FCC Test Report

Product Name	VUZE+ Camera
Model No.	HETVZ-P
FCC ID.	2AKDRHETVZ-P

Applicant	Humaneyes Technologies Ltd.
Address	Communication Center, Neve Ilan D.N. Harey Jerusalem, 9085000

Date of Receipt	Sep. 18, 2017
Issued Date	Oct. 18, 2017
Report No.	1790233R-RFUSP73V00
Report Version	V1.0
Testing Laboratory 302.3	

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Test Report

Issued Date: Oct. 18, 2017 Report No.: 1790233R-RFUSP73V00

DEKRA

Product Name	VUZE+ Camera	
Applicant	Humaneyes Technologies Ltd.	
Address	Communication Center, Neve Ilan D.N. Harey Jerusalem, 9085000	
Manufacturer	ABILITY ENTERPRISE CO., LTD.	
Model No.	HETVZ-P	
FCC ID.	2AKDRHETVZ-P	
EUT Rated Voltage	C 100-240V, 50/60Hz or DC 3.8V By Battery	
EUT Test Voltage	.C 120V/60Hz	
Trade Name	VUZE+	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2016	
	ANSI C63.4: 2014, ANSI C63.10: 2013	
Test Result	Complied	

Documented By :

:

Anny Chou

(Senior Adm. Specialist / Anny Chou)

Tested By

oris HSV

(Assistant Engineer / Boris Hsu)

Approved By :

(Director / Vincent Lin)

TABLE OF CONTENTS

1. GENERAL INFORMATION 5 1.1. EUT Description 5 1.2. Operational Description 7 1.3. Tested System Details 8 1.4. Configuration of Tested System 8 1.5. EUT Excreise Software 8 1.6. Test Facility 9 1.7. List of Test Equipment. 10 2. CONDUCTED EMISSION 11 2.1. Test Setup 11 2.1. Test Setup 12 2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4.4. Uncertainty 20 4.5. Test Setup 21 4.6. Test Setup 21 <th>Des</th> <th>scription</th> <th>Page</th>	Des	scription	Page
1.2. Operational Description 7 1.3. Tested System Details 8 1.4. Configuration of Tested System 8 1.5. FUT Exercise Software 8 1.6. Test Facility 9 1.7. List of Test Equipment. 10 2. CONDUCTED EMISSION 11 2.1. Test Setup 12 2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Necodure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.1. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Result of Radiated Emission 21 5.	1.	GENERAL INFORMATION	5
1.3. Tested System Details 8 1.4. Configuration of Tested System 8 1.5. EUT Exercise Software 8 1.6. Test Facility 9 1.7. List of Test Equipment 10 2. CONDUCTED EMISSION 11 2.1. Test Setup 11 2.2. Limits 12 2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 3.6. Test Netup 15 3.7. Test Procedure 15 3.8. Test Result of Peak Power Output 16 4.8. Uncertainty 20 4.9. Test Setup 20 4.1. Test Setup 20 <td>1.1.</td> <td>EUT Description</td> <td>5</td>	1.1.	EUT Description	5
1.4. Configuration of Tested System .8 1.5. EUT Exercise Software .8 1.6. Test Facility .9 1.7. List of Test Equipment. .10 2. CONDUCTED EMISSION .11 2.1. Test Setup .11 2.2. Limits .12 2.3. Test Procedure .12 2.4. Uncertainty .12 2.5. Test Result of Conducted Emission .13 3. PEAK POWER OUTPUT .15 3.1. Test Setup .15 3.2. Limit .15 3.3. Test Procedure .15 3.4. Uncertainty .15 3.5. Test Result of Peak Power Output .16 4.4. Uncertainty .15 3.5. Test Result of Redisted Emission .21 4.1. Test Setup .20 4.2. Limits .19 4.3. Test Procedure .20 4.4. Uncertainty .20 4.5. Test Result of Radiate	1.2.	Operational Description	7
1.5. EUT Exercise Software	1.3.	Tested System Details	8
1.6. Test Facility	1.4.	Configuration of Tested System	8
1.7. List of Test Equipment	1.5.	EUT Exercise Software	8
2. CONDUCTED EMISSION 11 2.1. Test Setup 11 2.2. Limits 12 2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output. 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 30 6.	1.6.	Test Facility	9
2. CONDUCTED EMISSION 11 2.1. Test Setup 11 2.2. Limits 12 2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output. 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 30 6.	1.7.	List of Test Equipment	10
2.2 Limits 12 2.3 Test Procedure 12 2.4 Uncertainty 12 2.5 Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1 Test Setup 15 3.2 Limit 15 3.3 Test Setup 15 3.4 Uncertainty 15 3.5 Test Procedure 15 3.4 Uncertainty 15 3.5 Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1 Test Setup 19 4.2 Limits 19 4.3 Test Procedure 20 4.4 Uncertainty 20 4.5 Test Result of Radiated Emission 21 5.1 Test Setup 29 5.2 Limits 29 5.3 Test Procedure 29 5.4 Uncertainty 29 5.5 Test Result of R Antenna Conducted Test 30 6. <td< td=""><td>2.</td><td></td><td></td></td<>	2.		
2.3. Test Procedure 12 2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Poweedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5.6. Test Result of Radiated Emission 21 5.7. Test Result of Radiated Emission 21 5.8. Test Setup 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test<	2.1.	Test Setup	
2.4. Uncertainty 12 2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Forcedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RA Intenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 33 6.2. Limit 32	2.2.	Limits	
2.5. Test Result of Conducted Emission 13 3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Setup 15 3.4. Uncertainty 15 3.5. Test Procedure 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits. 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4.	2.3.	Test Procedure	
3. PEAK POWER OUTPUT 15 3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 32 6.5. Test Result of Band Edge 34	2.4.	Uncertainty	
3.1. Test Setup 15 3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7	2.5.	Test Result of Conducted Emission	
3.2. Limit 15 3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5.6. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 32 6.4. Uncertainty 32 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 33 <	3.	PEAK POWER OUTPUT	15
3.3. Test Procedure 15 3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	3.1.	Test Setup	15
3.4. Uncertainty 15 3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	3.2.	Limit	15
3.5. Test Result of Peak Power Output 16 4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	3.3.	Test Procedure	15
4. RADIATED EMISSION 18 4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	3.4.	Uncertainty	15
4.1. Test Setup 18 4.2. Limits 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 32 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	3.5.	Test Result of Peak Power Output	16
4.2. Limits. 19 4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST. 29 5.1. Test Setup 29 5.2. Limits. 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.	RADIATED EMISSION	
4.3. Test Procedure 20 4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits. 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.1.	Test Setup	
4.4. Uncertainty 20 4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.2.	Limits	
4.5. Test Result of Radiated Emission 21 5. RF ANTENNA CONDUCTED TEST 29 5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.3.	Test Procedure	
5. RF ANTENNA CONDUCTED TEST. 29 5.1. Test Setup 29 5.2. Limits. 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.4.	Uncertainty	
5.1. Test Setup 29 5.2. Limits 29 5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	4.5.	Test Result of Radiated Emission	21
5.2. Limits	5.	RF ANTENNA CONDUCTED TEST	29
5.3. Test Procedure 29 5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46 7.1. Test Setup 46	5.1.	Test Setup	
5.4. Uncertainty 29 5.5. Test Result of RF Antenna Conducted Test 30 6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46	5.2.	Limits	
5.5. Test Result of RF Antenna Conducted Test	5.3.	Test Procedure	
6. BAND EDGE 32 6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46 7.1. Test Setup 46	5.4.	Uncertainty	
6.1. Test Setup 32 6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46 7.1. Test Setup 46	5.5.	Test Result of RF Antenna Conducted Test	
6.2. Limit 32 6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46 7.1. Test Setup 46	6.	BAND EDGE	
6.3. Test Procedure 33 6.4. Uncertainty 33 6.5. Test Result of Band Edge 34 7. CHANNEL NUMBER 46 7.1. Test Setup 46	6.1.	Test Setup	
6.4. Uncertainty	6.2.	Limit	
6.5. Test Result of Band Edge	6.3.	Test Procedure	
6.5. Test Result of Band Edge	6.4.	Uncertainty	
7. CHANNEL NUMBER	6.5.	-	
1	7.	C C	
*	7.1.	Test Setup	
	7.2.	Limit	

DEKRA

7.3.	Test Procedure	.46
7.4.	Uncertainty	.46
7.5.	Test Result of Channel Number	.47
8.	CHANNEL SEPARATION	.49
8.1.	Test Setup	.49
8.2.	Limit	.49
8.3.	Test Procedure	.49
8.4.	Uncertainty	.49
8.5.	Test Result of Channel Separation	.50
9.	DWELL TIME	.54
9.1.	Test Setup	.54
9.2.	Limit	.54
9.3.	Test Procedure	.54
9.4.	Uncertainty	.54
9.5.	Test Result of Dwell Time	.55
10.	OCCUPIED BANDWIDTH	.59
10.1.	Test Setup	.59
10.2.	Limits	.59
10.3.	Test Procedure	.59
10.4.	Uncertainty	.59
10.5.	Test Result of Occupied Bandwidth	.60
11.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	.64
	ent 1: EUT Test Photographs ent 2: EUT Detailed Photographs	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	VUZE+ Camera	
Trade Name	VUZE+	
Model No.	HETVZ-P	
FCC ID.	2AKDRHETVZ-P	
Frequency Range	2402-2480MHz	
Channel Number	79	
Type of Modulation	FHSS: GFSK(1Mbps) / π /4DQPSK(2Mbps) / 8DPSK(3Mbps)	
Antenna Type	PIFA Antenna	
Channel Control	Auto	
Antenna Gain	Refer to the table "Antenna List"	
USB Cable	Shielded, 0.8m	
Power Adapter	MFR: U, M/N: KSA29B0500200D5	
	Input: AC 100-240V, 50/60Hz, 0.5A	
	Output: DC 5V, 2A	
Contain Module	Broadcom / BCM43340	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	LYNwave	HE2011W	PIFA Antenna	-7.71 dBi for 2.4 GHz

Note:

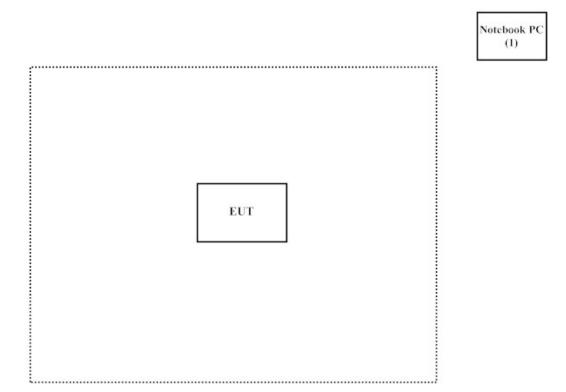
1. The antenna of EUT conforms to FCC 15.203.

Center Frequency of Each Channel:

Center i reque	ney of Euch C	Juliumer.					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 20:	2422 MHz	Channel 40:	2442 MHz	Channel 60:	2462 MHz
Channel 01:	2403 MHz	Channel 21:	2423 MHz	Channel 41:	2443 MHz	Channel 61:	2463 MHz
Channel 02:	2404 MHz	Channel 22:	2424 MHz	Channel 42:	2444 MHz	Channel 62:	2464 MHz
Channel 03:	2405 MHz	Channel 23:	2425 MHz	Channel 43:	2445 MHz	Channel 63:	2465 MHz
Channel 04:	2406 MHz	Channel 24:	2426 MHz	Channel 44:	2446 MHz	Channel 64:	2466 MHz
Channel 05:	2407 MHz	Channel 25:	2427 MHz	Channel 45:	2447 MHz	Channel 65:	2467 MHz
Channel 06:	2408 MHz	Channel 26:	2428 MHz	Channel 46:	2448 MHz	Channel 66:	2468 MHz
Channel 07:	2409 MHz	Channel 27:	2429 MHz	Channel 47:	2449 MHz	Channel 67:	2469 MHz
Channel 08:	2410 MHz	Channel 28:	2430 MHz	Channel 48:	2450 MHz	Channel 68:	2470 MHz
Channel 09:	2411 MHz	Channel 29:	2431 MHz	Channel 49:	2451 MHz	Channel 69:	2471 MHz
Channel 10:	2412 MHz	Channel 30:	2432 MHz	Channel 50:	2452 MHz	Channel 70:	2472 MHz
Channel 11:	2413 MHz	Channel 31:	2433 MHz	Channel 51:	2453 MHz	Channel 71:	2473 MHz
Channel 12:	2414 MHz	Channel 32:	2434 MHz	Channel 52:	2454 MHz	Channel 72:	2474 MHz
Channel 13:	2415 MHz	Channel 33:	2435 MHz	Channel 53:	2455 MHz	Channel 73:	2475 MHz
Channel 14:	2416 MHz	Channel 34:	2436 MHz	Channel 54:	2456 MHz	Channel 74:	2476 MHz
Channel 15:	2417 MHz	Channel 35:	2437 MHz	Channel 55:	2457 MHz	Channel 75:	2477 MHz
Channel 16:	2418 MHz	Channel 36:	2438 MHz	Channel 56:	2458 MHz	Channel 76:	2478 MHz
Channel 17:	2419 MHz	Channel 37:	2439 MHz	Channel 57:	2459 MHz	Channel 77:	2479 MHz
Channel 18:	2420 MHz	Channel 38:	2440 MHz	Channel 58:	2460 MHz	Channel 78:	2480 MHz
Channel 19:	2421 MHz	Channel 39:	2441 MHz	Channel 59:	2461 MHz		

- 1. The EUT is a VUZE+ Camera with a built-in Bluetooth V3.0, V2.1+EDR transceiver, this report for Bluetooth V3.0, V2.1+EDR.
- 2. The WLAN module of EUT has been made in FCC ID: 2AKDRHETVZ-P.
- 3. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 4. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test
- 5. Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through pre-testing, to produce emissions similar to those for 3Mb/s.
- 6. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit - 1Mbps (GFSK)	
	Mode 2: Transmit - 3Mbps (8DPSK)	


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

P	ro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1		Notebook PC	DELL	Latitude E5440	B6TYTZ1	Non-Shielded, 0.8m

Signal Cable Type	Signal cable Description
N/	A

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "Hevu Mobile Emulator" on the Notebook PC.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	30-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from DEKRA Testing and Certification Co., Ltd. Web Site:

http://www.dekra.com.tw/english/about/certificates.aspx?bval=5

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site: <u>http://www.dekra.com.tw/index_en.aspx</u>

Site Description:	Accredited by TAF Accredited Number: 3023
Site Name: Site Address:	DEKRA Testing and Certification Co., Ltd No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>info.tw@dekra.com</u>

FCC Accreditation Number: TW3023

1.7. List of Test Equipment

For Conducted measurements /CB3/SR8

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
	Temperature Chamber	WIT GROUP	TH-1S-B	EQ-201-00146	2016/11/28	2017/11/27
Х	Spectrum Analyzer	Agilent	N9010A	MY48030495	2017/7/22	2018/7/21
Х	Power Meter	Anritsu	ML2495A	6K00003357	2017/6/23	2018/6/22
Х	Pulse power sensor	Anritsu	MA2411B	0846193	2017/6/23	2018/6/22
Х	EMI Test Receiver	R&S	ESCS 30	100369	2017/10/13	2018/10/12
Х	LISN	R&S	ESH3-Z5	836679/017	2017/1/7	2018/1/6
Х	LISN	R&S	ENV216	100097	2017/1/7	2018/1/6
Х	Coaxial Cable	QTK(Arnist)	RG 400	LC018-RG	2017/6/25	2018/6/24

Note:

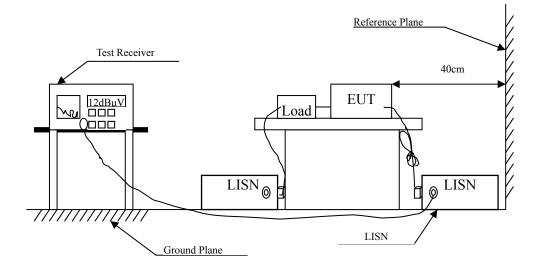
- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : QuieTek Conduction Test System V8.0.110

For Radiated measurements /Site3/CB8

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	Spectrum Analyzer	R&S	FSP40	100170	2017/1/5	2018/1/4
Х	Loop Antenna	Teseq	HLA6121	37133	2017/3/18	2018/3/17
Х	Bi-Log Antenna	Schaffner Chase	CBL6112B	2707	2017/6/11	2018/6/10
Х	Horn Antenna	ETS-Lindgren	3117	00135205	2017/4/6	2018/4/5
Х	Horn Antenna	Schwarzbeck	BBHA9170	9170430	2017/1/11	2018/1/10
Х	Pre-Amplifier	QTK	AP/0100A	CHM/0901069	2017/6/23	2018/6/22
Х	Pre-Amplifier	EMCI	EMC012630SE	980210	2017/1/26	2018/1/24
Х	Pre-Amplifier	NARDA WE	DBL-1840N506	013	2017/9/30	2018/9/29
Х	Filter	MicroTRON	BRM50701	019	2016/11/2	2017/11/1
Х	Filter	Microwave Circuits	N0257881	36681	2016/12/7	2017/12/6
Х	EMI Test Receiver	R&S	ESR26	101385	2017/9/29	2018/9/28
Х	Coaxial Cable	QTK(Arnist)	SUCOFLEX 106	L1606-015C	2017/6/23	2018/6/22
Х	EMI Test Receiver	R&S	ESCS 30	838251/001	2017/7/21	2018/7/20
Х	Coaxial Cable	QTK(Arnist)	RG 214	LC003-RG	2017/6/16	2018/6/15
Х	Coaxial signal switch	Anritsu	MP59B	6201415889	2017/6/16	2018/6/15

Note:

1. All equipments are calibrated every one year.


2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version :QuieTek EMI 2.0 V2.1.113.

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

2.4. Uncertainty

± 2.26 dB

2.5. Test Result of Conducted Emission

Product	:	VUZE+ Camera
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
LINE 1					
Quasi-Peak					
0.170	9.757	43.290	53.047	-12.382	65.429
0.228	9.771	41.500	51.271	-12.500	63.771
0.353	9.747	33.990	43.737	-16.463	60.200
0.443	9.738	31.260	40.998	-16.631	57.629
13.466	10.012	20.270	30.282	-29.718	60.000
20.166	10.083	15.660	25.743	-34.257	60.000
Average					
0.170	9.757	31.120	40.877	-14.552	55.429
0.228	9.771	25.540	35.311	-18.460	53.771
0.353	9.747	21.670	31.417	-18.783	50.200
0.443	9.738	13.090	22.828	-24.801	47.629
13.466	10.012	10.680	20.692	-29.308	50.000
20.166	10.083	6.920	17.003	-32.997	50.000

DEKRA

Note:

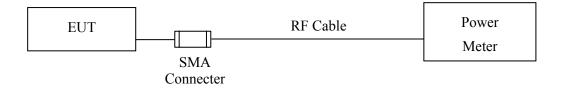
1. All Reading Levels are Quasi-Peak and average value.

2. " " means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product	: VUZE+ Camera					
Test Item	: Conduc	ted Emission Test				
Power Line	: Line 2					
Test date	: 2017/10					
Test Mode	: Mode 2	: Transmit - 3Mbp	s (8DPSK) (2441MH	(z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV	dB	dBµV	
LINE 2						
Quasi-Peak						
0.170	9.714	40.950	50.664	-14.765	65.429	
0.228	9.754	41.290	51.044	-12.727	63.771	
0.345	9.761	34.570	44.331	-16.098	60.429	
0.451	9.775	31.060	40.835	-16.565	57.400	
13.787	10.115	21.520	31.635	-28.365	60.000	
21.638	10.257	15.750	26.007	-33.993	60.000	
Average						
0.170	9.714	30.540	40.254	-15.175	55.429	
0.228	9.754	6.750	16.504	-37.267	53.771	
0.345	9.761	21.680	31.441	-18.988	50.429	
0.451	9.775	25.960	35.735	-11.665	47.400	
13.787	10.115	13.180	23.295	-26.705	50.000	
21.638	10.257	10.000	20.257	-29.743	50.000	

Note:


1. All Reading Levels are Quasi-Peak and average value.

2. " means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

3.4. Uncertainty

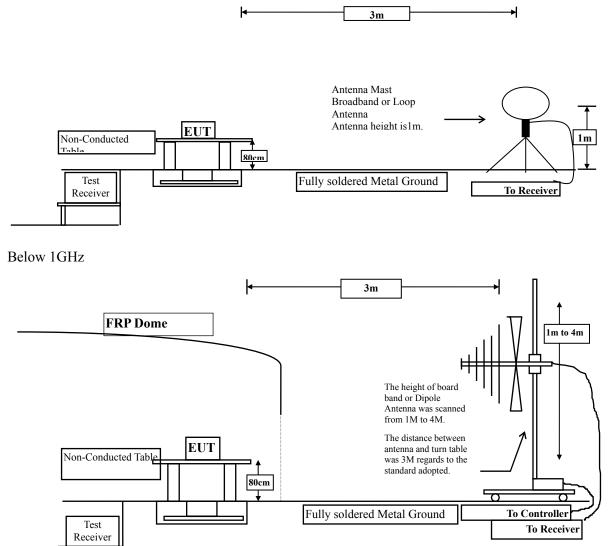
± 1.19 dB

3.5. Test Result of Peak Power Output

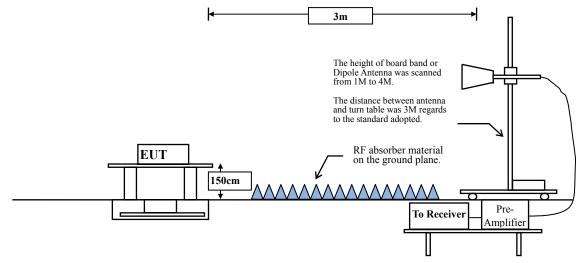
Product	:	VUZE+ Camera
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test date	:	2017/10/12
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	8.37	1 Watt= 30 dBm	Pass
Channel 39	2441.00	8.49	1 Watt= 30 dBm	Pass
Channel 78	2480.00	8.91	1 Watt= 30 dBm	Pass

Product	:	VUZE+ Camera
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test date	:	2017/10/12
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK)


Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	7.44	1 Watt= 30 dBm	Pass
Channel 39	2441.00	7.18	1 Watt= 30 dBm	Pass
Channel 78	2480.00	7.31	1 Watt= 30 dBm	Pass

4. Radiated Emission


4.1. Test Setup

Under 30MHz

Above 1GHz

4.2. Limits

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	Field strength	Measurement distance			
	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.4. Uncertainty

± 4.08 dB above 1GHz
± 4.22 dB below 1GHz

4.5. Test Result of Radiated Emission

Product : Test Item : Test Site : Test date :	No.3 OATS 2017/10/11	ndiated Emission			
Test Mode :	Mode 1: Irai	ismit - TMbps (G	FSK)(2402MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4804.000	-9.896	56.554	46.658	-27.342	74.000
7206.000	-5.013	52.677	47.664	-26.336	74.000
9608.000	-1.472	48.995	47.524	-26.476	74.000
Average Detector:					
Vertical					
Peak Detector:					
4804.000	-6.585	50.799	44.214	-29.786	74.000
7206.000	-4.144	51.805	47.661	-26.339	74.000
9608.000	-1.075	50.038	48.964	-25.036	74.000
Average Detector:					

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Test Item:Test Site:Test date:Test Mode:	No.3 OATS 2017/10/11	diated Emission	FSK)(2441MHz)		
Frequency MHz	Correct Factor dB	Reading Level dBµV	Measurement Level dBµV/m	Margin dB	Limit dBµV/m
Horizontal		·	·		
Peak Detector:					
4882.000	-10.318	54.532	44.214	-29.786	74.000
7323.000	-3.858	49.372	45.514	-28.486	74.000
9764.000	-2.596	50.118	47.522	-26.478	74.000
Average Detector:					
Vertical					
Peak Detector:					
4882.000	-7.606	50.017	42.411	-31.589	74.000
7323.000	-2.977	47.590	44.614	-29.386	74.000
9764.000	-2.131	49.745	47.614	-26.386	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	VUZE+ Cam	VUZE+ Camera						
Test Item :	Harmonic Ra	Harmonic Radiated Emission						
Test Site :	No.3 OATS	No.3 OATS						
Test date :	2017/10/11	2017/10/11						
Test Mode :	Mode 1: Tran	nsmit - 1Mbps (G	FSK)(2480MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
4960.000	-10.666	55.016	44.351	-29.649	74.000			
7440.000	-3.631	49.245	45.614	-28.386	74.000			
9920.000	-2.397	49.971	47.574	-26.426	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4960.000	-7.869	52.499	44.631	-29.369	74.000			
7440.000	-2.772	49.757	46.985	-27.015	74.000			
9920.000	-1.895	50.409	48.514	-25.486	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: VUZE+ Cam	VUZE+ Camera						
Test Item	: Harmonic Ra	Harmonic Radiated Emission						
Test Site	: No.3 OATS							
Test date	: 2017/10/11	2017/10/11						
Test Mode	: Mode 2: Tran	nsmit - 3Mbps (81	DPSK)(2402MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
4804.000	-9.896	55.034	45.138	-28.862	74.000			
7206.000	-5.013	50.335	45.322	-28.678	74.000			
9608.000	-1.472	48.612	47.141	-26.859	74.000			
Average Detector	:							
Vertical								
Peak Detector:								
4804.000	-6.585	53.210	46.625	-27.375	74.000			
7206.000	-4.144	49.783	45.639	-28.361	74.000			
9608.000	-1.075	49.588	48.514	-25.486	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	VUZE+ Camera
Test Item	:	Harmonic Radiated Emission
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
4882.000	-10.318	52.432	42.114	-31.886	74.000
7323.000	-3.858	48.493	44.635	-29.365	74.000
9764.000	-2.596	50.080	47.484	-26.516	74.000
Average Detector:					
Vertical					
Peak Detector:					
4882.000	-7.606	49.147	41.541	-32.459	74.000
7323.000	-2.977	48.590	45.614	-28.386	74.000
9764.000	-2.131	49.065	46.934	-27.066	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

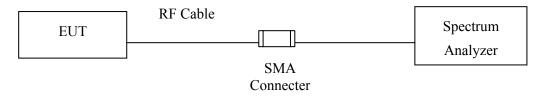
Product	: VUZE+ Cam	VUZE+ Camera						
Test Item	: Harmonic Ra	Harmonic Radiated Emission						
Test Site	: No.3 OATS							
Test date	: 2017/10/11	2017/10/11						
Test Mode	: Mode 2: Tran	smit - 3Mbps (81	DPSK) (2480MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
4960.000	-10.666	54.916	44.251	-29.749	74.000			
7440.000	-3.631	50.582	46.951	-27.049	74.000			
9920.000	-2.397	49.911	47.514	-26.486	74.000			
Average Detector	:							
Vertical								
Peak Detector:								
4960.000	-7.869	55.382	47.514	-26.486	74.000			
7440.000	-2.772	49.466	46.694	-27.306	74.000			
9920.000	-1.895	49.739	47.844	-26.156	74.000			
A	_							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	`
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2441MHz)
		• • • • • • • • •

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$
Horizontal					
190.261	-19.206	51.807	32.602	-10.898	43.500
321.000	-13.859	45.424	31.565	-14.435	46.000
373.014	-10.683	41.073	30.390	-15.610	46.000
550.145	-6.907	37.906	30.999	-15.001	46.000
762.420	-5.770	39.660	33.890	-12.110	46.000
846.768	-4.358	38.984	34.626	-11.374	46.000
Vertical					
159.333	-15.537	45.498	29.961	-13.539	43.500
384.261	-12.121	43.324	31.203	-14.797	46.000
524.841	-10.154	39.784	29.629	-16.371	46.000
694.942	-8.044	38.986	30.942	-15.058	46.000
762.420	-7.769	39.660	31.891	-14.109	46.000
845.362	-6.954	38.125	31.172	-14.828	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product	:	VUZE+ Camera
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
190.261	-19.206	49.807	30.602	-12.898	43.500
333.652	-13.515	45.232	31.717	-14.283	46.000
433.464	-11.604	42.054	30.450	-15.550	46.000
606.377	-5.252	36.283	31.030	-14.970	46.000
762.420	-5.770	39.660	33.890	-12.110	46.000
827.087	-3.833	36.192	32.359	-13.641	46.000
Vertical					
195.884	-18.375	49.987	31.612	-11.888	43.500
290.072	-17.713	49.056	31.343	-14.657	46.000
384.261	-12.121	44.324	32.203	-13.797	46.000
524.841	-10.154	39.884	29.729	-16.271	46.000
694.942	-8.044	38.986	30.942	-15.058	46.000
776.478	-7.839	37.576	29.737	-16.263	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF Antenna Conducted Test**

5.1. Test Setup

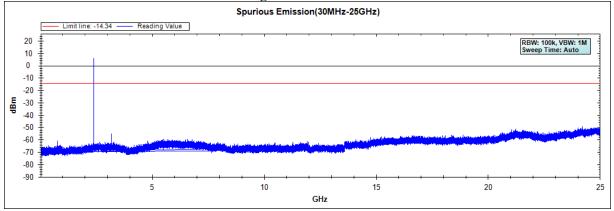
5.2. Limits

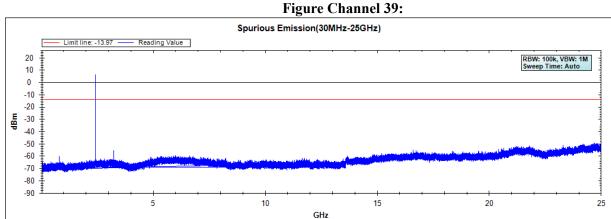
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

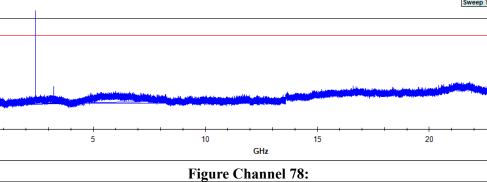
5.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

5.4. Uncertainty


± 1.20dB




5.5. **Test Result of RF Antenna Conducted Test**

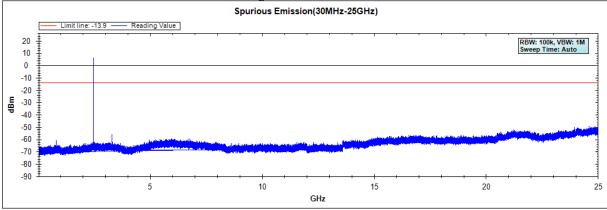
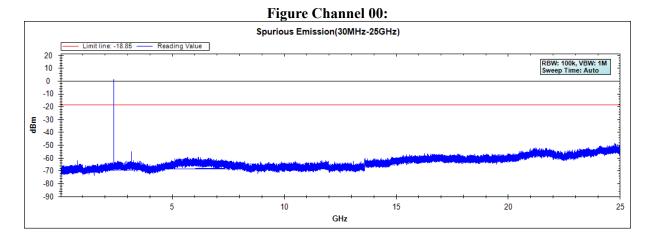
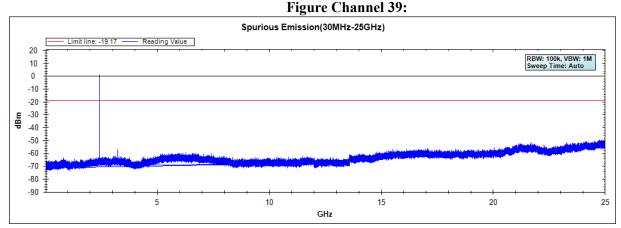
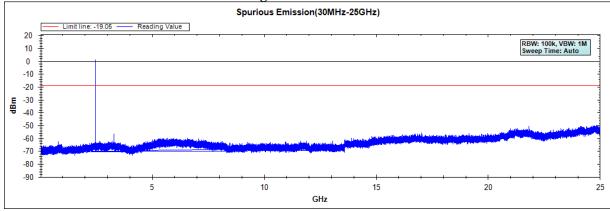

Product	:	VUZE+ Camera
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

Figure Channel 00:

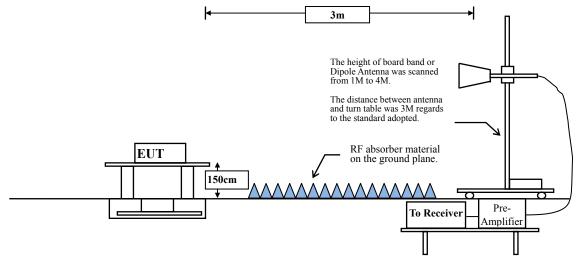



Note: The above test pattern is synthesized by multiple of the frequency range.

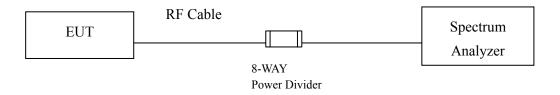

- Product **VUZE+** Camera :
- Test Item RF Antenna Conducted Test :
- Test Site :
- No.3 OATS Test date 2017/10/11 :

Test Mode Mode 2: Transmit - 3Mbps (8DPSK) :

Note: The above test pattern is synthesized by multiple of the frequency range.



6. Band Edge


6.1. Test Setup

RF Radiated Measurement:

Above 1GHz

RF Conducted Measurement

6.2. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

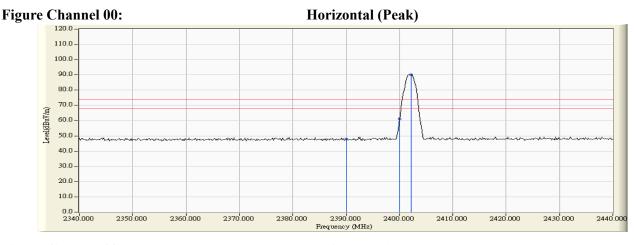
The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively.

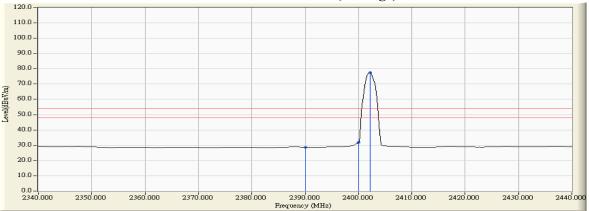
6.4. Uncertainty

- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz



6.5. **Test Result of Band Edge**

Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2402MHz)

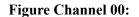

RF Radiated Measurement (Horizontal):

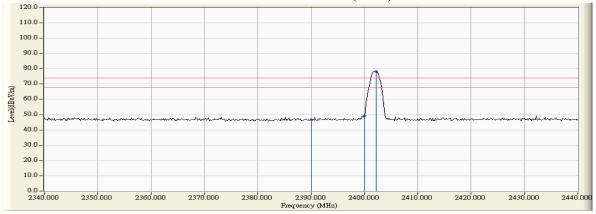
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
00 (Peak)	2390.000	6.474	41.544	48.019	74.00	54.00	Pass
00 (Peak)	2400.000	6.528	54.678	61.206			
00 (Peak)	2402.174	6.541	83.496	90.037			
00 (Average)	2390.000	6.474	22.238	28.713	74.00	54.00	Pass
00 (Average)	2400.000	6.528	25.279	31.807			
00 (Average)	2402.174	6.541	71.001	77.542			

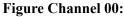
Figure Channel 00:

Horizontal (Average)

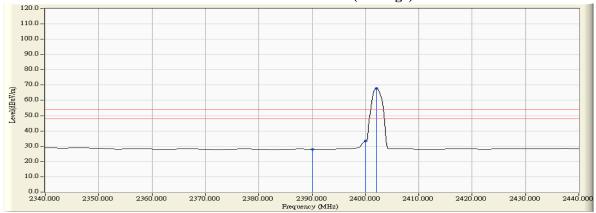
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.


- 2. 3. 4.
- 5. 6. Measurement Level = Reading Level + Correction Factor.
- The average measurement was not performed when the peak measured data is under the limit of average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2402MHz)


RF Radiated Measurement (VERTICAL):

Channel No.	Frequency			Emission Level			Result
Channel IVO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
00 (Peak)	2390.000	5.880	40.773	46.654	74.00	54.00	Pass
00 (Peak)	2400.000	5.879	43.254	49.133			
00 (Peak)	2402.174	5.884	72.347	78.231			
00 (Average)	2390.000	5.880	22.175	28.056	74.00	54.00	Pass
00 (Average)	2400.000	5.879	27.479	33.358			
00 (Average)	2402.029	5.884	62.110	67.994			

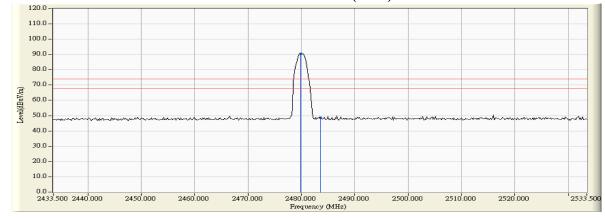


VERTICAL (Peak)

VERTICAL (Average)

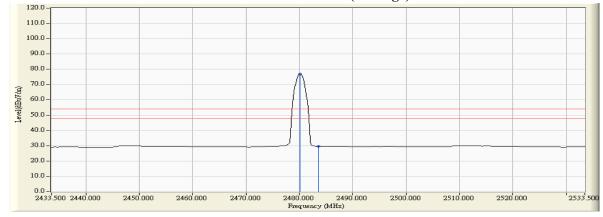
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.

- 2. 3. 4.
- 5.
- Measurement Level = Reading Level + Correction Factor. The average measurement was not performed when the peak measured data is under the limit of 6. average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2480MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
78 (Peak)	2479.877	7.085	83.469	90.553			Pass
78 (Peak)	2483.500	7.110	41.330	48.440	74.00	54.00	Pass
78 (Average)	2480.167	7.087	69.703	76.789			Pass
78 (Average)	2483.500	7.110	22.466	29.576	74.00	54.00	Pass


Figure Channel 78:

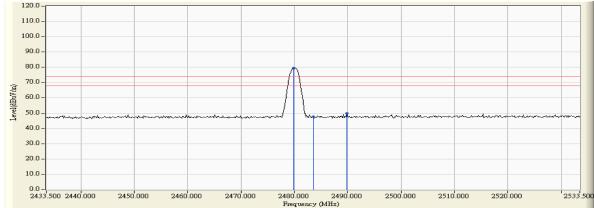
Horizontal (Peak)

Figure Channel 78:

Horizontal (Average)

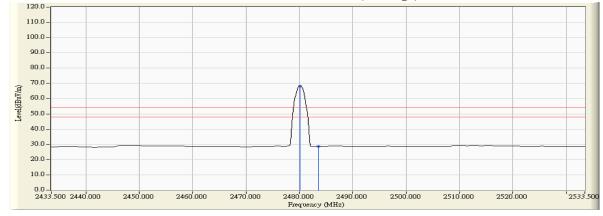
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level.
- 1. 2. 3. 4.

- 5. Measurement Level = Reading Level + Correction Factor.
- 6. The average measurement was not performed when the peak measured data is under the limit of average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2480MHz)

RF Radiated Measurement (VERTICAL):

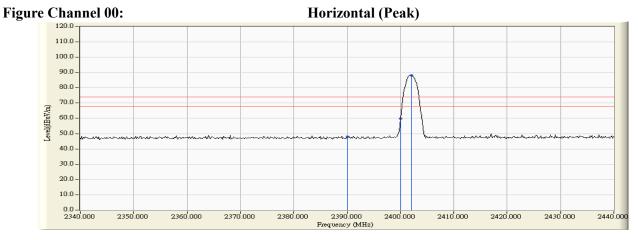
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
78 (Peak)	2479.877	6.341	73.057	79.398			Pass
78 (Peak)	2483.500	6.363	41.257	47.620	74.00	54.00	Pass
78 (Peak)	2489.877	6.403	43.493	49.896	74.00	54.00	Pass
78 (Average)	2480.167	6.343	62.009	68.351			Pass
78 (Average)	2483.500	6.363	22.251	28.614	74.00	54.00	Pass


Figure Channel 78:

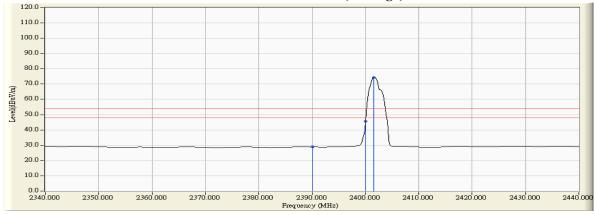
VERTICAL (Peak)

Figure Channel 78:

VERTICAL (Average)


- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level.
- 1. 2. 3.
- 4. 5.
- Measurement Level = Reading Level + Correction Factor.
- 6. The average measurement was not performed when the peak measured data is under the limit of average detection.

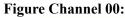
Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2402MHz)

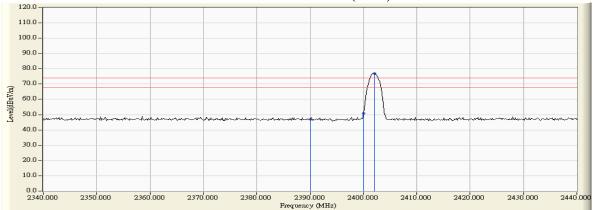

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
00 (Peak)	2390.000	6.474	41.348	47.823	74.00	54.00	Pass
00 (Peak)	2400.000	6.528	53.296	59.824			
00 (Peak)	2402.029	6.540	81.715	88.255			
00 (Average)	2390.000	6.474	22.325	28.800	74.00	54.00	Pass
00 (Average)	2400.000	6.528	39.091	45.619			
00 (Average)	2401.594	6.538	67.876	74.414			

Horizontal (Average)

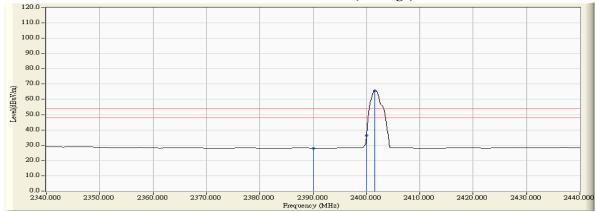
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. Measurement Level = Reading Level + Correction Factor. 1.
- 2. 3. 4. 5. 6.


- The average measurement was not performed when the peak measured data is under the limit of average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2402MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
00 (Peak)	2390.000	5.880	41.174	47.055	74.00	54.00	Pass
00 (Peak)	2400.000	5.879	44.936	50.815			
00 (Peak)	2402.029	5.884	71.065	76.949			
00 (Average)	2390.000	5.880	22.241	28.122	74.00	54.00	Pass
00 (Average)	2400.000	5.879	30.583	36.462			
00 (Average)	2401.594	5.883	59.704	65.587			

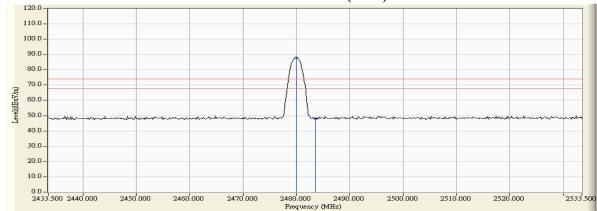


VERTICAL (Peak)

VERTICAL (Average)

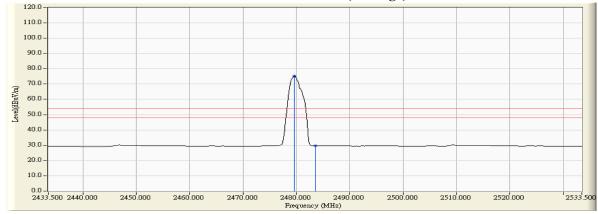
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. Measurement Level = Reading Level + Correction Factor. 1.

- 2. 3. 4. 5. 6.
- The average measurement was not performed when the peak measured data is under the limit of average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2480MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
78 (Peak)	2480.022	7.086	80.766	87.851			Pass
78 (Peak)	2483.500	7.110	40.810	47.920	74.00	54.00	Pass
78 (Average)	2479.587	7.082	68.093	75.175			Pass
78 (Average)	2483.500	7.110	22.361	29.471	74.00	54.00	Pass


Figure Channel 00:

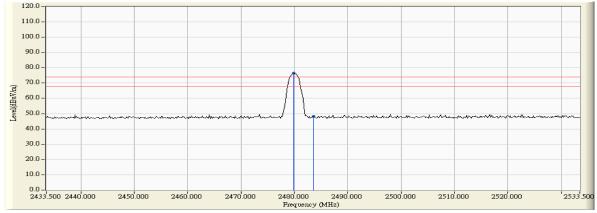
Horizontal (Peak)

Figure Channel 00:

Horizontal (Average)

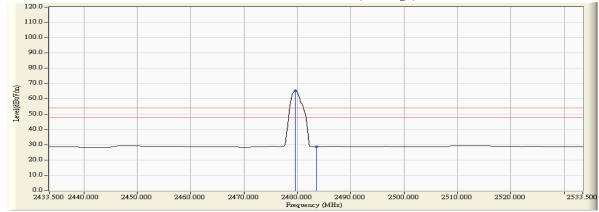
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level 1.
- 2. 3. 4. 5. 6.

- "*", means this data is the worst emission level. Measurement Level = Reading Level + Correction Factor. The average measurement was not performed when the peak measured data is under the limit of average detection.


Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test date	:	2017/10/11
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2480MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
78 (Peak)	2479.877	6.341	70.224	76.565			Pass
78 (Peak)	2483.500	6.363	41.901	48.264	74.00	54.00	Pass
78 (Average)	2479.587	6.338	59.052	65.391			Pass
78 (Average)	2483.500	6.363	22.249	28.612	74.00	54.00	Pass



VERTICAL (Peak)

VERTICAL (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.
- 2. 3. 4.

- Measurement Level = Reading Level + Correction Factor. 5.
- The average measurement was not performed when the peak measured data is under the limit of 6. average detection.

Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(Hopping off)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00:

Agilent Sj <mark>XI</mark> RL	pectrum	RF		Pept SA				SE	NSE:IN	Т			ALIGNAUTO	06:		4 Sep 28,		
Cente	r Fre	q 2.3	970	0000	Pb	IO: Fast		Trig: Fre	e Rur	1	Avg 1	Гуре	: Log-Pwr		TY	E 123 ME MWW	www	<u> </u>
10 dB/d		Ref Of Ref 1		5 dB dBm		ain:Low		#Atten: 2	0 dB			N	/kr3 2.	399	938		iHz	Auto Tu
-9.50 -9.50														J	v (1	-14,1	7 dBm	Center Fr 2.397000000 G
29.5													3			M.		Start Fr 2.390000000 G
69.5 69.5 № 79.5	والمقيرين		14V.4.	*****	Vini Jafeb	mul	,h	gun Aleson		verlaktive		~~~~					<u>~~</u> 8	Stop Fr 2.404000000 G
Res	2.390 BW 1	00 kH		x		#V	BW :	300 kHz					Swp) 2. Monwood	667 r	ns (4	0000 (0001		CF Ste 1.400000 M Auto M
1 N 2 N 3 N 4 5	1	f f f		2.402 2.400 2.399	000 00) GHz		5,83 d -59.27 d -56.88 d	Bm									Freq Offs
7 8 9 10 11																		
sg													STATU	IS			>	

Figure Channel 78:

Agilent Spectrum An								
Center Freq	2.489000000 GI	Hz NO: Fast 😱 Trig:	SENSE:INT	Avg Type	: Log-Pwr	TRAC	E 1 2 3 4 5 6 MWWWWW P NNNN	Frequency
10 dB/div Re			n: 20 dB	N	Akr3 2.4	84 516	40 GHz 24 dBm	Auto Tune
0.500 M -9.50 -19.5	1						-14.11 dDm	Center Freq 2.489000000 GHz
-29.5	Λ Λ ²	3						Start Fred 2.478000000 GH
-59.5	Come 2	a a second and a second and a second a	here and the second second	a Maggarian San Jawa	alara da angelo	*****	enselvente bernet	Stop Free 2.50000000 GH
Start 2.47800 #Res BW 100	kHz	#VBW 300 k		Sweep (#				CF Ster 2.200000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.480 128 5 2.483 500 0	0 GHz -63.2	9 dBm 0 dBm 4 dBm			101010		Freq Offse 0 H
7 8 9 10 11								
MSG					STATUS			

Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (Hopping off)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00:

cent		req		0000	00 GH	NO: Fast		Trig: Free		Avg		LIGNAUTO Log-Pwr	TRA	MOct01,2017 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNNN	Frequency
10 dB	If Gain:Low #Atten: 20 dB OFF NAME RefOffset 0.5 dB Mkr3 2.399 607 85 GHz													Auto Tun	
.500 -9.50 -19.5													Xm	-18.76 dBm	Center Fre 2.397000000 GH
29.5 39.5 49.5				+			+				▲3	03		The second secon	Start Fre 2.390000000 GH
59.5 69.5 79.5	Angen A	the second	der, nafte		يدر(الياني)	and fallows	men		end from	n and a second	,				Stop Fre 2.404000000 GH
Res	t 2.39 s BW	100			×	#VI	BW 3	00 kHz			• •		67 ms (4	4000 GHz 0001 pts)	CF Ste 1.400000 Mi Auto Mi
2	N 1 N 1	f		2.40	1 613 3 0 000 0 9 607 8	0 GHz		1.24 df -61.19 df -57.55 df	3m						Freq Offs 01
7 8 9 10 11														_	
sg												STATUS			

Figure Channel 78:

Agilent Spectrum														
Center Fre]	SE:INT	Avg Typ	e: Log-Pwr	TRA	MOct 01, 2017 CE 1 2 3 4 5 6 PE MWWWWW	Frequency				
10 dB/div	Ref Offset 0.5 dB Mkr3 2.486 270 35 GHz 0 dB/div Ref 10.50 dBm -64.48 dBm													
ormo V									-19.05 dBm	Center Freq 2.489000000 GHz				
-29.5 -39.5 -49.5	h		•3							Start Freq 2.478000000 GHz				
-59.5 \/ -69.5 -79.5	- Wa	anna dana anna	William Produce	Waren alemente	e-storetherne	nah di bergian dar	g. junisium (* 14.)		at the the second	Stop Freq 2.50000000 GHz				
Start 2.4780 #Res BW 10	00 kHz		#VBW	300 kHz	EUN		#Swp) 2.0	667 ms (4	0000 GHz 0001 pts)	CF Step 2.200000 MHz Auto Man				
1 N 1 2 N 1 3 N 1 4 5 6	f	2.479 599 40 2.483 500 00 2.486 270 36) GHz	0.95 dE -65.83 dE -64.48 dE	m					Freq Offset 0 Hz				
7 8 9 10 11														
MSG							STATUS	5		L				

Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(Hopping on)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00 Hopping:

RL	RF	zer - Swept	AC		SEN	SE:INT		ALIGNAUTO	06:30:298	M Sep 28, 2017	
enter F	Freq 2.3		000 GH				Avg Type	e: Log-Pwr	TRA	CE 1 2 3 4 5 6	Trace/Detector
		ffset 0.5 c	IFG IB	10: Fast 🕞 Sain:Low	#Atten: 20	dB		Mkr3 2.3	85 GHz	Select Trace	
0 dB/div	Ref 1	0.50 dE	ßm						-49.	78 dBm	
.500 9.50										-14 25 gBm	Clear Wri
9.5									(
9.5									ř—		
9.5							→ ^{3−}	- M			Trace Avera
9.5					. L.	1		03			
Marine 1	W.Millipen	17m Mar Alla	usuhada	shadoor	d want to	******	and a state				MaxHe
9.5	ya na mana na m Na mana na mana n	nan yan da ba	usuhata	nundrose	nt to a grand for the second	augent Marinet	layond sport date				Max Ho
9.5			estudionila	andron	nt have not for the second	angrekkelen d	lan yarak kendi danar				MaxHo
9.5	90000 0	Hz	estantanta			napeliana d				4000 GHz	
9.5 9.5 tart 2.3 Res BW	90000 C V 100 kH	Hz			V 300 kHz		Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	
9.5 9.5 tart 2.3 Res BW	390000 C V 100 kF 1 f	Hz Iz	× 102 142 55	#VBV	V 300 kHz	FUN	Sweep (#		667 ms (4		
9.5 9.5 tart 2.3 Res BW	90000 C V 100 kH	Hz 1z 2.4	×	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Min Ho
89.5 99.5 Res BW 1 N 2 N 3 N 4	1 00 000 00 00 00 00 00 00 00 00 00 00 0	Hz 1z 2.4	× 102 142 55	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Min Ho View Blan
1 N 2 N 3 N 6	1 00 000 00 00 00 00 00 00 00 00 00 00 0	Hz 1z 2.4	× 102 142 55	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Min Ho View Blanl
89.5 99.5 Res BW 1 N 2 N 3 N 4 5 6 6 7 7 8	1 00 000 00 00 00 00 00 00 00 00 00 00 0	Hz 1z 2.4	× 102 142 55	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Min Ho View Blani View
8.5 9.5 tart 2.3 Res BW 1 N 2 N 3 N 4 5 6 7 7 8 9 0	1 00 000 00 00 00 00 00 00 00 00 00 00 0	Hz 1z 2.4	× 102 142 55	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Min Ho View Blani View Mo
39.5 79.5 Res BW	1 00 000 00 00 00 00 00 00 00 00 00 00 0	Hz 1z 2.4	× 102 142 55	#VBV	V 300 kHz	3m 3m	Sweep (#	#Swp) 2.0	667 ms (4	40001 pts)	Max Ho Min Ho View Blani Viev Mo 1 o

Figure Channel 78 Hopping:

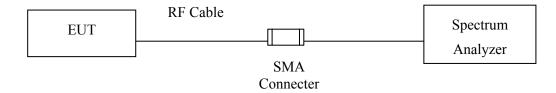
Agilent Spectrum An	halyzer - Swep	pt SA								
Center Freq	50 û 2.48900				SE:INT	Avg Ty	ALIGNAUTO pe: Log-Pwr	TRA	M Sep 28, 2017 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dB/div Re	f Offset 0.5 f 10.50 d	dB	lO:Fast G ain:Low	#Atten: 20	dB		Mkr3 2.4	ET P NNNNN	Auto Tune	
-9.50 -19.5									-14.01 dBm	Center Fred 2.489000000 GHz
-29.5	1	^2			3					Start Free 2.478000000 GH
-69.5		2 ²		-	ويتقور والمتعادية	100,000,000 (MA)	· · · · · · · · · · · · · · · · · · ·		Lessandra	Stop Free 2.500000000 GH
Start 2.47800 #Res BW 100	kHz	×	#VB\	W 300 kHz	FLI		(#Swp) 2.0	667 ms (4	0000 GHz 0001 pts)	CF Ster 2.200000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2	.478 127 05 .483 500 00 .489 118 25	GHz	5.99 dB -62.88 dB -59.04 dB	m					Freq Offse 0 H
7 8 9 10 11										
MSG							STATU	5		

Product	:	VUZE+ Camera
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (Hopping on)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00 Hopping:

		0					0							
								ept SA	alyzer - Si	rum An	Spect	gilen		
Frequency	MOct01,2017		LIGNAUTO		SE:INT	SE		AC		RF		RI		
Frequency	CE 1 2 3 4 5 6					2.3970	req 3	er F	cen					
	PE MWWWW	D			dB	#Atten: 20	10: Fast Sain:Low	P						
Auto Tur	65 GUL	Mkr3 0 200 777 65 CHz												
		set 0.5 dB Mkr3 2.398 777 65 GHz												
	22 dBm	-54.3						lBm	10.50	Re	3/div			
		() 1										.og		
Center Fre	Von	Am										.500		
2.397000000 GH	1 4 A	1 7										3.50		
	-18.76 dBm	1								_		19.5		
		/										9.5		
Start Fre														
2.390000000 G			\wedge	-						-		39.5		
			<u>^2</u>	3								19.5		
				IT a								9.5		
Stop Fre				w without a	ومعرجة والروس	-				-				
2,404000000 GH												69.6		
2.4040000000												9.5		
CF Ste	4000 GHz								GHz					
1.400000 M	0001 pts)	67 ms (4	Swp) 2.6	Sweep (#		300 kHz	#VE		kHz	100	s BW	Re		
Auto M	ON VALUE	FUNCTIO	ICTION WIDTH	TION FUN	FU	Y		X		RCI SCL	IODE T	RB I		
					m	1.24 dE	5 GHz	2.402 143 2		f	N /	1		
Freq Offs						-59.83 dE		2.400 000 0 2.398 777 6		f	N N	2		
					m	-04.22 UE		2.330 /// 0				4		
01	E											5		
										-	\rightarrow	67		
							-				-	8		
												9		
										-	-	10		
	>									-				
			STATUS									G		
		1	ainiua									~		


Figure Channel 78 Hopping:

	m Analyzer - Sw													
Center Fr	eq 2.48900				SE:INT	Avg Type	ALIGNAUTO e: Log-Pwr	TRA	4Oct 01, 2017 £ 1 2 3 4 5 6	Trace/Detector				
	PN0: Fast Trig: Free Run #Atten: 20 dB Trig: Free Run Mkr3 2.486 069 05 GH Ref Offset 0.5 dB Mkr3 2.486 069 05 GH													
10 dB/div	-63.97 dBm													
Log 0.500 -9.50	M								-10.90 dBm	Clear Write				
-19.5									10.00 0011					
-29.5	-h.									Trace Average				
-49.5	- M	2	▲3											
-69.5	5	marilian			مىتوادىرە يېرىيەرەرىيەن			·····		Max Hold				
-79.5										Max Hold				
Start 2.478 #Res BW 1			#VBV	V 300 kHz		Sweep (#	#Swp) 2.0		0000 GHz 0001 pts)	Min Hold				
MRF MODE TRU		2.478 599 50		1.02 dB		CTION FUI	NCTION WIDTH	FUNCTIO	IN VALUE					
2 N 1 3 N 1 4	f	2.478 599 5 2.483 500 0 2.486 069 0	GHz	-65.90 dB -63.97 dB	m				=	View Blank View				
6										view				
7					-									
8										More				
10					-					1 of 3				
¢														
MSG							STATU	à						

7. Channel Number

7.1. Test Setup

7.2. Limit

Frequency hopping systems operating in the 2400-2483.5 MHz bands shall use at least 75 hopping frequencies.

7.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

7.4. Uncertainty

N/A

7.5. Test Result of Channel Number

Product	:	VUZE+ Camera
Test Item	:	Channel Number
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

Frequency Range	Measurement	Required Limit	Result
(MHz)	(Hopping Channel)	(Hopping Channel)	
2402 ~ 2480	79	>75	Pass

2402-2421MHz

2422-2441MHz

Agilent Spech																	ectrum/	Analyzi	er - Sweg	pit SA												
Center F		10 s		GHz			SENSE Free R		Avg 1	AL33 Type: Lo	og-Pwr	10:50:12 TR	AMOct 01, 2017 ACE 1 2 3 4 5 6 VPE MUMMUM DET P NNNN	Frequency	Cer				3150	0000 C	GHz		1	SENSE INT		Avg Typ	e: Log-Pw	0 11 17	1:01:04 AI TRAC	MOct 01, 20 CE 1 2 3 4 1 FE MWWW ET P N N N 1	56	Frequency
				PNO: IFGain	Fast G	#Atte	n: 20 d	iB					77.4	Auto Tuno					e		PNO: IFGain	Fast G	#Atten:								_	Auto Tune
10 dB/div	Ref C	ffset 0.5 10.50 c	idB Bm								MKr2		000 GHz .07 dBm			dB/di	v R	ef Off	set 0.5 0.50 d	dB Bm							MI	Kr2 2.		00 GH 91 dBi		
-9.50	X1	M	W	M	W	V	M	M	M	ÍV.	M	Ň	WA	Center Freq 2.411000000 GHz			M	A	M	M	V	M	N	1/1	N	M	M	YM	WI	M	2	Center Freq 2.431500000 GHz
-29.5							-			-				Start Freq 2.400500000 GHz	-29 5 -39 5 -49 5	5	_				-						-	-				Start Freq 2.421500000 GHz
-69.5 -69.5 -79.5														Stop Freq 2.421500000 GHz	-69.9 -69.9 -79.9	5					-	_						+			I	Stop Fred 2.441500000 GH
Start 2.40 #Res BW	100 k		X		#VBW	V			Swee		wp) 2	533 ms	2150 GHz (1001 pts)	CF Step 2.100000 MHz Auto Man	#Re	es B	W 10	0 kH	z z	×			/ 100 kH				(#Swp)	2.467	7 ms (4150 GH (1001 pt	ts)	CF Step 2.000000 MH uto Ma
1 N 2 N 3 4 5	1		2.402 2.421	000 G	Hz Hz	5.6	8 dBm 7 dBm	n					_	Freq Offset 0 Hz	2	NN				2.422 2.441	2 00 G 1 00 G	Hz Hz	6.06 6.91	dBm dBm				-				Freq Offse 0 Hi
6 7 8 9 10											_		=		6 7 8 9 10			+						+				ŧ				
¢ MSG	• •										STATUS				C MSG		• •	*				1					STA	inus		3		

2442-2461MHz

2462-2480MHz

Agilent Spectro																	-16						er - Swe															
Center Fr		2.451		000 G		ast G		sia:Fr	ense p		A	vg Typ	e: Log-P	10 AT	11:05:04 TR	AMOct 01, 201 ACE 1, 2, 3, 4, 5 EVPE MWWWW DET P N N N N	17 56 1	Frace/Detector	Cen				7150	00000	GH	Z O: Fast		Trig: Fr	ense IV ee Run		Avg T	ype: Lo	g-Pwr	11:08:0	THACE 1 TYPE M	01,2017 2 3 4 5 6 NNNN		Frequency
				1	FGain:	Low		ktten:						1		сет] ^р NNNN 1 00 GH	_	Select Trace	_						IFG	o: Fast ain:Low		#Atten:					Miles	2 2.48		occes hereit h		Auto Tun
10 dB/div		f Offset											IV	KI2		.42 dBr		1	10 di	Bídiv	Re	ef Offs	set 0.5	5 dB dBm									WIKI		5.05			
-19.5	1	M	W	Y	V	V	N.	M	1	V	V	W	M	V	V	W	2	Clear Write	-9.50	A1	1	A	1	M	A	A	M	M	M	A	Ŵ	V	Y	N	M	2		Center Fre 71500000 GH
29.5													-					Trace Average	-29.5 -39.5 -49.5	_										_		-			-	M	2.4	Start Fre 61500000 GH
59.5 59.5 79.5																		Max Hold	-69.5 -69.5 -79.5	_																	2.4	Stop Fre 81500000 GH
Start 2.44 Res BW	100	kHz				#VB\	W 10	0 KH	z		_	_	(#Swp)	2.4	67 ms	46150 GH (1001 pts	iz s)	Min Hold	#Re	s BV	6150 V 100	kH2				#V	вw	100 KH	z		Swee		vp) 2	Stop 2 2.467 m)1 pts)		CF Ste 2.000000 MH Ma
1 N 1 2 N 1 3 4 5 6				2.442 2.461	00 GH 00 GH	Hz Hz		4.06	iBm iBm				011202					View Blank View	1		1 1			2.4	462.00 480.00	I GHz GHz		6.69 6.05	dBm dBm	- rusic								Freq Offse
7 8 9 10 11																		More 1 of 3	7 8 9 10																			
196													57	ATUS					MSG	į) Alig	anmen	t Con	mplete	d									STATU	6			_	

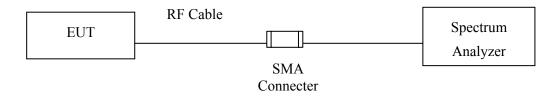
Product	:	VUZE+ Camera
Test Item	:	Channel Number
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK)

Frequency Range	Measurement	Required Limit	Result
(MHz)	(Hopping Channel)	(Hopping Channel)	
$2402\sim 2480$	79	>75	Pass

2402-2421MHz

2422-2441MHz

	pectrum		or - Swep														n Anah	yzer - Swey	pt SA								
ente	r Fre		11000	0000 G	Hz			SENSE IN		Avg Typ	e: Log-Pwr	12:16:12	PM Oct 01, 2017 ACE 1 2 3 4 5 6 YPE MWWWWWW DET P N N N N N	Trace/Detector	Cent			43150	0000 GH	łz		SE INT	Avg Typ	ALIGNAUTO re: Log-Pwr	12:21:3	DET P NNNN	Frequency
	10.2580.05		-0	1	PNO: Fa FGain:Le	ew 🗣	#Atten:	20 dB	·				22.01.000000000	Select Trace					P. IFI	NO: Fast C Sain:Low	#Atten: 20					1999 Michige Del Indat	
10 dB/d	liv	Ref Off	set 0.5	dB Bm							Mkr2	2.421	000 GHz .88 dBm	1	10 dB	lídiv	Ref 0	ffset 0.5 10.50 d	dB Bm					M	r2 2.44	1 00 GHz 0.57 dBm	100000000000000000000000000000000000000
.9.500 .9.500	P	yw h	my	M	hh	-	YMY	WYY	Ym	vrym	huh	WYW	ynym,	Clear Write	0.500 -9.50 -19.5	Mir	P.W	m	m Maul	and for	AWW	an And	WW	- Marta	And hu	WWW.	Center Fre 2.431500000 GH
29.5 29.5	1													Trace Average	-29.5 -39.5 -49.5					1				-	-		Start Fre 2.421500000 GH
95 95													-	Max Hold	-69.5 -69.5 -79.5		-										Stop Fre 2.441500000 GH
	BW 1	50 GH 00 kH			#	VBW	100 kH	iz			(#Swp) 2	2.533 ms	2150 GHz (1001 pts)	Min Hold	#Res	2.421 BW 1	00 k			#VB	W 100 kHz					44150 GHz (1001 pts)	
1 N 2 N 3 4 5 6	1	1		2.402 0 2.421 0	00 GH2 00 GH2	z	-0,91 0,88	dBm dBm	rower					View Blank, View	1	N 1 N 1			2.4220 2.4410	0 GHz 0 GHz	-1.67 dE -0.57 dE	3m					Freq Offse 0 H
7 9 10														More 1 of 3	7 8 9 10 11												
50											STATU	5			MSG									STAT	US		


2442-2461MHz

2462-2480MHz

enter F		F	50.0	AC	17	_	SENS	E INT	Avg T	ALIGNAUTO	12:33:351 TR	M Oct 01, 2017	Frequency	UN RE		1F	50.9			_	SENSE INT	Ava	ALXINAU Vpe: Log-P	10 1: WF	2.52.59PM (TRACE	ct01,2017	Trace/Detector
oracor r	104	2.110	1000	PI	NO: Fast (Sain:Low		ig: Free I tten: 20				1	CE 123456 PE MWWWWWWW DET P NNNN	A	ortar	titioq				PNO: Fast FGain:Low		ree Run 1:20 dB					123456 MWWWNNN PNNNNN	Select Trace
0 dB/div			et 0.5 d							Mk	r2 2.461 -2	00 GHz 36 dBm	100000000000000000000000000000000000000	10 dE	Bídiv	Ref O	ffset 0.5 10.50 d	dB IBm					M	1kr2 2	2.480 0	0 GHz 1 dBm	1
500 V1	part 4	a.A	W	rywy	MAR	hal	m	r Ww	AN AN	Murra	wym	must 1	Center Freq 2.451500000 GHz	Log 0.500 -9.50	NI W	Y	Vm	ryr	Ymyr	And	wmp	Ym	Ark	a A la	M	2	Clear Write
95										-			Start Freq 2.441500000 GHz	-29.5 -39.5 -49.5						-			-		_	4	Trace Averag
95													Stop Freq 2.461500000 GHz	-69.5 -69.5 -79.5										-		-	Max Hol
tart 2.4- Res BW	V 100) kHz			#VB	W 100) kHz	FU		p (#Swp)	2.467 ms	6150 GHz (1001 pts)	CF Step 2.000000 MHz Auto Man	#Re:	t 2.461 s BW 1	00 kl	Hz Hz		#VE	3W 100 k		Swee	ep (#Swp)) 2.46			Min Hol
1 N 2 N 3 4 5				2.442 0 2.461 0	0 GHz 0 GHz	0.7	0.60 dBr 2.36 dBr	m					Freq Offset 0 Hz	1	N 1 N 1			2.462 2.480	00 GHz 00 GHz	0.6	3 dBm 1 dBm						View Blank View
7 9 0												=		7 8 9 10 11												=	Moi 1 of
Alig	nmer	t Com	pleted							STAT	16	3		MSG									57	TATUS			

8. Channel Separation

8.1. Test Setup

8.2. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

8.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

8.4. Uncertainty

± 283Hz

8.5. Test Result of Channel Separation

Product	:	VUZE+ Camera
Test Item	:	Channel Separation
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB	
Channel No.	Frequency (MHz)	Level	(kHz)	Bandwidth (kHz)	Result
	· · ·	(kHz)	× ,		
00	2402	1000	>25 kHz	544.0	Pass
39	2441	1000	>25 kHz	538.0	Pass
78	2480	1000	>25 kHz	538.0	Pass

NOTE: The 20dB Bandwidth is refer to section 10.

		alyzer - Swe	pt SA								
w∥ RL Center	Freq	: 50 Ω 2.40200			7	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	TRAC	E 1 2 3 4 5 6	Frequency
10 dB/div		f Offset 0.5 f 10.50 d	dB	IO: Wide G Sain:Low	Trig: Free #Atten: 20			Mkr	DE 2 2.403		Auto Tune
-9.50		1 10.50 a					2				Center Freq 2.402000000 GHz
-29.5 -39.5 -49.5											Start Freq 2.397000000 GHz
-59.5 ארעשיין -69.5	n porter and	allion or allow	Locological delation	<i>м</i> г				Vinee		nighdaysian!	Stop Freq 2.407000000 GHz
Center 2 #Res BV	N 100	kHz	×	#VBV	V 100 kHz			Sweep 5	Span 10 00.0 ms (7		CF Step 1.000000 MHz Auto Man
1 N 2 N 3 4 5 6	1 f		2.402.00 2.403.00		5.44 dE 5.46 dE	3m					Freq Offset 0 Hz
7 8 9 10 11					101					v	
MSG								STATUS	5		

Channel 00 (2402MHz)

Channel 39	(2441MHz)

Agrent Spectrum Analyzer - Swep			pe:Log-Pwr TRA	PM Sep 28, 2017	Frequency
Ref Offset 0.5 d	PNO: Wide 🖵 Trig IFGain:Low #Att): Free Run en: 20 dB	Mkr2 2.442	00 GHz	Auto Tune
10 dB/div Ref 10.50 dE Log 0.500 -9.50	sm				Center Freq 2.441000000 GHz
-29.5	and the second s			Muy war	Start Freq 2.436000000 GHz
-59.5					Stop Freq 2.446000000 GHz
Center 2.441000 GHz #Res BW 100 kHz	#VBW 100	FUNCTION F	#Sweep 500.0 ms		CF Step 1.000000 MHz <u>Auto</u> Man
1 N 1 f 3 1 f 3 1 4 1 5 1 f f 1 f	2.442 00 GHz 5.	51 dBm			Freq Offset 0 Hz
MSG			STATUS		

Channel 78 (2480MHz)

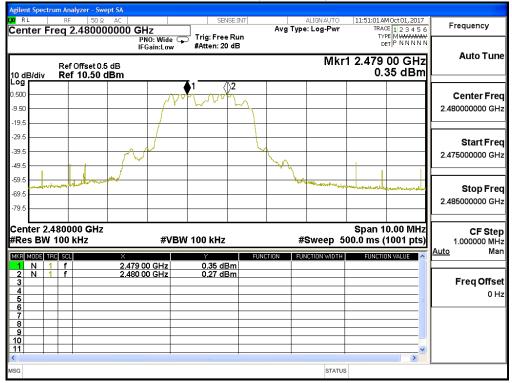
gilent Spectrum A RL F Center Freq	RF 50 Ω	AC 0000 GH]	SE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	TRAC	4 Sep 28, 2017 E 1 2 3 4 5 6 PE MWWWWW	Trace/Detector
	ef Offset 0.5	dB	O: Wide 🕞 ain:Low	#Atten: 20			Mkr	□ 1 2.479	00 GHz 21 dBm	Select Trace 1
.500 9.50	ef 10.50 d	Bm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2			0.2		Clear Writ
19.5 29.5 39.5 49.5										Trace Averaç
i9.5 79.5	and the second second second	w.M					Huran Barden and	whitemenent	Williaman and a state of the st	Max Ho
enter 2.480 Res BW 100	0 kHz	×	#VBW	/ 100 kHz	FUN		¢Sweep 5	00.0 ms (0.00 MHz 1001 pts)	Min Ho
1 N 1 1 2 N 1 1 3 4 5 5 6	•	2.479 00 2.480 00		5.21 dE 5.21 dE	3m					View Blank Viev
7 8 9 10 11										Mo 1 of
sg 🗘 Alignmer	at Completer	4					STATUS		>	L

VUZE+ Camera
Channel Separation
No.3 OATS
Mode 2: Transmit - 3Mbps (8DPSK)

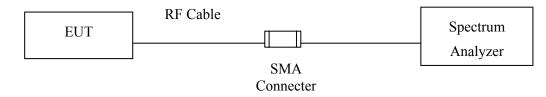
	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB	
Channel No.	Frequency (MHz)	Level	(kHz)	Bandwidth (kHz)	Result
	(WITIZ)	(kHz)	(KIIZ)	Dandwiddii (KHZ)	
00	2402	1000	>25 kHz	820.0	Pass
39	2441	1000	>25 kHz	820.0	Pass
78	2480	1000	>25 kHz	822.0	Pass

NOTE: The 20dB Bandwidth is refer to section 10.

Agilent Spect		/										_
Center F	RF	50 Ω .40200	AC 0000 GH	z	1	ISE:INT	Avg T	ALIGNAU /pe: Log-F		TRAG	MOct 01, 2017 CE 1 2 3 4 5 (PE MWWWW	Frequency
10 dB/div		Offset 0.5 10.50 d	dB	0: Wide 🕞 ain:Low	☐ Trig: Free #Atten: 20			N	/kr2	[□] 2.403	00 GHz 92 dBm	Auto Tune
Log 0.500 -9.50 -19.5						אי רדע	2					Center Freq 2.402000000 GHz
-29.5 -39.5 -49.5				\sim				L h	<u>ــــــــــــــــــــــــــــــــــــ</u>			Start Freq 2.397000000 GHz
-59.5 -69.5 -79.5	م)قداط فيرم	the sources	and the state of t	parad					- Law	derarman	markeline	Stop Free 2.407000000 GH:
Center 2 #Res BW	100 k			#VBW	/ 100 kHz				<u> </u>	0.0 ms (0.00 MHz 1001 pts)	
	1 f 1 f		× 2.402.00 2.403.00		0.89 dE 0.92 dE	3m		FUNCTION W		FUNCTI		Freq Offse
7 8 9 10 11												
MSG								s	TATUS			


Channel 00 (2402MHz)

		pectr	um A	naly:	zer - S	Swep	t SA																		
lxi r	RL.		R	F	50	Ω	AC					1	SEN:	SE:INT		Avç		ALIGN) : Log		11:4	TRAG	CE 1 2	1,2017 345(6	Trace/Detector
								PI IF	۹O: Gair	Wide 1:Low	Ģ		: Free en: 20								D	et P N	NNNI	N	Select Trace
10 c		liv			ffset 0.50														Mkr	2 2.4			GHz dBm		1
Log 0.500 -9.50												/	$\nabla \nabla$)1 ℃∕	\mathcal{N}^{v}	2	1								Clear Writ
-19.5 -29.5 -39.5 -49.5	5									7^	w						Į		٦						Trace Averag
-40.5 -59.5 -69.5 -79.5	5	e-ynlws		وبالقديد	-put ^{an} -t	an eler	the low of the	e and a second	لودھوں ا									,	Υ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r n	Wang	.the states		Max Hol
#Re	es E		100	k) GH Iz	z	×			#VE	зw	100 I	kHz		FUN	CTION		Swe	<u> </u>	00.0		100			Min Hol
1 3 4 5 6	N		f				2.	441 0 442 0	0 G 0 G	iHz iHz			50 dB 40 dB												View Blank ∨iew
7 8 9 10 11																									Mor 1 of
MSG																			STATUS	6			>		


Channel 39 (2441MHz)

Channel 78 (2480MHz)

9. Dwell Time

9.1. Test Setup

9.2. Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

9.4. Uncertainty

 \pm 25msec

9.5. Test Result of Dwell Time

Product	:	VUZE+ Camera
Test Item	:	Dwell Time
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (Channel 00,39,78 –DH5)

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
2402	2.877	13	50	0.75	0.299	0.4	Pass
2441	2.877	13	50	0.75	0.299	0.4	Pass
2480	2.877	13	50	0.75	0.299	0.4	Pass

Duty cycle = ((Time slot length(ms)*Hopping of Number) / Sweep time (ms)

Dwell time = (Duty cycle /79) * (79*0.4)

CH 00 Time Interval between hops

enter Freq 2.402000000 GHz FiG: Fint ow FiG: Faint ow r Freq 2.402000000 GHz FiGainLew FiGainLew Aug Type: Log-Pw Aug Type: Log-Pwr Frequency Frequency TYPE V Auto Tur Auto Tu Mkr3 6.623 ms 5.66 dBm Ref Offset 0.5 dB Ref 20.50 dBm Ref Offset 0.5 dB Ref 20.50 dBm 10 di div ♦3 Center Fre Center Fre 2.402000000 G 2.402000000 G Start Free Start Fre 2.40200000 GH 2.402000000 G Rights 44 Stop Fre 2.402000000 GH Stop Fre 2.40200000 GH CF Step 1.000000 Mileenter 2.402000000 GHz es BW 1.0 MHz CF Step 1.000000 MH Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 1.0 MHz 6.64 dBm 6.69 dBm 6.66 dBm 2.877 ms 3.746 ms 6.623 ms 1 N 1 t 2 N 1 t 3 N 1 t Freq Offse Freq Offse OH 0 H enter 2.402000000 GHz s BW 1.0 MHz Span 0 Hz Sweep 50.00 ms (1001 pts) #VBW 1.0 MHz -

CH39 Time Interval between hops

CH 39Transmission Time

elent Spect AL Center F		3.F	1	10 g.	AC.	P	NO: F	ast C		Trig: \	sexs /ideo			Avg 1	A Type:	Log-P	10 RT	06 52 3	25 PM 5 TRACE TYPE	ep 29, 201 1 2 3 4 5 V	Frequency		RL	1.1	F	4410000	00 Gł	NO: Fast		SENSE Trig: Video		Avg		Log-Pi		52 50 PF TRAC	M 5ep 29, 20 3E 1 2 3 4 PE WWWWW ET P N N N	5 6	Frequency
0 dB/div	-	Ref 0	ffset 20.5	0.5 c	dB Bm	IF	Gaind	Low		Atten	: 30 d	8							- (41)	r aaan	Auto Tu		10 dB/div	Re	ef o	ffset 0.5 dB 20.50 dBr	3	Sain:Low		Atten: 30 di	8				м	(r3 6.	623 m 06 dB	IS	Auto Tun
10.5	20				7.002															2-116	Center Fr 2.441000000 G	eq	10.5	_	-		Ŷ	1	∂ ²		-	-	3	ſ	-	-			Center Fre 2.441000000 GH
9.50																					Start Fr 2.441000000 G		-9.50 -19.5 -29.5														1901	M	Start Fre 2.441000000 GH
95				_							_									190.0	Stop Fr 2.441000000 0		49.5					r.hyuu	+				40	utre .					Stop Fr 2.441000000 G
9.5																					CF St 1.000000 N Auto N	Hz	Res BW 1	.0 N	NH:	0000 GHz z	×		BW 1	.0 MHz		VCTION		-		0 ms (pan 0 H 1001 pt	ts)	CF St 1.000000 M Auto M
19 S		-		-	94		-	-	-			· T	-		"	. Pr.		•	ſ		Freq Off	set Hz	1 N 1 2 N 1 3 N 1 4 5	1 1			3.7	77 ms 46 ms 23 ms		6.04 dBn 6.09 dBn 6.06 dBn	n n n								Freq Offs 01
enter 2.				0 GH	łz															an 0 H			6 7 8 9 10 11						_										
tes BW	1.0	MH	z				-	#VB	W 1.	.0 M	HZ				S		50. ATUS	.00 m	is (1	001 pts	Ð	-	e											57	ATUS				

CH 00 Transmission Time

CH 78 Time Interval between hops

CH 78 Transmission Time

Agilent Spec																													er - Swept													
Center I					AC 1000) Gł	łz			Trig:		SE INT		Av	rg Typ		g-Pwr	07	15:233 TRU T	M Sep 2	28,2017 2 3 4 5 NNNN	7 6 Fre	quency	Ce					80000		GHz		1	ense int		Avg Typ	e: Log-P	MT .	07 15:39 P TRA	M 5ep 28, 20 CE 1 2 3 4 (PE WWWWW XET P N N N	56	Frequency
		fof				IF	NO: F Gaind	ast (Low	÷	Atte	n: 30	dB							3	DET P N	NNN		Auto Tuni				Ref	Off	fset 0.5 d	B	PNO: F IFGain:	ast 🕞	Atten: 3	0 dB				M	lkr3 6	.623 m	ns	Auto Tu
10 dB/div	Re	ef 2	0.50	0 de	3m					_	_	_			_								enter Fred	10	5	div	Ref	20	0.50 dE	3m	Ŷ					¢ ³	ſ	+	5.	88 dB		Center Fr 2.48000000 Gi
-9.50										_					_								Start Free		1		_					1								1990 L	M	Start Fre 2.48000000 Gi
-19.5										_											1990 V		Stop Free		5				_		634/m	mid					4. Applient				ſ	Stop Fre 2.480000000 Gi
39.5												Ļ										Auto	CF Step 000000 MH Mar	Re	s B	W 1.0	M	Hz	000 GH				1.0 MH		FUNCTIO			_	00 ms (Span 0 H (1001 pt	ts)	CF Ste 1.000000 Mi Auto Mi
-59 S	 -				19				-					1			. г	1	5.	-		F	Freq Offse 0 H	3	N	1 1	1			_	2.877 m 3.746 m 6.623 m	15	5.87 (5.91 (5.88 (dBm dBm								Freq Offs 01
Center 2 Res BW				GF	łz			#VB	W 1	1.0 N	1Hz					Swe	Pep	50.0	0 ms	Spar (100	n 0 Hz	z		7 8 9 10																		
ISG	 			_	_	_	_						_	_	_	-	STATU			1.00				MSG													1.	TATUS				

Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

Product	:	VUZE+ Camera
Test Item	:	Dwell Time
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (Channel 00,39,78 –DH5)

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
2402	2.888	13	50	0.75	0.300	0.4	Pass
2441	2.887	13	50	0.75	0.300	0.4	Pass
2480	2.888	13	50	0.75	0.300	0.4	Pass

Duty cycle =((Time slot length(ms)*Hopping of Number) / Sweep time (ms)

Dwell time = (Duty cycle / 79) * (79*0.4)

CH 00 Time Interval between hops

enter Freq 2.402000000 GHz PNO: Fast If GainLew Historia. AL BF 500 AC GHZ enter Freq 2.402000000 GHZ PRO:Fast AC Atten: 30 dB ALIGNAUTO Avg Type: Log-Pwr Frequency ALIGNAUTO Avg Type: Log-Pwr Frequency TYPE WWW Auto Tur Mkr3 7.463 ms 2.04 dBm Auto Tu Ref Offset 0.5 dB Ref 20.50 dBm Ref Offset 0.5 dB Ref 20.50 dBm 10 d **♦**³ Center Fre Q1 Q^2 Center Free 2.402000000 GH Start Free 2,40200000 GH Start Freq 2.402000000 GHz No. W any man Sec. 10 Stop Free Stop Fred 2.402000000 GHz 2 40 CF Step 1.000000 MH-CF Step 1.000000 MHenter 2.402000000 GH Span 0 H Sweep 10.00 ms (1001 pts #VBW 1.0 MHz M 1 N 1 t 2 N 1 t 3 N 1 t 3.716 ms 4.575 ms 7.463 ms 2.14 dBm 1.28 dBm 2.04 dBm Freq Offse Freq Offsel 0 Hz OH Span 0 Hz Sweep 50.00 ms (1001 pts) enter 2.402000000 GHz s BW 1.0 MHz #VBW 1.0 MHz

CH39 Time Interval between hops

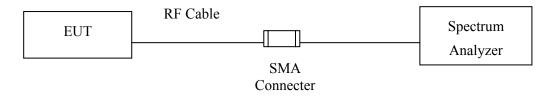
CH 39Transmission Time

gilent Spect	trum Analyzer - Swept	154									Agilent Spectrum Analyzer - S	wept SA				
enter F	Freq 2.441000	000 GH	z		ENSE INT	Avg Typ	ALIGNAUTO De: Log-Pwr	11:44:22 AMO TRACE TVPE	23456 PNNNNN	Frequency	Center Freq 2.4410	000000 GHz	Trig: Video	Aug Type: Log-Pwr	11:44:37 AMOct 01, 2017 TRACE 1:2:3:4:5:6 TYPE WWWWWWWW CET P NNNNN	Frequency
0 dB/div	Ref Offset 0.5 d Ref 20.50 dB	IFG	0:Fast 😱 ain:Low	Atten: 3	IO dB			CRT	PNNNNN	Auto Tune	Ref Offset 0	PNO: Fast IFGain:Low	Atten: 30 dB		Mkr3 6.633 ms 1.61 dBm	Auto Tu
10.5										Center Freq 2.441000000 GHz				¢ ³		Center Fr 2.441000000 G
500				1						Start Freq 2.441000000 GHz	-195 -295 -395				1965 LVL	Start Fr 2.441000000 G
is									180_14	Stop Freq 2.441000000 GHz	-49.5 -59.5 -60.5	inativs		eaulatern		Stop F 2.441000000
95										CF Step 1.000000 MHz Auto Man	Center 2.441000000 Res BW 1.0 MHz	#VBV		Sweep 1	Span 0 Hz 0.00 ms (1001 pts)	CF S 1.000000 / Auto
9.5	~ ~		·	P	4. 1			r -		Freq Offset 0 Hz	1 N 1 t 2 N 1 t 3 N 1 t 4 5	2,887 ms 3,746 ms 6,633 ms	1.78 dBm 0.90 dBm 1.61 dBm			FreqOff
	.441000000 GH	Iz							an 0 Hz		6 7 9 10 11					
es BW	1.0 MHz		#VBW	1.0 MH	z		Sweep 5	0.00 ms (10	out pts)		€ MSG			STATU	8	

CH 00 Transmission Time

CH 78 Time Interval between hops

Ref Offset 0.5 dB Mk (Factor Control (2000)) Avg Type: Log-Per (2000) Mkd (2000) Center Freq 2.480000000 GHz Avg Type: Log-Per (2000) Mkd (2000) Frequency (2000)	plent Spec	etru																						11							r - Swep															
Build of the former (0.5 dB) Auto Tune Ref Offset (0.5 dB) Mkr3 7.463 mS Auto Bridly Ref Offset (0.5 dB) (1.70 dB) <t< td=""><td>enter</td><td>Fr</td><td></td><td></td><td></td><td></td><td></td><td>GH</td><td>z</td><td></td><td>,</td><td></td><td></td><td>Det</td><td></td><td>Avg</td><td>Туре</td><td>: Log</td><td>-Pwr</td><td>12</td><td>H0 903 TR T</td><td>IPM OC UACE 1 TYPE W</td><td>2345</td><td>56</td><td>Frequency</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>GHz</td><td></td><td></td><td></td><td></td><td>Avg</td><td></td><td></td><td>) 12 F</td><td>09:107 THU T</td><td>MOCTOR NCE 1 2</td><td>3456</td><td></td><td>Frequency</td></t<>	enter	Fr						GH	z		,			Det		Avg	Туре	: Log	-Pwr	12	H0 903 TR T	IPM OC UACE 1 TYPE W	2345	56	Frequency								GHz					Avg) 12 F	09:107 THU T	MOCTOR NCE 1 2	3456		Frequency
Center Freq US Center Freq US Center Freq US Center Center Center <th< th=""><th>0 dB/div</th><th></th><th></th><th></th><th></th><th></th><th></th><th>IFG</th><th>iain:L</th><th>ew.</th><th></th><th>tten:</th><th>30 dE</th><th>3</th><th></th><th></th><th></th><th></th><th></th><th></th><th>3</th><th>CRT P</th><th>NNNI</th><th>NN.</th><th>Auto Tune</th><th></th><th></th><th>iv I</th><th>Ref</th><th>offs 20</th><th>et 0.5</th><th>dB Bm</th><th>IFGa</th><th>in:Low</th><th>ф —</th><th>Atten: 30</th><th>dB</th><th></th><th></th><th></th><th>Mk</th><th>(r3 7</th><th>.463</th><th>3 ms</th><th></th><th>Auto Tur</th></th<>	0 dB/div							IFG	iain:L	ew.		tten:	30 dE	3							3	CRT P	NNNI	NN.	Auto Tune			iv I	Ref	offs 20	et 0.5	dB Bm	IFGa	in:Low	ф —	Atten: 30	dB				Mk	(r3 7	.463	3 ms		Auto Tur
Image: Start Freq 195 195 195 196	0.5																			-						10.500	5	11						<	21	Q ² .	1			¢ ³		<u>.</u>				Center Fr 80000000 G
Suppring	50			_	ļ		ľ			-		#	ļ		1	Ē	1			1	Ļ	1		Í		-19.5 -29.5	5															_	7	900 LVL	2,4	Start Fr 80000000 G
CF Step Center 2.48000000 GHz Sweep 10.00 ms (100 1pts) CF 1000000 MHz 10 10 100000 MHz #VBW 1.0 MHz Sweep 10.00 ms (100 1pts) 100000 Auto Man 10 4 456 ms 100000 MHz #VBW 1.0 MHz Sweep 10.00 ms (100 1pts) Auto Auto Freq Offset 10 4 456 ms 100 dtm 100 dtm #VBW 1.0 MHz #VBW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (100 1pts) Auto Auto Transfer offset 10 1 4 456 ms 100 dtm #VBW 1.0 MHz #VBW 1.0 MHz <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>╞</td> <td></td> <td></td> <td></td> <td>-69.6</td> <td>5</td> <td>latero, a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>talger</td> <td>(viv</td> <td></td> <td></td> <td></td> <td>1944</td> <td>MENN</td> <td>_</td> <td>-</td> <td>_</td> <td>2.4</td> <td>Stop F 80000000 (</td>	5									+			+									╞				-69.6	5	latero, a							talger	(viv				1944	MENN	_	-	_	2.4	Stop F 80000000 (
OHz 4	15					-											L								1.000000 MHz	Res	s BV	V 1.0	MH	Hz	100 GI	Hz			BW 1	V		INCTION) ms	(1001	1 pts)		CF S
ter 2,48000000 GHz Span 0 Hz 10	5		m		-1		10		·										-4	1	•	,,		<i>"</i>		2	N	1	t				4,575	ms		1.84 dE 0.95 dE 1.70 dE	im Im Im			_				Ξ		Freq Off
BW 10 MU2 #V/BW 10 MU2 Sweep 50 00 mc (1001 ptc)					000	GH	z										_									10																		Ę		
	es BW	1.	0 M	Hz						VB	W 1.	0 MH	z				- 23	-	-		0 ms	6 (10	01 pt	ts)		¢		1.1											1 A.					3		


Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

10. Occupied Bandwidth

10.1. Test Setup

10.2. Limits

N/A

10.3. Test Procedure

The EUT was setup to ANSI C63.4, 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

10.4. Uncertainty

± 283Hz

10.5. Test Result of Occupied Bandwidth

:	VUZE+ Camera
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 1: Transmit - 1Mbps (GFSK)
	:

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	816		NA
39	2441	807		NA
78	2480	807		NA

					8						
		nalyzer - Swe									
IXI RL Center	. Fred		AC	47	SEI	NSE:INT	Avg T	ALIGNAUTO	TRA	M Sep 28, 2017	Frequency
Contor	Ticq	2.40200	P	NO: Wide G Gain:Low	Trig: Free #Atten: 20				T	PE N N N N N	
10 dB/di		f Offset 0.5 f 10.50 c						Mkr2		358 GHz 37 dBm	Auto Tune
Log					6	<u>∦</u> 1					
					2/~	~		3			Center Freq
-9.50					~		Your V	-		-14.34 dBm	2.402000000 GHz
-19.5			1	No contraction of the second s				hy			
-29.5		-0	- N					m			Start Fred
-39.5								- Jone	\sim		2.400500000 GHz
-49.5	Non and Market	~~							- Down	mon	
-59.5	'						_				
-69.5											Stop Fred
-79.5											2.403500000 GH;
-70.0											
Center #Res B)00 GHz (Hz		#VB\	№ 100 kHz		Swee	p (#Swp) 3		3.000 MHz (1001 pts)	CF Step 300.000 kHz
MKR MODE			X		Y		NCTION	FUNCTION WIDTH	FUNCT	ION VALUE	<u>Auto</u> Mar
1 N 2 N	1 f		2.402 14 2.401 65		5.66 dl -14.37 dl						
3 N	1 f		2.401 00		-14.93 di						Freq Offse
4 5											он
6											
7 8											
9											
10 11		+									
<		•		1	Ш	-			+	>	
//SG								STATU	s		

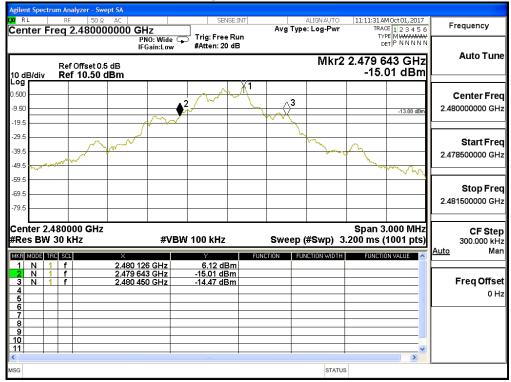

Figure Channel 00:

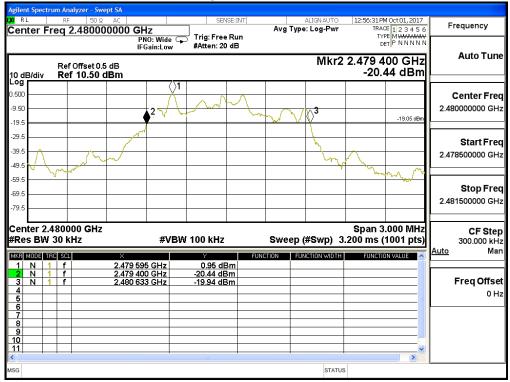
Figure	Channel	39:
--------	---------	-----

Agilent Spect			pt SA								
Center F	RF req 2.	50 Ω . 44100		Z O: Wide (Avg Tyj	ALIGN AUTO De: Log-Pwr	TRA	M Sep 28, 2017 CE 1 2 3 4 5 6 PE MWWWWWW	Frequency
10 dB/div)ffset 0.5 10.50 d	dB	io: wide C Gain:Low	#Atten: 20			Mkr2	2.440 6	61 GHz 25 dBm	Auto Tune
-9.50 -19.5				~~~~~	2	1 	×2 ³			-13.91 dBm	Center Freq 2.441000000 GHz
-29.5 -39.5 -49.5	prosective	~~~	~~~~					- Walk		www.w	Start Freq 2.439500000 GHz
-59.5 -69.5 -79.5										Y	Stop Freq 2.442500000 GHz
Center 2 #Res BW	/ 30 kH			#VB	W 100 kHz			(#S wp) 3	.200 ms (CF Step 300.000 kHz Auto Man
	IRC SCL 1 f 1 f 1 f 		× 2.441 132 2.440 66 2.441 468	1 GHz	6.09 df -14.25 df -13.97 df	3m 3m		UNCTION WIDTH	FUNCTI		Freq Offset 0 Hz
8 9 10 11 <								STATU	5	<u> </u>	

Figure Channel 78:

Product	:	VUZE+ Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 3Mbps (8DPSK) (2402MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	1230		NA
39	2441	1230		NA
78	2480	1233		NA


Figure Channel 00:

		nalyzer - Swe	pt SA								
Cente	r Freq		AC 0000 GH					ALIGNAUTO e: Log-Pwr	TRAG	MOct 01, 2017	Frequency
10 dB/d		f Offset 0.5	dB	IO: Wide 🕞 Sain:Low	#Atten: 20			Mkr2	2.401 4	15 GHz	Auto Tune
-9.50				2 ¹	~~~	~	m	3		-18.79 dBm	Center Freq 2.402000000 GHz
-29.5 -39.5 -49.5 🌱	Λ_{m}	we and the second	and the second sec					h h	<u></u>	Imp Im	Start Freq 2.400500000 GHz
-59.5 -69.5 -79.5									<u>س</u>		Stop Freq 2.403500000 GHz
#Res E	r 2.4020 BW 30 De TRC 13		×	#VBW	/ 100 kHz	CU.N		(#Swp) 3	.200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz <u>Auto</u> Man
1 N 2 N 3 N 4 5 6	1 f		2.401 610 2.401 410 2.402 649	5 GHz	1.21 di -19.34 di -18.90 di	3m 3m			FUNCTION		Freq Offset 0 Hz
7 8 9 10 11 <					m						
MSG								STATUS	3		

		ctrur		alyzer - Swe									
(X) R Cen	-	Fre	RF Pq 2	50 Ω 2.44100	0000 G	Hz			Avg Typ	ALIGNAUTO e: Log-Pwr	TRAC	MOct 01, 2017 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 d	B/div			Offset 0.6	i⊧ 5 dB	NO: Wide C Gain:Low	#Atten: 2			Mkr2	□ 2.440 4	09 GHz 90 dBm	Auto Tune
Log 0.500 -9.50 -19.5				10.50 (2.	1 Wardand	~~		∕ <mark>∕}³</mark>		-19.12 dBm	Center Freq 2.441000000 GHz
-29.5 -39.5 -49.5		4		- M	ward and	d 				1 m	And have		Start Freq 2.439500000 GHz
-59.5 -69.5 -79.5													Stop Freq 2.442500000 GHz
#Re	s Bl	N 3	0 k	00 GHz Hz		#VB	W 100 kHz				.200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man
1 3 4 5 6	N N N	1 1 1	f f		× 2.440 60 2.440 40 2.441 63)9 GHz	0.88 d -19.90 d -19.62 d	Bm 3m		NCTION WIDTH	FUNCTI		Freq Offset 0 Hz
7 8 9 10 11 <												<u> </u>	
MSG										STATU	6		

Figure Channel 39:

Figure Channel 78:

11. EMI Reduction Method During Compliance Testing

No modification was made during testing.