZ	12.3	PK
9608.00	36.44		8.88	45.32	54.0	1.0m./HORZ	8.7	AVG
				Mid Chan	nel			
4880.00	50.53		3.61	54.14	74.0	3.0m./HORZ	19.9	PK
4880.00	40.10		3.61	43.71	54.0	3.0m./HORZ	10.3	AVG
7320.00	71.38	-9.50	8.26	70.14	74.0	1.0m./HORZ	3.9	PK
7320.00	64.64	-26.40	8.26	46.50	54.0	1.0m./HORZ	7.5	AVG
9760.00	51.90		8.92	60.82	74.0	1.0m./HORZ	13.2	PK
9760.00	34.67		8.92	43.59	54.0	1.0m./HORZ	10.4	AVG
				High Chan	nel			
7440.00	73.48	-9.50	8.74	72.72	74.0	1.0m./HORZ	1.3	PK
7440.00	66.61	-26.40	8.74	48.95	54.0	1.0m./HORZ	5.1	AVG
12400.00	52.11	-	11.35	63.46	74.0	1.0m./HORZ	10.5	PK
12400.00	34.65		11.35	46.00	54.0	1.0m./HORZ	8.0	AVG
17360.00	50.48	-9.50	19.62	60.60	74.0	1.0m./HORZ	13.4	PK
17360.00	31.90	-9.50	19.62	42.02	54.0	1.0m./HORZ	12.0	AVG

Notes:

- 1. All other harmonics were greater than 20 dB below the specification limit. Harmonics investigated up to the 10th harmonic.
- 2. A duty cycle correction factor of -26.4 dB was applied to the average for emissions that were exceeding average limits.
- 3. A correction factor of -9.5 dB was applied to peak and average measurements taken at a distance of one meter for frequencies above 6 GHz. Ex: 20 (log (3m/1m) = 9.5 dB.
- 4. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the table is worst case.

Test Date: March 10, 2021

Signature:

Name: Mark Afroozi

US Tech Test Report: FCC Part 15 Certification/ RSS 210

 FCC ID:
 2AKFQ-RB300

 IC:
 22165-RB300

 Test Report Number:
 21-0035

 Issue Date:
 April 2, 2021

 Customer:
 Cognosos Inc.

 Model:
 RB-300

2.10 Band Edge Measurements (CFR 15.249(d), RSS-Gen 8.10)

Band edge measurements are made following the guidelines in FCC KDB Publication No. 558074 with the EUT initially operating on the lowest channel and then operating on the highest channel within its band of operation. Radiated measurements are performed to demonstrate compliance with the requirement of 15.249(d) that all emissions outside of the band edges be attenuated by at least 50 dB or 15.209 limits, when compared to its highest in-band value (contained in a 100 kHz band).

To capture the band edge, set the spectrum analyzer frequency span to 2 MHz to capture the peak level of the emission operating on the channel closest to the band edge as well as any modulation products falling outside of the authorized band of operation. See figure and calculations following for more detail.

 US Tech Test Report:
 FCC Part 15 Certification/ RSS 210

 FCC ID:
 2AKFQ-RB300

 IC:
 22165-RB300

 Test Report Number:
 21-0035

 Issue Date:
 April 2, 2021

 Customer:
 Cognosos Inc.

RB-300

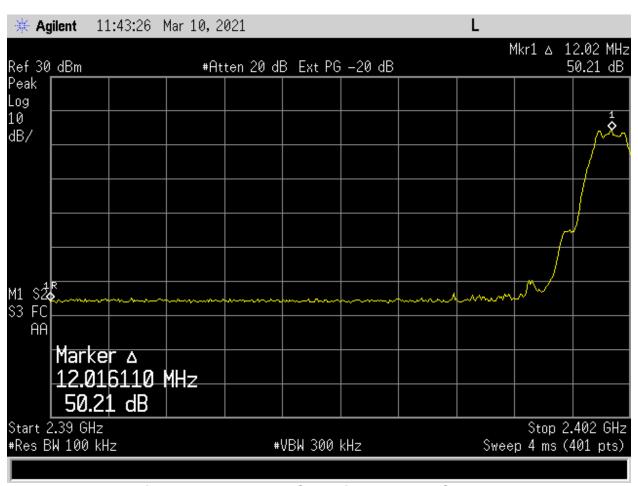


Figure 2. Band Edge Compliance - Low Channel

Low Channel Corrected Result (Peak) from Table 9	97.54	dBuV
Low Channel Band Edge Delta from Figure 10	-50.21	dB
Calculated Result	47.33	dBuV/m
Band Edge Limit (Average)	54.00	dBuV/m
Calculated Result	47.33	dBuV/m
Band Edge Margin	6.67	dBuV/m

Test Date: March 10, 2021

Model:

Signature: Name: Mark Afroozi

US Tech Test Report: FCC ID: IC:

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

Test Report Number: Issue Date: Customer: Model:

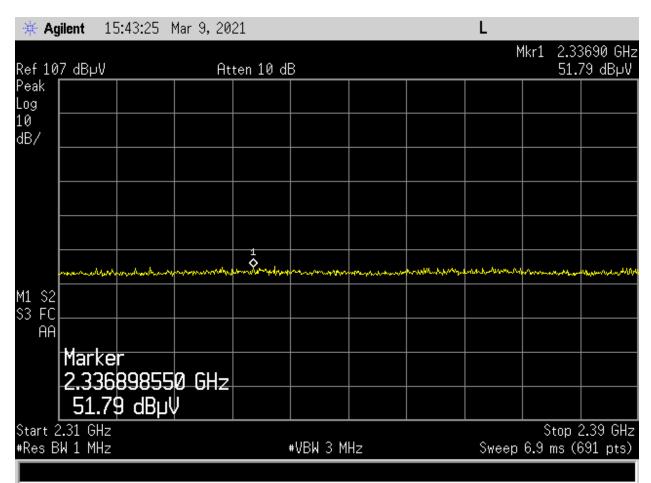


Figure 3. Restricted Band Edge: 2310 MHz to 2390 MHz

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	PK/AVG Limits (dBuV/m)	Antenna Distance/ Polarity	Margin (dB)	Detector
	Lower Band Edge							
2336.90	51.79		-6.45	45.34	74.0	3.0m./HORZ	28.7	PK
2338.29	51.79	-26.40	-6.45	25.39	54.0	3.0m./HORZ	28.6	AVG

Test Date: March 9, 2021

Signature: _

Name: Mark Afroozi

US Tech Test Report: FCC ID: IC:

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

Test Report Number: Issue Date: Customer: Model:

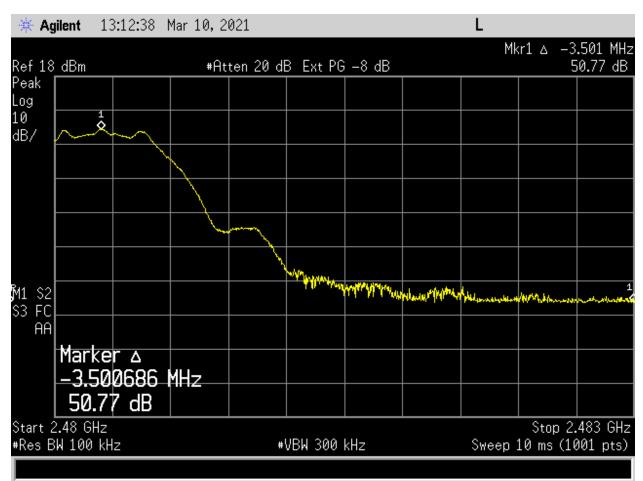


Figure 4. Band Edge Compliance - High Channel

High Channel Corrected Result (Peak) from Table 9	96.94	dBuV
High Channel Band Edge Delta from Figure 12	-50.77	dB
Calculated Result	45.18	dBuV/m
Band Edge Limit (Average)	54.00	dBuV/m
Calculated Result	45.18	dBuV/m
Band Edge Margin	8.82	dBuV/m

Test Date: March 10, 2021

Signature: Name: Mark Afroozi

FCC ID:

IC: Test Report Number:

Issue Date: Customer: Model:

FCC Part 15 Certification/ RSS 210 2AKFQ-RB300

> 22165-RB300 21-0035 April 2, 2021 Cognosos Inc.

RB-300

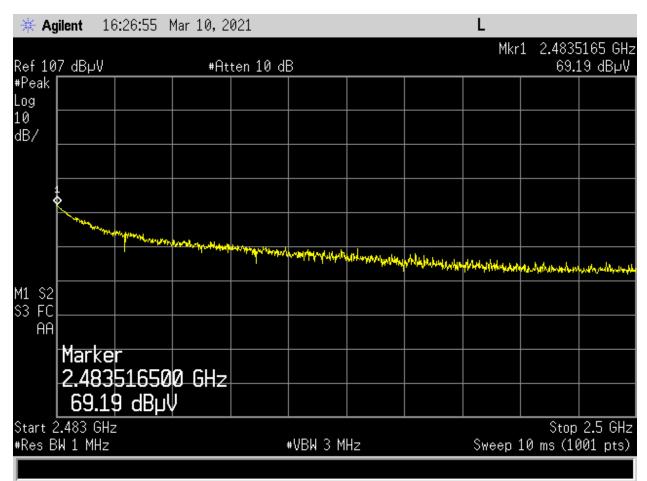


Figure 5. Restricted Band Edge: 2483.5 MHz to 2500 MHz

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	PK/AVG Limits (dBuV/m)	Antenna Distance/ Polarity	Margin (dB)	Detector	
	Lower Band Edge								
2483.50	69.19		-5.73	63.46	74.0	3.0m./HORZ	30.5	PK	
2483.50	69.19	-24.60	-5.73	44.59	54.0	3.0m./HORZ	9.4	AVG	

Test Date: March 10, 2021

Name: Mark Afroozi

FCC ID:

Model:

IC: Test Report Number:

Issue Date: Customer: FCC Part 15 Certification/ RSS 210 2AKFQ-RB300 22165-RB300

21-0035 April 2, 2021 Cognosos Inc. RB-300

2.11 99% Occupied Bandwidth (CFR 2.1049, RSS-Gen 6.6)

These measurements were performed while the EUT was in a constant transmit mode. A method similar to the marker delta method was used to capture the points. The RBW was set to approximately 1/100 of the manufacturers claimed RBW and with the VBW ≥ RBW. The results of this test are given in Table 20 and Figures 16-18.

Table 10. 6 dB Bandwidth and 99% Occupied Bandwidth

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
2402	0.5784	1.0612
2440	0.7323	1.0628
2480	0.7344	1.0660

Test Date: March 10, 2021

Signature:

Name: Mark Afroozi

 US Tech Test Report:
 FCC Part 15 Certification/ RSS 210

 FCC ID:
 2AKFQ-RB300

 IC:
 22165-RB300

 Test Report Number:
 21-0035

 Issue Date:
 April 2, 2021

 Customer:
 Cognosos Inc.

 Model:
 RB-300

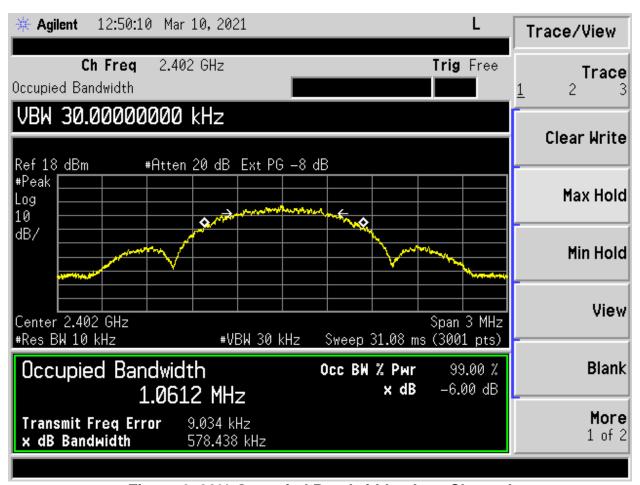


Figure 6. 99% Occupied Bandwidth - Low Channel

 US Tech Test Report:
 FCC Part 15 Certification/ RSS 210

 FCC ID:
 2AKFQ-RB300

 IC:
 22165-RB300

 Test Report Number:
 21-0035

 Issue Date:
 April 2, 2021

 Customer:
 Cognosos Inc.

 Model:
 RB-300

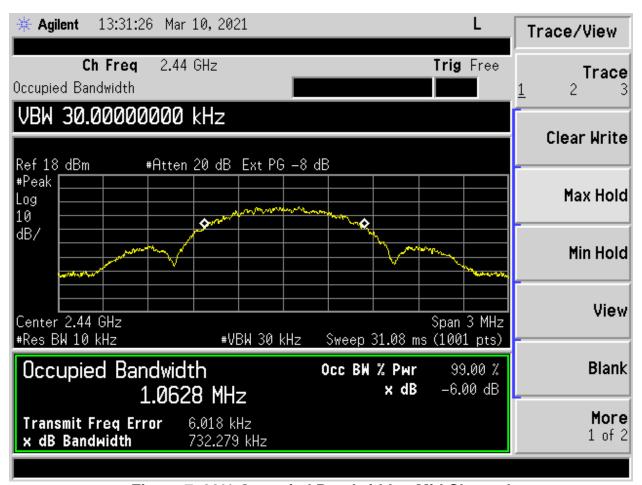


Figure 7. 99% Occupied Bandwidth - Mid Channel

 US Tech Test Report:
 FCC Part 15 Certification/ RSS 210

 FCC ID:
 2AKFQ-RB300

 IC:
 22165-RB300

 Test Report Number:
 21-0035

 Issue Date:
 April 2, 2021

 Customer:
 Cognosos Inc.

 Model:
 RB-300

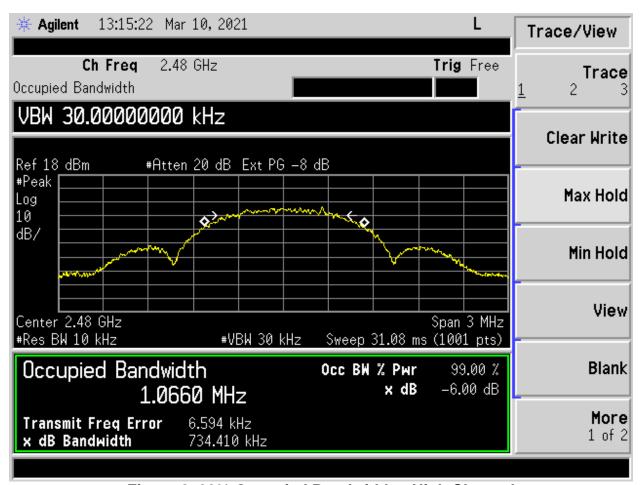


Figure 8. 99% Occupied Bandwidth – High Channel

US Tech Test Report: FCC Part 15 Certification/ RSS 210

FCC ID: 2AKFQ-RB300 IC: 22165-RB300

Test Report Number: 21-0035 Issue Date: April 2, 2021 Customer: Cognosos Inc. Model: RB-300

2.12 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4-2:2011. A coverage factor of k=2 was used to give a level of confidence of approximately 95%.

2.12.1 Conducted Emissions Measurement Uncertainty

Measurement Uncertainty (within a 95% confidence level) for this test is ± 2.78 dB.

2.12.2 Radiated Emissions Measurement Uncertainty

For a measurement distance of 3 m the measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna (30 MHz to 200 MHz) is \pm 5.3 dB. This value includes all elements of measurement.

The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna (200 MHz to 1000 MHz) is \pm 5.1 dB.

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna is ± 5.1 dB.

3 Conclusions

The EUT is deemed to meet the requirements of the test standards cited herein when tested in the configuration detailed in this test report.