

### CFR 47 FCC PART 15 SUBPART C

### **CERTIFICATION TEST REPORT**

For

### LED DOWMLIGHT

### MODEL NUMBER: RL56069B4WHVA, RL56069B4WHVA-CA, RL56069B4WHVA-C, RL56HVAHIWAC, RL56HVAHWB1

FCC ID: 2AKCY-RL56BLEHVA

REPORT NUMBER: 4788973569-1

ISSUE DATE: July 05, 2019

Prepared for

Cooper Lighting LLC 1121 Hwy 74 S Peachtree City Georgia 30269 United States

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com



### **Revision History**

| Rev. | Issue Date | Revisions     | Revised By |
|------|------------|---------------|------------|
| V0   | 07/05/2019 | Initial Issue |            |



|         | Summary of Test Results                           |                                                           |              |  |  |  |
|---------|---------------------------------------------------|-----------------------------------------------------------|--------------|--|--|--|
| Clause  | Test Items                                        | FCC Rules                                                 | Test Results |  |  |  |
| 1       | 6dB Bandwidth                                     | FCC Part 15.247 (a) (2)                                   | Pass         |  |  |  |
| 2       | Peak Conducted Output Power                       | FCC Part 15.247 (b) (3)                                   | Pass         |  |  |  |
| 3       | Power Spectral Density                            | FCC Part 15.247 (e)                                       | Pass         |  |  |  |
| 4       | Conducted Bandedge and Spurious Emission          | FCC Part 15.247 (d)                                       | Pass         |  |  |  |
| 5       | Radiated Bandedge and Spurious Emission           | FCC Part 15.247 (d)<br>FCC Part 15.209<br>FCC Part 15.205 | Pass         |  |  |  |
| 6       | Conducted Emission Test For AC<br>Power Port      | FCC Part 15.207                                           | Pass         |  |  |  |
| 7       | Antenna Requirement                               | FCC Part 15.203                                           | Pass         |  |  |  |
| This to | est report is only published to and us<br>purpose | ed by the applicant, and it is not f<br>in China.         | or evidence  |  |  |  |



# TABLE OF CONTENTS

| 1. | ATT                  | ESTATION OF TEST RESULTS                     | . 6             |
|----|----------------------|----------------------------------------------|-----------------|
| 2. | TES                  | ST METHODOLOGY                               | . 7             |
| 3. | FAC                  | CILITIES AND ACCREDITATION                   | . 7             |
| 4. | CAI                  | LIBRATION AND UNCERTAINTY                    | . 8             |
| 4  | l.1.                 | MEASURING INSTRUMENT CALIBRATION             | . 8             |
| 4  | <sup>1</sup> .2.     | MEASUREMENT UNCERTAINTY                      | . 8             |
| 5. | EQ                   | JIPMENT UNDER TEST                           | . 9             |
| 5  | 5.1.                 | DESCRIPTION OF EUT                           | . 9             |
| 5  | 5.2.                 | MAXIMUM OUTPUT POWER                         | . 9             |
| 5  | 5.3.                 | CHANNEL LIST                                 | . 9             |
| 5  | 5.4.                 | TEST CHANNEL CONFIGURATION                   | 10              |
| 5  | 5.5.                 | THE WORSE CASE POWER SETTING PARAMETER       | 10              |
| 5  | 5.6.                 | DESCRIPTION OF AVAILABLE ANTENNAS            | 10              |
| 5  | 5.7.                 | WORST-CASE CONFIGURATIONS                    | 11              |
| 5  | 5.8.                 | TEST ENVIRONMENT                             | 11              |
| 5  | 5.9.                 | DESCRIPTION OF TEST SETUP                    | 12              |
| 5  | 5.10.                | MEASURING INSTRUMENT AND SOFTWARE USED       | 13              |
| 6. | ME                   | ASUREMENT METHODS                            | 14              |
| 7. | AN                   | TENNA PORT TEST RESULTS                      | 15              |
| 7  | 7.1.                 | ON TIME AND DUTY CYCLE                       | 15              |
| 7  | 7.2.                 | 6 dB DTS BANDWIDTH                           | 17              |
| 7  | 7.3.                 | PEAK CONDUCTED OUTPUT POWER                  | 19              |
| 7  | .4.                  | POWER SPECTRAL DENSITY                       | 21              |
| 7  | 7.5.                 | CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS    | 23              |
| 8. | RAI                  | DIATED TEST RESULTS                          | 25              |
| 8  | 8 <i>.1.</i><br>8.1. | RESTRICTED BANDEDGE                          |                 |
| 8  | 8.2 <i>.</i><br>8.2. | SPURIOUS EMISSIONS (1~3GHz)<br>1. GFSK MODE  |                 |
| 8  | 8. <i>3.</i><br>8.3. | SPURIOUS EMISSIONS (3~18GHz)<br>1. GFSK MODE | <i>41</i><br>41 |
| 8  | 8.4.                 | SPURIOUS EMISSIONS 18G ~ 26GHz               | 47              |



|     | -                                                 |    |
|-----|---------------------------------------------------|----|
|     | 8.4.1. GFSK MODE                                  | 47 |
| 8   | 3.5. SPURIOUS EMISSIONS 30M ~ 1 GHz               |    |
|     | 8.5.1. GFSK MODE                                  | 49 |
| 8   | 3.6. SPURIOUS EMISSIONS BELOW 30M                 |    |
|     | 8.6.1. GFSK MODE                                  | 51 |
| 9.  | AC POWER LINE CONDUCTED EMISSIONS                 | 54 |
| g   | 9.1. GFSK MODE                                    | 55 |
| 0   |                                                   |    |
| 10. | ANTENNA REQUIREMENTS                              | 57 |
| 11. | APPENDIXES                                        | 58 |
|     | Appendix A): 6dB Bandwidth                        | 58 |
|     | Appendix B): Band-edge for RF Conducted Emissions | 60 |
|     | Appendix C): RF Conducted Spurious Emissions      |    |
|     | Appendix D): Maximum Power Spectral Density       | 67 |



# **1. ATTESTATION OF TEST RESULTS**

| Applicant information |                              |                             |
|-----------------------|------------------------------|-----------------------------|
| Company Name:         | Cooper Lighting LLC          |                             |
| Address:              | 1121 Hwy 74 S Peachtree City | Georgia 30269 United States |

#### Manufacturer Information Company Name: Leedarson Light Co., Ltd. Xingtai Industrial Zone, Economic Development Zone, Changtai Address: County , Zhangzhou City, Fujian Province, P.R. China **EUT Information** EUT Name: LED DOWMLIGHT Model: RL56069B4WHVA Series Model: RL56069B4WHVA-CA, RL56069B4WHVA-C, RL56HVAHIWAC, RL56HVAHWB1 Model difference: All the same except for the model name. Brand Name: Halo Sample Received Date: July 1, 2019 Date of Tested: July 2~5, 2019

| APPLICABLE STANDARDS         |              |  |
|------------------------------|--------------|--|
| STANDARD                     | TEST RESULTS |  |
| CFR 47 FCC PART 15 SUBPART C | PASS         |  |

Prepared By:

Kebo. zhang.

Checked By:

Shawn Wen

Laboratory Leader

Shenny les

Kebo Zhang Engineer Project Associate

Approved By:

fephenous

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

# 3. FACILITIES AND ACCREDITATION

| Accreditation<br>Certificate | <ul> <li>A2LA (Certificate No.: 4102.01)</li> <li>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.<br/>has been assessed and proved to be in compliance with A2LA.</li> <li>FCC (FCC Designation No.: CN1187)</li> <li>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.<br/>Has been recognized to perform compliance testing on equipment subject<br/>to the Commission's Delcaration of Conformity (DoC) and Certification<br/>rules</li> <li>ISED(Company No.: 21320)</li> <li>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.<br/>has been registered and fully described in a report filed with ISED.<br/>The Company Number is 21320.</li> <li>VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)</li> <li>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.<br/>has been assessed and proved to be in compliance with VCCI, the<br/>Membership No. is 3793.</li> <li>Facility Name:<br/>Chamber D, the VCCI registration No. is G-20019 and R-20004<br/>Shielding Room B , the VCCI registration No. is C-20012 and T-20011</li> </ul> |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.



# 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

## 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Item                                                                                                                                        | Uncertainty         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Conduction emission                                                                                                                              | 3.62dB              |  |
| Radiation Emission test(include Fundamental<br>emission)<br>(9kHz-30MHz)                                                                         | 2.2dB               |  |
| Radiation Emission test(include Fundamental<br>emission)<br>(30MHz-1GHz)                                                                         | 4.00dB              |  |
| Radiation Emission test                                                                                                                          | 5.78dB (1GHz-18Gz)  |  |
| (1GHz to 26GHz)( include Fundamental emission)                                                                                                   | 5.23dB (18GHz-26Gz) |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the $95\%$ confidence level using a coverage factor of k=2. |                     |  |



# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

| EUT Name            | LED DOWMLIGHT                                                |                     |  |
|---------------------|--------------------------------------------------------------|---------------------|--|
| Model               | RL56069B4WHVA                                                |                     |  |
| Series Model        | RL56069B4WHVA-CA, RL56069B4WHVA-C, RL56HVAHIWAC, RL56HVAHWB1 |                     |  |
| Model difference    | All the same except for the model name.                      |                     |  |
|                     | Operation Frequency                                          | 2402 MHz ~ 2480 MHz |  |
| Product Description | Modulation Type Data Rate                                    |                     |  |
|                     | GFSK 1Mbps                                                   |                     |  |
| Rated Input         | AC 120V, 60Hz                                                |                     |  |

# 5.2. MAXIMUM OUTPUT POWER

| Bluetooth Mode | Frequency<br>(MHz) | Channel Number | Max Output Power<br>(dBm) | EIRP<br>(dBm) |
|----------------|--------------------|----------------|---------------------------|---------------|
| BLE            | 2402-2480          | 0-39[40]       | 6.074                     | 10.804        |

## 5.3. CHANNEL LIST

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 11      | 2424               | 22      | 2446               | 33      | 2468               |
| 1       | 2404               | 12      | 2426               | 23      | 2448               | 34      | 2470               |
| 2       | 2406               | 13      | 2428               | 24      | 2450               | 35      | 2472               |
| 3       | 2408               | 14      | 2430               | 25      | 2452               | 36      | 2474               |
| 4       | 2410               | 15      | 2432               | 26      | 2454               | 37      | 2476               |
| 5       | 2412               | 16      | 2434               | 27      | 2456               | 38      | 2478               |
| 6       | 2414               | 17      | 2436               | 28      | 2458               | 39      | 2480               |
| 7       | 2416               | 18      | 2438               | 29      | 2460               | /       | /                  |
| 8       | 2418               | 19      | 2440               | 30      | 2462               | /       | /                  |
| 9       | 2420               | 20      | 2442               | 31      | 2464               | /       | /                  |
| 10      | 2422               | 21      | 2444               | 32      | 2468               | /       | /                  |

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



## 5.4. TEST CHANNEL CONFIGURATION

| Test Mode | Test Channel                      | Frequency                 |
|-----------|-----------------------------------|---------------------------|
| GFSK      | CH0, CH19, CH39/<br>LCH, MCH, HCH | 2402MHz, 2440MHz, 2480MHz |

## 5.5. THE WORSE CASE POWER SETTING PARAMETER

| The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band |                  |              |       |       |  |  |
|--------------------------------------------------------------------|------------------|--------------|-------|-------|--|--|
| Test Se                                                            | oftware          | uEnergyTest  |       |       |  |  |
| Modulation Type                                                    | Transmit Antenna | Test Channel |       |       |  |  |
|                                                                    | Number           | CH 0         | CH 19 | CH 39 |  |  |
| GFSK                                                               | 1                | 7 7 7 7      |       |       |  |  |

### 5.6. DESCRIPTION OF AVAILABLE ANTENNAS

| Antenna | Frequency (MHz) | Antenna Type     | MAX Antenna Gain (dBi) |
|---------|-----------------|------------------|------------------------|
| 1       | 2402-2480       | Integral Antenna | 4.73                   |

| Test Mode | Transmit and<br>Receive Mode | Description                                            |
|-----------|------------------------------|--------------------------------------------------------|
| GFSK      | 1TX, 1RX                     | Chain 1 can be used as transmitting/receiving antenna. |



# 5.7. WORST-CASE CONFIGURATIONS

| Bluetooth Mode | Modulation<br>Technology | Modulation Type | Data Rate<br>(Mbps) |
|----------------|--------------------------|-----------------|---------------------|
| BLE            | DTS                      | GFSK            | 1Mbit/s             |

## 5.8. TEST ENVIRONMENT

| Environment Parameter | Selected Values During Tests |             |  |  |  |
|-----------------------|------------------------------|-------------|--|--|--|
| Relative Humidity     | 50                           | 0 ~ 70%     |  |  |  |
| Atmospheric Pressure: | 1025Pa                       |             |  |  |  |
| Temperature           | TN                           | 22 ~ 28°C   |  |  |  |
|                       | VL                           | N/A         |  |  |  |
| Voltage :             | VN                           | AC120V,60Hz |  |  |  |
|                       | VH                           | N/A         |  |  |  |

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature



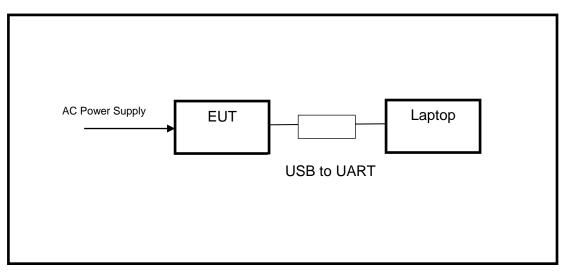
# 5.9. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Item | Equipment   | Brand Name | Model Name | P/N           |
|------|-------------|------------|------------|---------------|
| 1    | Laptop      | ThinkPad   | T460S      | SL10K24796 JS |
| 2    | USB TO UART | /          | /          | /             |

#### I/O CABLES

| Cable<br>No | Port | Connector Type | Cable Type | Cable Length(m) | Remarks |
|-------------|------|----------------|------------|-----------------|---------|
| 1           | USB  | /              | /          | 1               | /       |


#### ACCESSORY

| Item | Accessory | Brand Name | Model Name | Description |
|------|-----------|------------|------------|-------------|
| 1    | /         | /          | /          | /           |

#### TEST SETUP

The EUT can work in an engineer mode with a software through a PC.

#### SETUP DIAGRAM FOR TEST





### 5.10. MEASURING INSTRUMENT AND SOFTWARE USED

|              | Conducted Emissions            |                |                                                     |         |              |       |              |              |
|--------------|--------------------------------|----------------|-----------------------------------------------------|---------|--------------|-------|--------------|--------------|
|              |                                |                | Ins                                                 | trument |              |       |              |              |
| Used         | Equipment                      | Manufacturer   | anufacturer Model No. Serial No                     |         |              | No.   | Last Cal.    | Next Cal.    |
|              | EMI Test Receiver              | R&S            | E                                                   | SR3     | 1019         | 961   | Dec.10,2018  | Dec.10,2019  |
| V            | Two-Line V-<br>Network         | R&S            | EN                                                  | IV216   | 1019         | 983   | Dec.10,2018  | Dec.10,2019  |
| V            | Artificial Mains<br>Networks   | Schwarzbeck    | NSL                                                 | K 8126  | 8126         | 465   | Dec.10,2018  | Dec.10,2019  |
|              |                                |                | So                                                  | oftware |              |       |              |              |
| Used         | Dese                           | cription       |                                                     | Ма      | nufactur     | rer   | Name         | Version      |
| $\checkmark$ | Test Software for C            | onducted distu | rband                                               | e       | Farad        |       | EZ-EMC       | Ver. UL-3A1  |
|              |                                | Ra             | diate                                               | d Emiss | sions        |       |              |              |
|              |                                |                | Ins                                                 | trument |              |       |              |              |
| Used         | Equipment                      | Manufacturer   | Мос                                                 | del No. | Serial       | No.   | Last Cal.    | Next Cal.    |
| V            | MXE EMI<br>Receiver            | KESIGHT        | N9                                                  | 038A    | MY564        | 00036 | Dec.10,2018  | Dec.10,2019  |
| V            | Hybrid Log<br>Periodic Antenna | TDK            | HLP-3003C                                           |         | 1309         | 960   | Sep.17, 2018 | Sep.17, 2021 |
| $\checkmark$ | Preamplifier                   | HP             | 8447D                                               |         | 2944A09099   |       | Dec.10,2018  | Dec.10,2019  |
| V            | EMI Measurement<br>Receiver    | R&S            | ES                                                  | SR26    | 1013         | 377   | Dec.10,2018  | Dec.10,2019  |
| $\checkmark$ | Horn Antenna                   | TDK            | HR                                                  | N-0118  | 130939       |       | Sep.17, 2018 | Sep.17, 2021 |
| V            | High Gain Horn<br>Antenna      | Schwarzbeck    | BBH                                                 | A-9170  | 69           |       | Aug.11, 2018 | Aug.11, 2021 |
| V            | Preamplifier                   | TDK            | PA-0                                                | 2-0118  | TRS-3<br>000 |       | Dec.10,2018  | Dec.10,2019  |
| V            | Preamplifier                   | TDK            | PA                                                  | -02-2   | TRS-3<br>000 |       | Dec.10,2018  | Dec.10,2019  |
| $\checkmark$ | Loop antenna                   | Schwarzbeck    | 15                                                  | 519B    | 000          | 08    | Jan.07, 2019 | Jan.07, 2022 |
| V            | Band Reject Filter             | Wainwright     | WRCJV8-<br>2350-2400-<br>2483.5-<br>2533.5-<br>40SS |         | 4            |       | Dec.10, 2018 | Dec.10, 2019 |
| V            | High Pass Filter               | Wi             | WHKX10-<br>2700-3000-<br>18000-40SS                 |         | 23           | 3     | Dec.10,2018  | Dec.10,2019  |
|              |                                |                | So                                                  | oftware |              |       |              |              |
| Used         | Descr                          | •              |                                                     | Manufa  | cturer       |       | Name         | Version      |
| V            | Test Software<br>disturt       |                |                                                     | Fara    | ad           | E     | EZ-EMC       | Ver. UL-3A1  |

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



|              | Other instruments |              |              |            |             |             |  |  |
|--------------|-------------------|--------------|--------------|------------|-------------|-------------|--|--|
| Used         | Equipment         | Manufacturer | Model<br>No. | Serial No. | Last Cal.   | Next Cal.   |  |  |
| $\checkmark$ | Spectrum Analyzer | Keysight     | N9030A       | MY55410512 | Dec.10,2018 | Dec.10,2019 |  |  |
| $\checkmark$ | Power Meter       | Keysight     | N9031A       | MY55416024 | Dec.10,2018 | Dec.10,2019 |  |  |
| $\checkmark$ | Power Sensor      | Keysight     | N9323A       | MY55440013 | Dec.10,2018 | Dec.10,2019 |  |  |

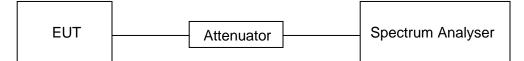
# 6. MEASUREMENT METHODS

| No. | Test Item                                     | KDB Name                                      | Section |
|-----|-----------------------------------------------|-----------------------------------------------|---------|
| 1   | 6 dB Bandwidth                                | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.2     |
| 2   | Peak Output Power                             | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.3.1.3 |
| 3   | Power Spectral Density                        | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.4     |
| 4   | Out-of-band emissions in non-restricted bands | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.5     |
| 5   | Out-of-band emissions in restricted<br>bands  | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.6     |
| 6   | Band-edge                                     | KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 8.7     |
| 7   | Conducted Emission Test For AC Power<br>Port  | ANSI C63.10-2013                              | 6.2     |
| 8   | 99% Bandwidth                                 | ANSI C63.10-2013                              | 6.9.3   |



# 7. ANTENNA PORT TEST RESULTS

# 7.1. ON TIME AND DUTY CYCLE


### <u>LIMITS</u>

None; for reporting purposes only

### PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

#### TEST SETUP



### TEST ENVIRONMENT

| Temperature         | 24.1°C | Relative Humidity | 57%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |

### **RESULTS**

| Mode | On<br>Time<br>(msec) | Period<br>(msec) | Duty<br>Cycle<br>x<br>(Linear) | Duty<br>Cycle<br>(%) | Duty Cycle<br>Correction<br>Factor<br>(db) | 1/T<br>Minimum<br>VBW<br>(kHz) | Final setting<br>For VBW<br>(kHz) |
|------|----------------------|------------------|--------------------------------|----------------------|--------------------------------------------|--------------------------------|-----------------------------------|
| BLE  | 0.402                | 0.626            | 0.642                          | 64.2                 | 1.925                                      | 2.488                          | 3                                 |

Note:

Duty Cycle Correction Factor= $10\log(1/x)$ .

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.



### ON TIME AND DUTY CYCLE MID CH

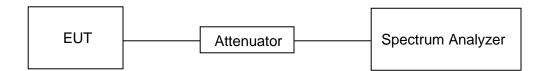
|                               | sight Spect                |            |            |              |                                              |                                               |          |             |                   |              |                                                |             |                                    |
|-------------------------------|----------------------------|------------|------------|--------------|----------------------------------------------|-----------------------------------------------|----------|-------------|-------------------|--------------|------------------------------------------------|-------------|------------------------------------|
| Cent                          | er Fre                     | RF<br>eq 2 |            | Ω DC         |                                              | <br>                                          | SE:INT   | Avg Type    | ALIGN AUTO<br>RMS | TRAC         | M Jul 02, 2019<br>E 1 2 3 4 5 6                | F           | requency                           |
| 10 dB                         | s/div                      | Ref        | 10.00      | NFE<br>) dBm | PNO: Fas<br>IFGain:Lo                        | #Atten: 3                                     |          |             | 1                 | \Mkr3 6      | 25.6 μs<br>1.78 dB                             |             | Auto Tune                          |
| Log▼<br>0.00 -<br>-10.0 -     |                            |            |            |              |                                              |                                               | 3∆4 ⁻    |             |                   |              |                                                |             | <b>Center Freq</b><br>40000000 GHz |
| -30.0 -<br>-40.0 -<br>-50.0 - |                            |            |            |              | ×2                                           | 1∆2                                           |          |             |                   |              |                                                | 2.4         | Start Freq<br>40000000 GHz         |
| -60.0 -<br>-70.0 -<br>-80.0 - |                            | W -        |            |              | ₩<br>                                        | <b>Anno de</b>                                |          | hyderodylag |                   | - Holey Hild |                                                | 2.4         | Stop Freq<br>40000000 GHz          |
| Res  <br>  MKR   M            | er 2.4<br>BW 3.1           | 0 MI       | Hz         | GHz<br>×     |                                              | 50 MHz*                                       |          |             | Sweep 3.          | .067 ms (:   | pan 0 Hz<br>2001 pts)<br><sup>DN VALUE</sup> ^ | <u>Auto</u> | CF Step<br>3.000000 MHz<br>Man     |
| 2                             | Δ2 1<br>F 1<br>Δ4 1<br>F 1 | t          | (Δ)<br>(Δ) |              | 401.7 μs<br>902.1 μs<br>625.6 μs<br>902.1 μs | <br>-13.83<br>-32.57 dE<br>11.78<br>-32.57 dE | 3m<br>dB |             |                   |              | E                                              |             | Freq Offset<br>0 Hz                |
| 7<br>8<br>9<br>10             |                            |            |            |              |                                              |                                               |          |             |                   |              |                                                | Log         | Scale Type                         |
| 11                            |                            |            |            |              |                                              | m                                             |          |             |                   |              |                                                |             | <u></u>                            |
| MSG                           |                            |            |            |              |                                              |                                               |          |             | STATUS            | ;            |                                                |             |                                    |



# 7.2. 6 dB DTS BANDWIDTH

#### LIMITS

| CFR 47FCC Part15 (15.247) Subpart C |                  |           |                          |  |  |
|-------------------------------------|------------------|-----------|--------------------------|--|--|
| Section                             | Test Item        | Limit     | Frequency Range<br>(MHz) |  |  |
| CFR 47 FCC 15.247(a)(2)             | 6dB<br>Bandwidth | >= 500kHz | 2400-2483.5              |  |  |


#### TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test |
|------------------|------------------------------------------------|
| Detector         | Peak                                           |
| RBW              | For 6 dB Bandwidth :100K                       |
| VBW              | For 6dB Bandwidth : ≥3 × RBW                   |
| Trace            | Max hold                                       |
| Sweep            | Auto couple                                    |

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 db relative to the maximum level measured in the fundamental emission.

#### TEST SETUP





| Temperature         | 24.1°C | Relative Humidity | 57%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |

#### **RESULTS**

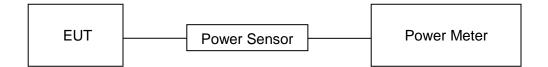
Please refer to appendix A.



# 7.3. PEAK CONDUCTED OUTPUT POWER

#### **LIMITS**

| CFR 47 FCC Part15 (15.247) Subpart C |                      |                    |                          |  |  |
|--------------------------------------|----------------------|--------------------|--------------------------|--|--|
| Section                              | Test Item            | Limit              | Frequency Range<br>(MHz) |  |  |
| CFR 47 FCC 15.247(b)(3)              | Peak Output<br>Power | 1 watt or<br>30dBm | 2400-2483.5              |  |  |


#### TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port

to the Power sensor.

Measure peak power each channel.

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | 24.1°C | Relative Humidity | 57%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |



### **RESULTS**

| Test    | Maximum Conducted Output Power(PK) | EIRP   | LIMIT |
|---------|------------------------------------|--------|-------|
| Channel | (dBm)                              | (dBm)  | dBm   |
| Low     | 5.176                              | 9.906  | 30    |
| Middle  | 5.870                              | 10.600 | 30    |
| High    | 6.074                              | 10.804 | 30    |

Note: EIRP=Maximum Conducted Output Power(PK) + Antenna Gain

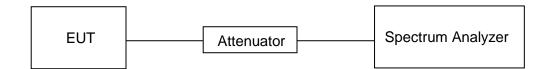


# 7.4. POWER SPECTRAL DENSITY

#### **LIMITS**

| CFR 47 FCC Part15 (15.247) Subpart C |                           |                            |                          |  |  |
|--------------------------------------|---------------------------|----------------------------|--------------------------|--|--|
| Section                              | Test Item                 | Limit                      | Frequency Range<br>(MHz) |  |  |
| CFR 47 FCC §15.247 (e)               | Power Spectral<br>Density | 8 dBm in any 3 kHz<br>band | 2400-2483.5              |  |  |

#### TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test     |
|------------------|----------------------------------------------------|
| Detector         | Peak                                               |
| RBW              | $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ |
| VBW              | ≥3 × RBW                                           |
| Span             | 1.5 x DTS bandwidth                                |
| Trace            | Max hold                                           |
| Sweep time       | Auto couple.                                       |

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### TEST SETUP





#### **TEST ENVIRONMENT**

| Temperature         | 24.1°C | Relative Humidity | 57%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |

#### **RESULTS**

Please refer to appendix D.



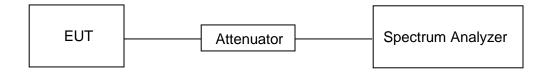
# 7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

#### **LIMITS**

| CFR 47 FCC Part15 (15.247) Subpart C |                                                 |                                                                                                                               |  |  |
|--------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Section                              | Test Item                                       | Limit                                                                                                                         |  |  |
| CFR 47 FCC §15.247 (d)               | Conducted<br>Bandedge and<br>Spurious Emissions | at least 20 dB below that in the 100 kHz<br>bandwidth within the band that contains the<br>highest level of the desired power |  |  |

#### TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:


| Center Frequency | The center frequency of the channel under test |
|------------------|------------------------------------------------|
| Detector         | Peak                                           |
| RBW              | 100kHz                                         |
| VBW              | ≥3 × RBW                                       |
| Span             | 1.5 x DTS bandwidth                            |
| Trace            | Max hold                                       |
| Sweep time       | Auto couple.                                   |

Use the peak marker function to determine the maximum PSD level.

| Span               | Set the center frequency and span to encompass frequency range to be measured |
|--------------------|-------------------------------------------------------------------------------|
| Detector           | Peak                                                                          |
| RBW                | 100kHz                                                                        |
| VBW                | ≥3 × RBW                                                                      |
| measurement points | ≥span/RBW                                                                     |
| Trace              | Max hold                                                                      |
| Sweep time         | Auto couple.                                                                  |

Use the peak marker function to determine the maximum amplitude level.





#### **TEST ENVIRONMENT**

| Temperature         | 24.1°C | Relative Humidity | 57%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |

#### RESULTS

Please refer to appendix B and C.

# 8. RADIATED TEST RESULTS

#### <u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209

| ~ |             |                    |                      |  |  |  |  |  |
|---|-------------|--------------------|----------------------|--|--|--|--|--|
|   | Frequency   | Field Strength     | Measurement Distance |  |  |  |  |  |
|   | (MHz)       | (microvolts/meter) | (meters)             |  |  |  |  |  |
|   | 0.009~0.490 | 2400/F(kHz)        | 300                  |  |  |  |  |  |
|   | 0.490~1.705 | 24000/F(kHz)       | 30                   |  |  |  |  |  |
|   | 1.705~30.0  | 30                 | 30                   |  |  |  |  |  |
|   | 30~88       | 100                | 3                    |  |  |  |  |  |
|   | 88~216      | 150                | 3                    |  |  |  |  |  |
|   | 216~960     | 200                | 3                    |  |  |  |  |  |
|   | 960~1000    | 500                | 3                    |  |  |  |  |  |
|   |             |                    |                      |  |  |  |  |  |

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

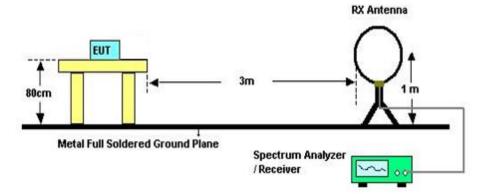
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.



### Radiation Disturbance Test Limit for FCC (Above 1G)

| Frequency (MHz) | dB(uV/m) (at 3 meters) |    |  |
|-----------------|------------------------|----|--|
|                 | Peak Average           |    |  |
| Above 1000      | 74                     | 54 |  |

#### Restricted bands of operation


| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note: <sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. <sup>2</sup>Above 38.6c



#### TEST SETUP AND PROCEDURE

Below 30MHz



The setting of the spectrum analyser

| RBW      | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |
|----------|------------------------------------------------------------|
| VBW      | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |
| Sweep    | Auto                                                       |
| Detector | Peak/QP/ Average                                           |
| Trace    | Max hold                                                   |

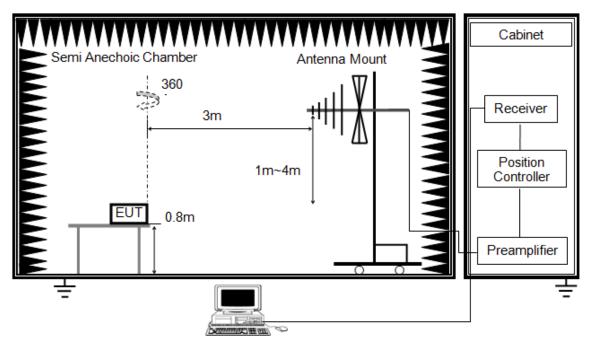
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



### Below 1G and above 30MHz

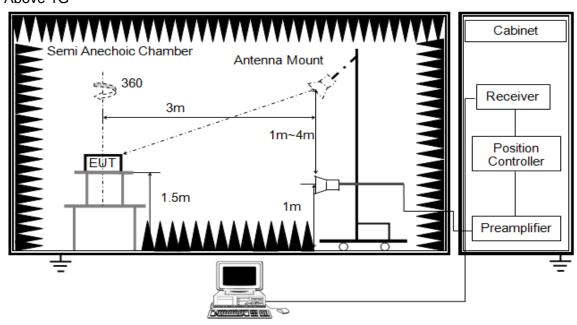


The setting of the spectrum analyser

| RBW      | 120K     |
|----------|----------|
| VBW      | 300K     |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.





The setting of the spectrum analyser

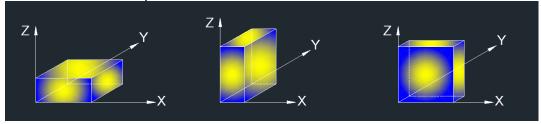
| RBW      | Л                       |  |  |  |
|----------|-------------------------|--|--|--|
| VBW      | AK: 3M<br>G: see note 6 |  |  |  |
| Sweep    | uto                     |  |  |  |
| Detector | eak                     |  |  |  |
| Trace    | Max hold                |  |  |  |

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0035 UL Verification Services



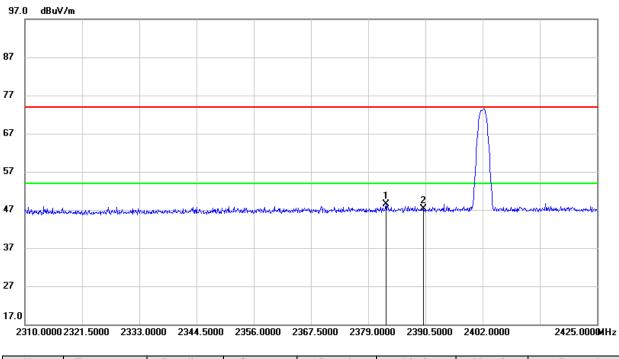
#### X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

#### TEST ENVIRONMENT


| Temperature         | 24.5°C | Relative Humidity | 59%          |
|---------------------|--------|-------------------|--------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V,60Hz |

#### **RESULTS**



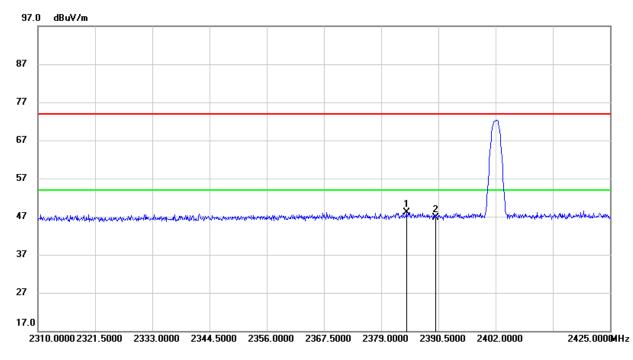
# 8.1. RESTRICTED BANDEDGE

### 8.1.1. GFSK MODE



#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**

| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2382.565  | 15.60   | 32.92   | 48.52    | 74.00    | -25.48 | peak   |
| 2   | 2390.000  | 14.27   | 32.94   | 47.21    | 74.00    | -26.79 | peak   |


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.



#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2384.060  | 15.15   | 32.92   | 48.07    | 74.00    | -25.93 | peak   |
| 2   | 2390.000  | 13.79   | 32.94   | 46.73    | 74.00    | -27.27 | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

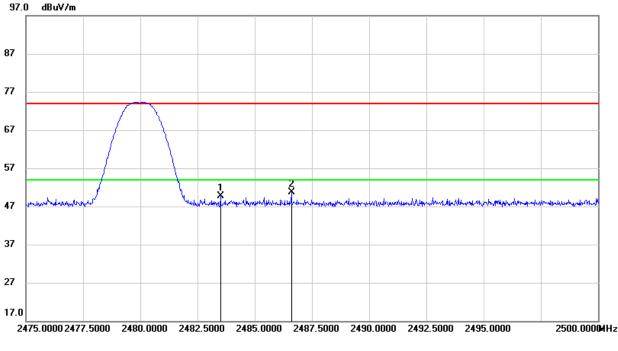
3. Peak: Peak detector.



#### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**



| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 14.49   | 33.58   | 48.07    | 74.00    | -25.93 | peak   |
| 2   | 2497.175  | 17.61   | 33.67   | 51.28    | 74.00    | -22.72 | peak   |

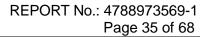

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.



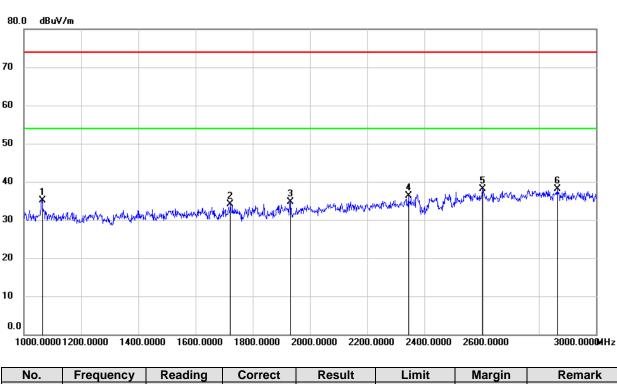
### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 16.06   | 33.58   | 49.64    | 74.00    | -24.36 | peak   |
| 2   | 2486.600  | 17.17   | 33.61   | 50.78    | 74.00    | -23.22 | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.





## 8.2. SPURIOUS EMISSIONS (1~3GHz)

### 8.2.1. GFSK MODE

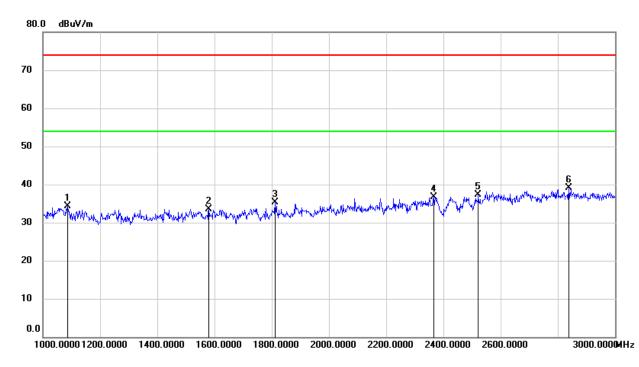


#### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1064.000  | 47.88   | -12.78  | 35.10    | 74.00    | -38.90 | peak   |
| 2   | 1722.000  | 44.51   | -10.43  | 34.08    | 74.00    | -39.92 | peak   |
| 3   | 1932.000  | 44.23   | -9.45   | 34.78    | 74.00    | -39.22 | peak   |
| 4   | 2344.000  | 43.58   | -7.32   | 36.26    | 74.00    | -37.74 | peak   |
| 5   | 2604.000  | 44.98   | -6.83   | 38.15    | 74.00    | -35.85 | peak   |
| 6   | 2864.000  | 43.19   | -5.16   | 38.03    | 74.00    | -35.97 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

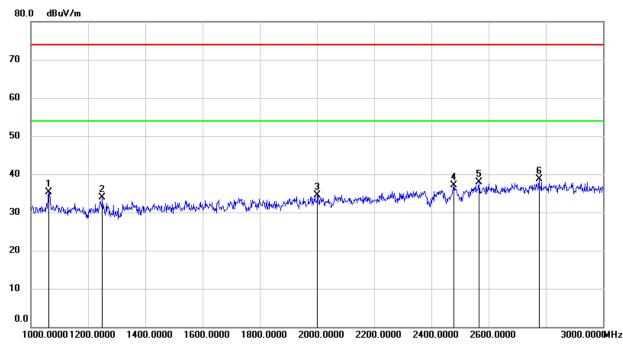






| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1086.000  | 46.90   | -12.68  | 34.22    | 74.00    | -39.78 | peak   |
| 2   | 1580.000  | 44.38   | -10.81  | 33.57    | 74.00    | -40.43 | peak   |
| 3   | 1812.000  | 44.76   | -9.40   | 35.36    | 74.00    | -38.64 | peak   |
| 4   | 2366.000  | 43.88   | -7.23   | 36.65    | 74.00    | -37.35 | peak   |
| 5   | 2522.000  | 43.72   | -6.44   | 37.28    | 74.00    | -36.72 | peak   |
| 6   | 2838.000  | 44.25   | -5.17   | 39.08    | 74.00    | -34.92 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

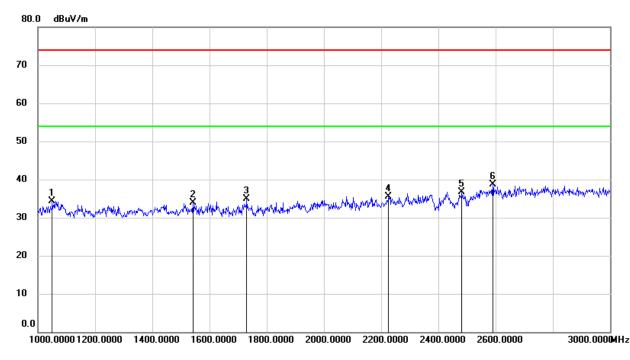
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.





| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1062.000  | 48.19   | -12.80  | 35.39    | 74.00    | -38.61 | peak   |
| 2   | 1250.000  | 45.74   | -11.82  | 33.92    | 74.00    | -40.08 | peak   |
| 3   | 2002.000  | 44.26   | -9.76   | 34.50    | 74.00    | -39.50 | peak   |
| 4   | 2478.000  | 43.61   | -6.50   | 37.11    | 74.00    | -36.89 | peak   |
| 5   | 2566.000  | 44.63   | -6.64   | 37.99    | 74.00    | -36.01 | peak   |
| 6   | 2776.000  | 44.36   | -5.73   | 38.63    | 74.00    | -35.37 | peak   |


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

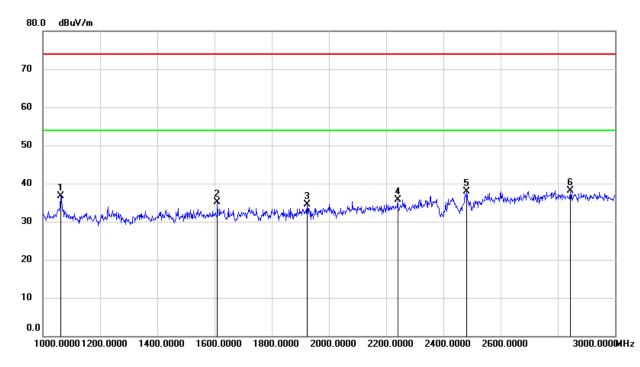
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.







| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1050.000  | 47.15   | -12.85  | 34.30    | 74.00    | -39.70 | peak   |
| 2   | 1542.000  | 45.17   | -11.18  | 33.99    | 74.00    | -40.01 | peak   |
| 3   | 1730.000  | 45.18   | -10.32  | 34.86    | 74.00    | -39.14 | peak   |
| 4   | 2226.000  | 43.72   | -8.19   | 35.53    | 74.00    | -38.47 | peak   |
| 5   | 2482.000  | 43.15   | -6.47   | 36.68    | 74.00    | -37.32 | peak   |
| 6   | 2590.000  | 45.50   | -6.76   | 38.74    | 74.00    | -35.26 | peak   |


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.



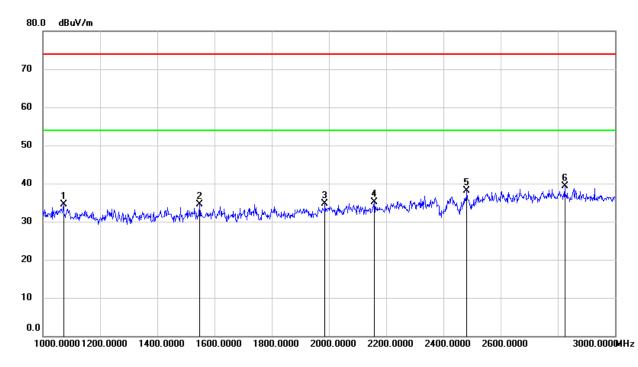




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark      |
|-----|-----------|---------|---------|----------|----------|--------|-------------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |             |
| 1   | 1062.000  | 49.47   | -12.80  | 36.67    | 74.00    | -37.33 | peak        |
| 2   | 1610.000  | 45.63   | -10.62  | 35.01    | 74.00    | -38.99 | peak        |
| 3   | 1924.000  | 43.97   | -9.41   | 34.56    | 74.00    | -39.44 | peak        |
| 4   | 2240.000  | 43.86   | -8.06   | 35.80    | 74.00    | -38.20 | peak        |
| 5   | 2480.000  | 44.47   | -6.47   | 38.00    | /        | /      | fundamental |
| 6   | 2844.000  | 43.35   | -5.17   | 38.18    | 74.00    | -35.82 | peak        |

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.







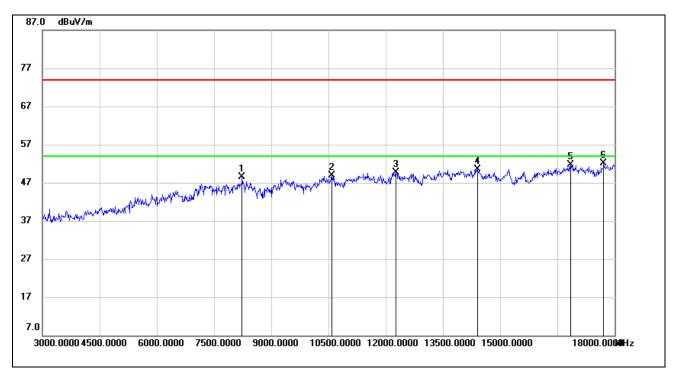
| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark      |
|-----|-----------|---------|---------|----------|----------|--------|-------------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |             |
| 1   | 1072.000  | 47.31   | -12.75  | 34.56    | 74.00    | -39.44 | peak        |
| 2   | 1548.000  | 45.68   | -11.12  | 34.56    | 74.00    | -39.44 | peak        |
| 3   | 1986.000  | 44.40   | -9.71   | 34.69    | 74.00    | -39.31 | peak        |
| 4   | 2158.000  | 43.47   | -8.39   | 35.08    | 74.00    | -38.92 | peak        |
| 5   | 2480.000  | 44.52   | -6.47   | 38.05    | /        | /      | fundamental |
| 6   | 2824.000  | 44.52   | -5.18   | 39.34    | 74.00    | -34.66 | peak        |

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter loss.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


6. The testing was completed with the band reject fitter, for the fundamental emission please refer to the bandedge test result.



# 8.3. SPURIOUS EMISSIONS (3~18GHz)

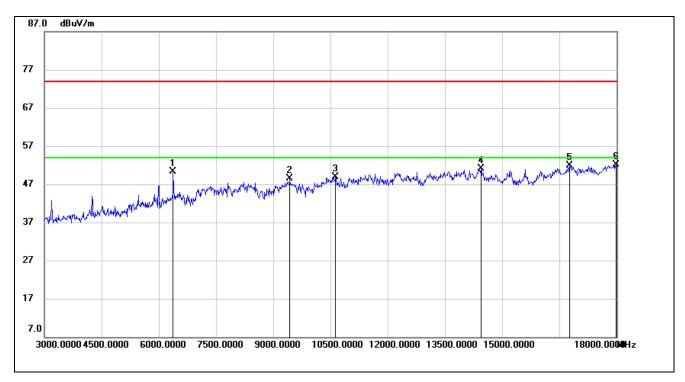
## 8.3.1. GFSK MODE

#### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 8235.000  | 39.19   | 9.23    | 48.42    | 74.00    | -25.58 | peak   |
| 2   | 10590.000 | 36.13   | 12.68   | 48.81    | 74.00    | -25.19 | peak   |
| 3   | 12270.000 | 35.31   | 14.34   | 49.65    | 74.00    | -24.35 | peak   |
| 4   | 14400.000 | 34.12   | 16.43   | 50.55    | 74.00    | -23.45 | peak   |
| 5   | 16845.000 | 31.71   | 19.92   | 51.63    | 74.00    | -22.37 | peak   |
| 6   | 17715.000 | 29.62   | 22.39   | 52.01    | 74.00    | -21.99 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

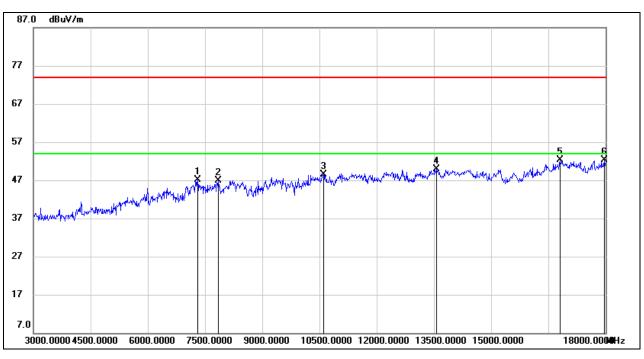
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.








| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 6375.000  | 45.45   | 4.90    | 50.35    | 74.00    | -23.65 | peak   |
| 2   | 9435.000  | 38.17   | 10.37   | 48.54    | 74.00    | -25.46 | peak   |
| 3   | 10635.000 | 36.33   | 12.59   | 48.92    | 74.00    | -25.08 | peak   |
| 4   | 14445.000 | 34.83   | 16.37   | 51.20    | 74.00    | -22.80 | peak   |
| 5   | 16770.000 | 31.99   | 19.89   | 51.88    | 74.00    | -22.12 | peak   |
| 6   | 17985.000 | 28.87   | 23.25   | 52.12    | 74.00    | -21.88 | peak   |

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

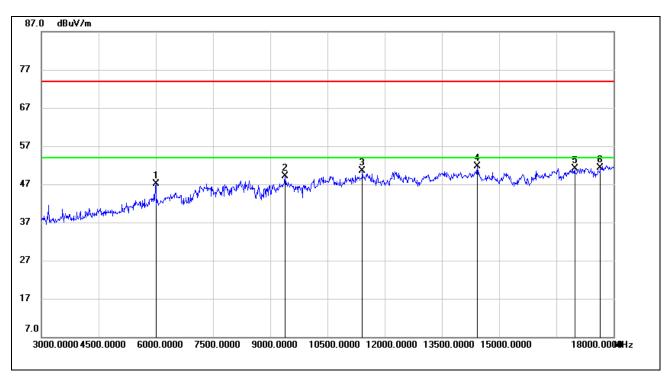




## HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 7305.000  | 40.01   | 7.15    | 47.16    | 74.00    | -26.84 | peak   |
| 2   | 7845.000  | 38.30   | 8.68    | 46.98    | 74.00    | -27.02 | peak   |
| 3   | 10605.000 | 35.81   | 12.75   | 48.56    | 74.00    | -25.44 | peak   |
| 4   | 13560.000 | 33.96   | 15.91   | 49.87    | 74.00    | -24.13 | peak   |
| 5   | 16800.000 | 32.36   | 19.91   | 52.27    | 74.00    | -21.73 | peak   |
| 6   | 17970.000 | 28.98   | 23.24   | 52.22    | 74.00    | -21.78 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

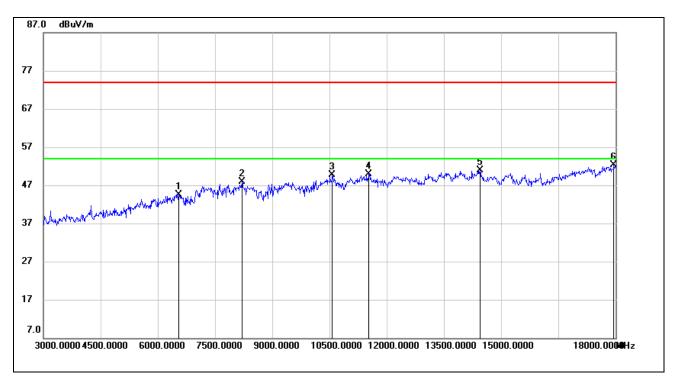
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.







| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 6000.000  | 43.38   | 3.76    | 47.14    | 74.00    | -26.86 | peak   |
| 2   | 9390.000  | 38.79   | 10.24   | 49.03    | 74.00    | -24.97 | peak   |
| 3   | 11415.000 | 37.02   | 13.46   | 50.48    | 74.00    | -23.52 | peak   |
| 4   | 14430.000 | 35.39   | 16.39   | 51.78    | 74.00    | -22.22 | peak   |
| 5   | 16980.000 | 30.91   | 20.25   | 51.16    | 74.00    | -22.84 | peak   |
| 6   | 17655.000 | 29.44   | 21.87   | 51.31    | 74.00    | -22.69 | peak   |


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

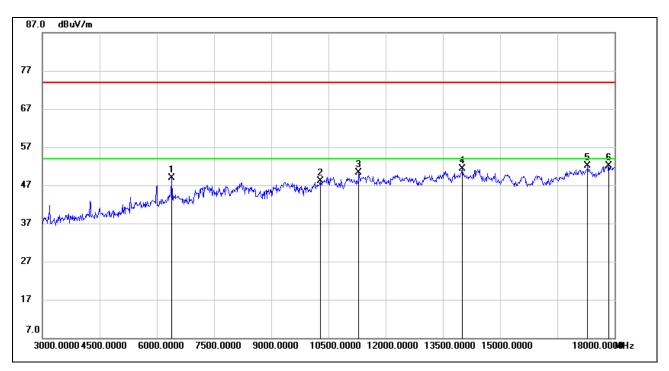
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.







| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 6540.000  | 38.43   | 6.16    | 44.59    | 74.00    | -29.41 | peak   |
| 2   | 8205.000  | 38.33   | 9.57    | 47.90    | 74.00    | -26.10 | peak   |
| 3   | 10575.000 | 37.18   | 12.52   | 49.70    | 74.00    | -24.30 | peak   |
| 4   | 11535.000 | 35.73   | 14.10   | 49.83    | 74.00    | -24.17 | peak   |
| 5   | 14445.000 | 34.60   | 16.37   | 50.97    | 74.00    | -23.03 | peak   |
| 6   | 17955.000 | 29.15   | 23.23   | 52.38    | 74.00    | -21.62 | peak   |


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.



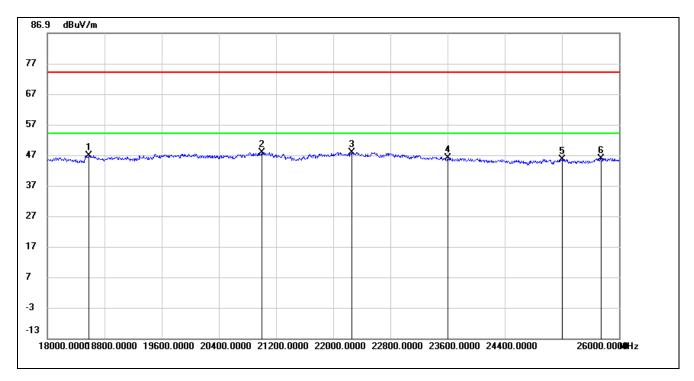




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 6390.000  | 43.87   | 4.97    | 48.84    | 74.00    | -25.16 | peak   |
| 2   | 10290.000 | 36.52   | 11.51   | 48.03    | 74.00    | -25.97 | peak   |
| 3   | 11295.000 | 37.41   | 12.91   | 50.32    | 74.00    | -23.68 | peak   |
| 4   | 14010.000 | 35.03   | 16.34   | 51.37    | 74.00    | -22.63 | peak   |
| 5   | 17295.000 | 30.22   | 21.86   | 52.08    | 74.00    | -21.92 | peak   |
| 6   | 17850.000 | 28.94   | 23.19   | 52.13    | 74.00    | -21.87 | peak   |

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

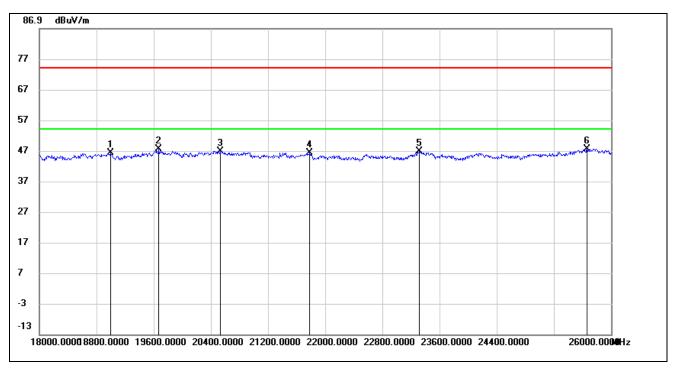

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.



# 8.4. SPURIOUS EMISSIONS 18G ~ 26GHz

## 8.4.1. GFSK MODE

#### SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 18584.000 | 51.34   | -4.53   | 46.81    | 74.00    | -27.19 | peak   |
| 2   | 21000.000 | 53.18   | -5.28   | 47.90    | 74.00    | -26.10 | peak   |
| 3   | 22256.000 | 53.95   | -6.06   | 47.89    | 74.00    | -26.11 | peak   |
| 4   | 23600.000 | 50.79   | -4.70   | 46.09    | 74.00    | -27.91 | peak   |
| 5   | 25208.000 | 46.81   | -1.16   | 45.65    | 74.00    | -28.35 | peak   |
| 6   | 25744.000 | 47.18   | -1.34   | 45.84    | 74.00    | -28.16 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

## SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)



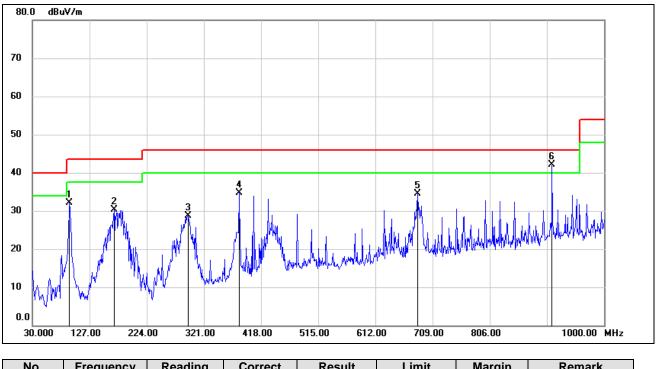
| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 18992.000 | 51.14   | -4.89   | 46.25    | 74.00    | -27.75 | peak   |
| 2   | 19672.000 | 51.95   | -4.48   | 47.47    | 74.00    | -26.53 | peak   |
| 3   | 20536.000 | 51.84   | -4.98   | 46.86    | 74.00    | -27.14 | peak   |
| 4   | 21784.000 | 52.20   | -5.82   | 46.38    | 74.00    | -27.62 | peak   |
| 5   | 23320.000 | 51.96   | -5.12   | 46.84    | 74.00    | -27.16 | peak   |
| 6   | 25664.000 | 49.09   | -1.50   | 47.59    | 74.00    | -26.41 | peak   |

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All the test modes have been tested, only the worst data record in the report.

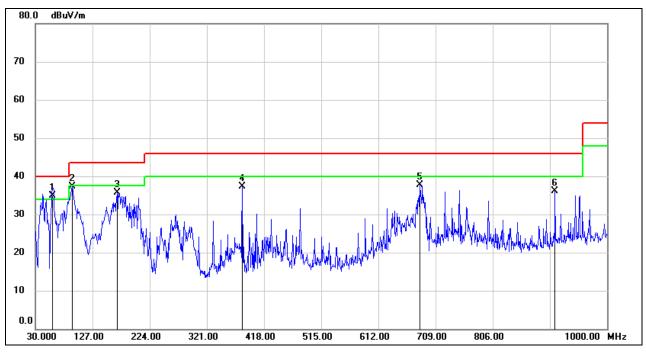


# 8.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

## 8.5.1. GFSK MODE

#### SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 93.0500   | 53.47   | -21.30  | 32.17    | 43.50    | -11.33 | QP     |
| 2   | 168.7100  | 47.37   | -17.00  | 30.37    | 43.50    | -13.13 | QP     |
| 3   | 293.8400  | 42.88   | -14.22  | 28.66    | 46.00    | -17.34 | QP     |
| 4   | 381.1400  | 47.42   | -12.64  | 34.78    | 46.00    | -11.22 | QP     |
| 5   | 683.7800  | 41.38   | -6.92   | 34.46    | 46.00    | -11.54 | QP     |
| 6   | 911.7300  | 46.03   | -3.96   | 42.07    | 46.00    | -3.93  | QP     |

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

## SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

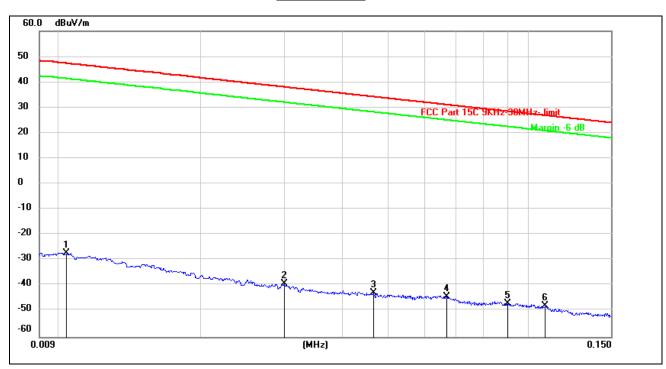


| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 59.1000   | 54.19   | -19.30  | 34.89    | 40.00    | -5.11  | QP     |
| 2   | 93.0500   | 58.67   | -21.30  | 37.37    | 43.50    | -6.13  | QP     |
| 3   | 168.7100  | 52.73   | -17.00  | 35.73    | 43.50    | -7.77  | QP     |
| 4   | 381.1400  | 50.00   | -12.64  | 37.36    | 46.00    | -8.64  | QP     |
| 5   | 681.8400  | 44.63   | -6.94   | 37.69    | 46.00    | -8.31  | QP     |
| 6   | 911.7300  | 40.03   | -3.96   | 36.07    | 46.00    | -9.93  | QP     |

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto


Note: All the test modes have been tested, only the worst data record in the report.



# 8.6. SPURIOUS EMISSIONS BELOW 30M

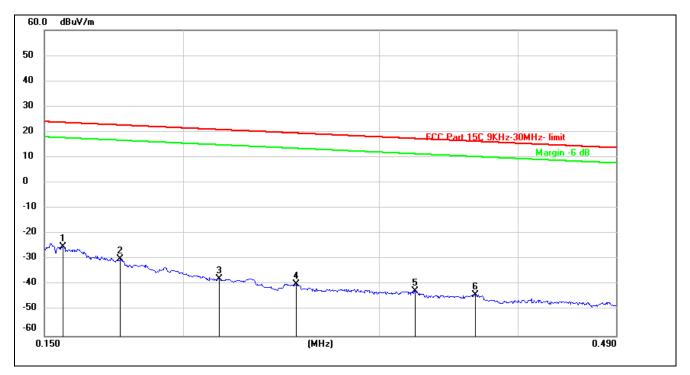
## 8.6.1. GFSK MODE

#### SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)



<u>9kHz~ 150kHz</u>

| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 0.0103    | 74.14   | -101.40 | -27.26   | 47.34    | -74.60 | peak   |
| 2   | 0.0300    | 62.18   | -101.39 | -39.21   | 38.06    | -77.27 | peak   |
| 3   | 0.0466    | 58.67   | -101.46 | -42.79   | 34.23    | -77.02 | peak   |
| 4   | 0.0666    | 57.43   | -101.55 | -44.12   | 31.13    | -75.25 | peak   |
| 5   | 0.0900    | 54.88   | -101.72 | -46.84   | 28.52    | -75.36 | peak   |
| 6   | 0.1087    | 53.88   | -101.78 | -47.90   | 26.88    | -74.78 | peak   |


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

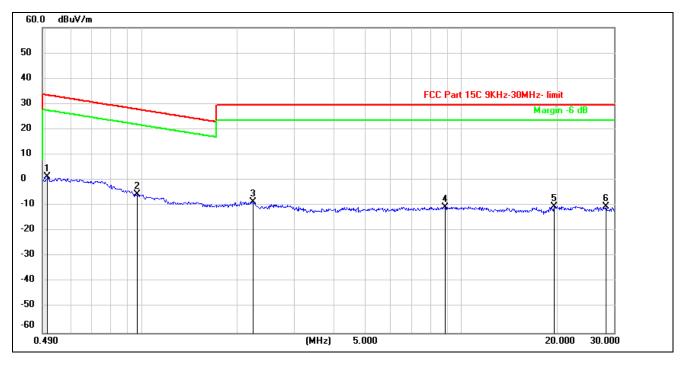
3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

#### <u>150kHz ~ 490kHz</u>



| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 0.1559    | 76.65   | -101.65 | -25.00   | 23.74    | -48.74 | peak   |
| 2   | 0.1756    | 71.84   | -101.68 | -29.84   | 22.72    | -52.56 | peak   |
| 3   | 0.2156    | 64.15   | -101.75 | -37.60   | 20.93    | -58.53 | peak   |
| 4   | 0.2530    | 62.09   | -101.80 | -39.71   | 19.54    | -59.25 | peak   |
| 5   | 0.3234    | 59.48   | -101.88 | -42.40   | 17.41    | -59.81 | peak   |
| 6   | 0.3662    | 58.08   | -101.93 | -43.85   | 16.33    | -60.18 | peak   |


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.



#### <u>490kHz ~ 30MHz</u>



| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 0.5080    | 63.35   | -62.07  | 1.28     | 33.49    | -32.21 | peak   |
| 2   | 0.9700    | 56.80   | -62.25  | -5.45    | 27.87    | -33.32 | peak   |
| 3   | 2.2311    | 53.14   | -61.76  | -8.62    | 29.54    | -38.16 | peak   |
| 4   | 8.9001    | 50.41   | -60.95  | -10.54   | 29.54    | -40.08 | peak   |
| 5   | 19.4939   | 50.61   | -60.85  | -10.24   | 29.54    | -39.78 | peak   |
| 6   | 28.3765   | 49.88   | -60.12  | -10.24   | 29.54    | -39.78 | peak   |

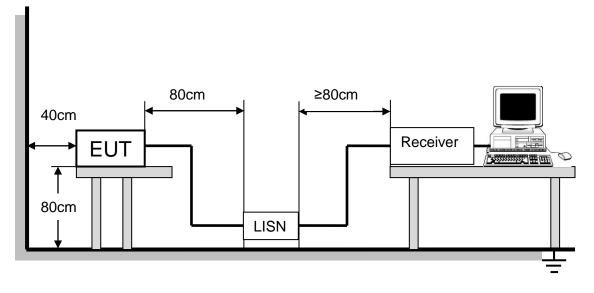
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

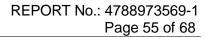
3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.



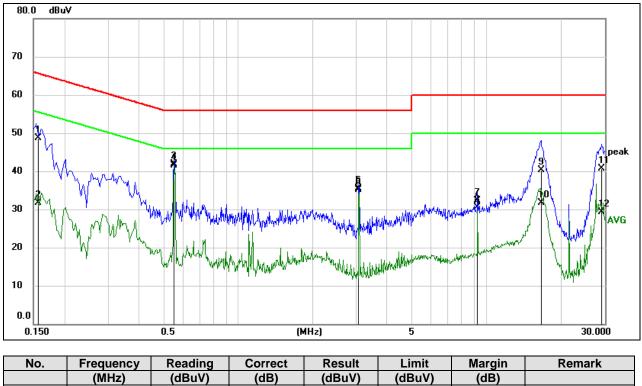

# 9. AC POWER LINE CONDUCTED EMISSIONS

## LIMITS


Please refer to CFR 47 FCC §15.207 (a) .

| FREQUENCY (MHz) | Quasi-peak | Average   |
|-----------------|------------|-----------|
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * |
| 0.50 -5.0       | 56.00      | 46.00     |
| 5.0 -30.0       | 60.00      | 50.00     |

### TEST SETUP AND PROCEDURE




The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.



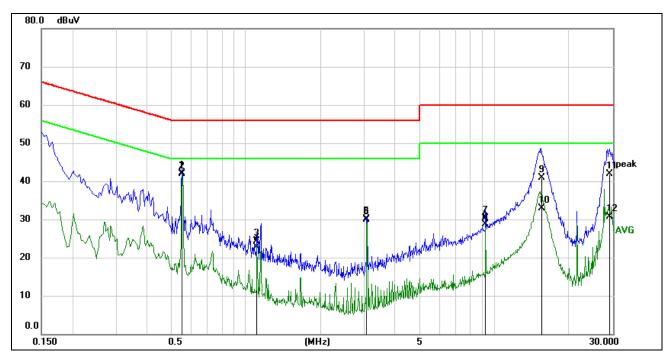


# 9.1. GFSK MODE



#### LINE N RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1572    | 39.13   | 9.60    | 48.73  | 65.61  | -16.88 | QP     |
| 2   | 0.1572    | 22.19   | 9.60    | 31.79  | 55.61  | -23.82 | AVG    |
| 3   | 0.5545    | 32.23   | 9.60    | 41.83  | 56.00  | -14.17 | QP     |
| 4   | 0.5545    | 31.98   | 9.60    | 41.58  | 46.00  | -4.42  | AVG    |
| 5   | 3.0720    | 25.89   | 9.65    | 35.54  | 56.00  | -20.46 | QP     |
| 6   | 3.0720    | 25.53   | 9.65    | 35.18  | 46.00  | -10.82 | AVG    |
| 7   | 9.2160    | 22.64   | 9.75    | 32.39  | 60.00  | -27.61 | QP     |
| 8   | 9.2160    | 20.79   | 9.75    | 30.54  | 50.00  | -19.46 | AVG    |
| 9   | 16.6639   | 30.26   | 10.01   | 40.27  | 60.00  | -19.73 | QP     |
| 10  | 16.6639   | 21.65   | 10.01   | 31.66  | 50.00  | -18.34 | AVG    |
| 11  | 29.0577   | 30.89   | 9.91    | 40.80  | 60.00  | -19.20 | QP     |
| 12  | 29.0577   | 19.43   | 9.91    | 29.34  | 50.00  | -20.66 | AVG    |


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.







| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.5556    | 32.56   | 9.60    | 42.16  | 56.00  | -13.84 | QP     |
| 2   | 0.5556    | 32.33   | 9.60    | 41.93  | 46.00  | -4.07  | AVG    |
| 3   | 1.1099    | 14.60   | 9.61    | 24.21  | 56.00  | -31.79 | QP     |
| 4   | 1.1099    | 13.15   | 9.61    | 22.76  | 46.00  | -23.24 | AVG    |
| 5   | 3.0720    | 20.43   | 9.64    | 30.07  | 56.00  | -25.93 | QP     |
| 6   | 3.0720    | 20.32   | 9.64    | 29.96  | 46.00  | -16.04 | AVG    |
| 7   | 9.2160    | 20.59   | 9.73    | 30.32  | 60.00  | -29.68 | QP     |
| 8   | 9.2160    | 19.02   | 9.73    | 28.75  | 50.00  | -21.25 | AVG    |
| 9   | 15.5411   | 31.05   | 9.88    | 40.93  | 60.00  | -19.07 | QP     |
| 10  | 15.5411   | 23.07   | 9.88    | 32.95  | 50.00  | -17.05 | AVG    |
| 11  | 29.1283   | 32.16   | 9.81    | 41.97  | 60.00  | -18.03 | QP     |
| 12  | 29.1283   | 20.99   | 9.81    | 30.80  | 50.00  | -19.20 | AVG    |

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the test modes have been tested, only the worst data record in the report.

# **10. ANTENNA REQUIREMENTS**

#### APPLICABLE REQUIREMENTS

#### Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

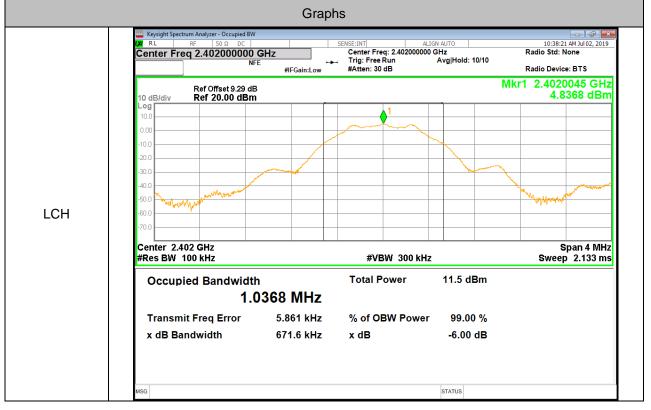
### Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

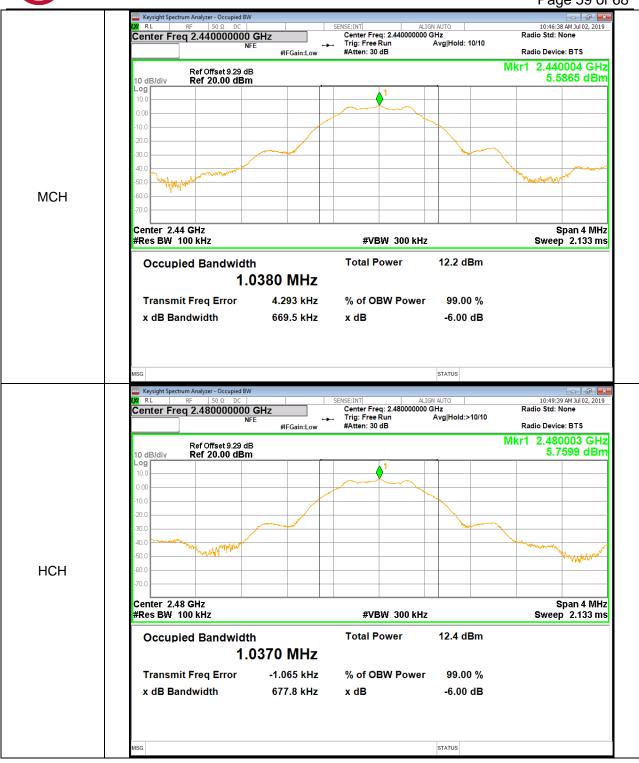
# **RESULTS**

Complies




# 11. APPENDIXES

# Appendix A): 6dB Bandwidth


## **Test Result**

|                  | -       |                     |         |
|------------------|---------|---------------------|---------|
| Mode             | Channel | 6dB Bandwidth [MHz] | Verdict |
| BLE              | LCH     | 0.6716              | PASS    |
| BLE              | MCH     | 0.6695              | PASS    |
| BLE              | HCH     | 0.6778              | PASS    |
| <b>— — — — —</b> |         |                     |         |

#### Test Graphs

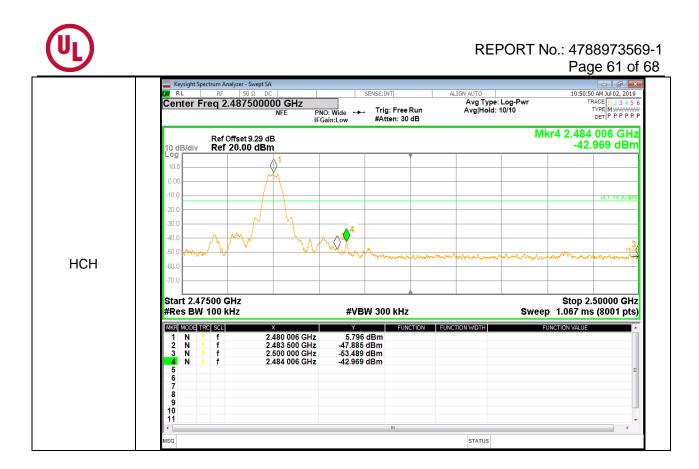


#### REPORT No.: 4788973569-1 Page 59 of 68



UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.




# Appendix B): Band-edge for RF Conducted Emissions

| Resul | t Table |                    |                             |             |         |
|-------|---------|--------------------|-----------------------------|-------------|---------|
| Mode  | Channel | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
| BLE   | LCH     | 4.839              | -43.367                     | -15.16      | PASS    |
| BLE   | HCH     | 5.796              | -42.969                     | -14.2       | PASS    |

### Test Graphs

|     | Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Keysight Spectrum Analyzer - Swept SA         RL       RF       50 Ω       SENSE:INT         Center Freq 2.395000000 GHz       Free Run       Trig: Free Run         NFE       PNO: Wide       ++       Trig: Stree Run         IFGain:Low       #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALIGN AUTO         10:39:39 AM Jul 02, 2015           Avg Type: Log-Pwr         TRACE [1 23 4 5           Avg Hold: 10/10         TYPE IM WHAWAY           DET         P P P P P |
|     | Ref Offset 9.29 dB<br>10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mkr4 2.399 297 5 GH:<br>-43.367 dBn                                                                                                                                              |
| LCH | Log<br>10.0<br>0.00<br>-10.0<br>-20.0<br>-30.0<br>-40.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0<br>-50.0 | DL1-15.16 dB<br>PEA<br>4<br>4<br>2<br>5top 2.40500 GH                                                                                                                            |
|     | #Res BW 100 kHz #VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sweep 1.067 ms (8001 pts                                                                                                                                                         |
|     | 1         N         1         f         2.402 007 5 GHz         4.839 dBm           2         N         1         f         2.400 000 0 GHz         -45.194 dBm           3         N         1         f         2.390 000 0 GHz         -53.864 dBm           4         N         1         f         2.399 297 5 GHz         -43.367 dBm           5         6         7         8         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FUNCTION WIDTH FUNCTION VALUE                                                                                                                                                    |
|     | 9<br>10<br>11<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |
|     | MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STATUS                                                                                                                                                                           |

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.





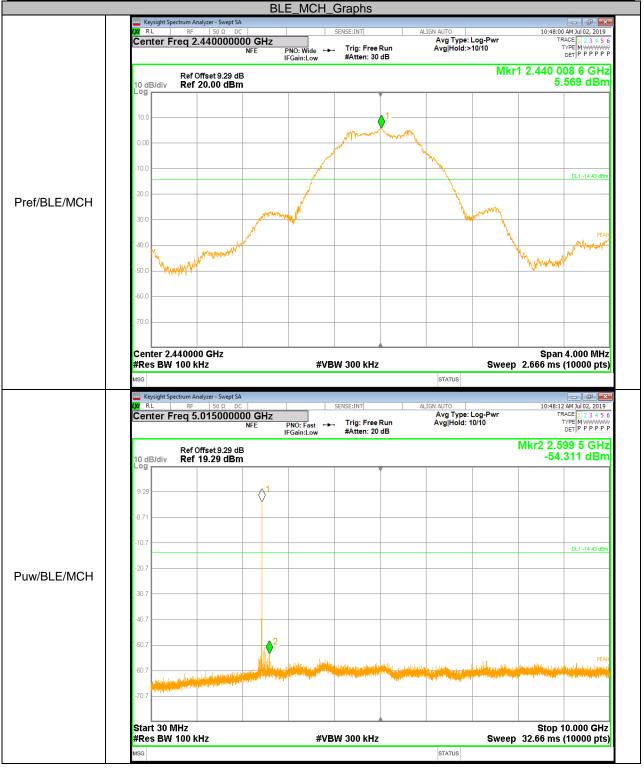
Span 4.000 MHz Sweep 2.666 ms (10000 pts)

STATUS

# Appendix C): RF Conducted Spurious Emissions

Center 2.402000 GHz #Res BW 100 kHz

| Result Tab                  | Channel                                 |                                         | Pref [dB      | ml           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w[dBm]                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Verdict                                       |
|-----------------------------|-----------------------------------------|-----------------------------------------|---------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| BLE                         | LCH                                     |                                         | 4.854         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <limit< td=""><td></td><td>PASS</td></limit<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS                                          |
| BLE                         | MCH                                     |                                         | 5.569         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <limit< td=""><td></td><td>PASS</td></limit<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS                                          |
| BLE                         | HCH                                     |                                         | 5.786         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <limit< td=""><td></td><td>PASS</td></limit<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS                                          |
| Test Graph                  | าร                                      |                                         |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             |                                         | E                                       | BLE_LCH_      | Graphs       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             |                                         | Analyzer - Swept SA<br>F 50 Ω DC        |               | SENSE:INT    | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | 10:40:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM Jul 02, 2019                               |
|                             | Center Freq                             | 2.40200000 GHz                          | PNO: Wide ++- | Trig: Free F | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg Type:<br>Avg Hold:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Log-Pwr<br>10/10                              | TR<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACE 1 2 3 4 5 6<br>YPE M WWW<br>DET P P P P P |
|                             |                                         |                                         | IFGain:Low    | #Atten: 30   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03 4 GHz                                      |
|                             | 10 dB/div Re                            | f Offset 9.29 dB<br>ef <b>20.00 dBm</b> |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 854 dBm                                       |
|                             | 0.00                                    |                                         |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             | Log                                     |                                         |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             | 10.0                                    |                                         |               |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             |                                         |                                         |               | por some     | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             | 10.0                                    |                                         |               |              | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                             | 10.0                                    |                                         |               |              | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | non and the second seco |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 -15.15 dBm                                |
|                             | 0.00                                    |                                         |               |              | 1<br>mar Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 -15.15 dBm                                |
| Pref/BLE/LCH                | 10.0<br>0.00<br>-10.0<br>-20.0          |                                         |               |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 -1515 dBm                                 |
| Pref/BLE/LCH                | 10.0                                    |                                         |               |              | 1<br>mm B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 -15.15 dBm                                |
| Pref/BLE/LCH                | 10.0<br>0.00<br>-10.0<br>-20.0          |                                         |               |              | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| <sup>&gt;</sup> ref/BLE/LCH |                                         |                                         |               |              | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | And the factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Pref/BLE/LCH                | 10.0<br>0.00<br>-10.0<br>-20.0<br>-30.0 |                                         |               |              | 1<br>here the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | and the first first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Pref/BLE/LCH                |                                         |                                         |               |              | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | And the first for the first fo |                                               |


#VBW 300 kHz

#### REPORT No.: 4788973569-1 Page 63 of 68

| LXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RL               | RF 50 Ω                                                                                     | ept SA<br>DC                              |                                      | SENSE:INT | 1         | ALIGN AUTO                           |                  | 10:40                                          | 🔲 🗗 론                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------|-----------|--------------------------------------|------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | eq 5.01500                                                                                  |                                           | PNO: Fast ++<br>IFGain:Low           |           | Run<br>dB | Avg Type:<br>Avg Hold:               | Log-Pwr<br>10/10 | 2011                                           | TRACE 1 2 3 4 5<br>TYPE MWWWW<br>DET P P P P P                                                                             |
| 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IB/div           | Ref Offset 9.2<br>Ref 19.29 (                                                               |                                           |                                      |           |           |                                      |                  | Mkr2 2<br>-5                                   | .562 6 GHz<br>3.417 dBm                                                                                                    |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                             |                                           |                                      | ľ         |           |                                      |                  |                                                |                                                                                                                            |
| 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                             | <sup>†</sup>                              |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
| -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
| -10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                | DL1 -15.15 dBn                                                                                                             |
| -20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                | DET -15.15 dBr                                                                                                             |
| -30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
| -40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
| -50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
| -60.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | a littleta and littleta                                                                     |                                           |                                      |           |           |                                      |                  | and Annia Animalaying<br>and Anima publication | PEA<br>PEA (L. Cline) (L. Cline)<br>Martin (L. Cline) (L. Cline)                                                           |
| -70.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | distances while  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                             |                                           |                                      |           |           |                                      |                  |                                                |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                             |                                           |                                      |           |           |                                      |                  | Sto                                            | p 10.000 GH                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rt 30 M<br>es BW |                                                                                             |                                           | #VE                                  | 300 kHz   |           |                                      | Swee             | p 32.66 m                                      |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | IHz<br>100 kHz                                                                              |                                           | #VE                                  | 300 kHz   |           | STATUS                               | Swee             | p 32.66 m                                      |                                                                                                                            |
| #Re<br>MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es BW            | <b>100 kHz</b><br>ctrum Analyzer - Sw                                                       |                                           | #VE                                  |           |           |                                      | Swee             |                                                | is (10000 pts                                                                                                              |
| #Re<br>MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es BW            | <b>100 kHz</b><br>ctrum Analyzer - Sw<br>RF 50 Ω                                            |                                           | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:<br>Avg Hold: | Log-Pwr          |                                                | is (10000 pts                                                                                                              |
| #Re<br>MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000                                    | DC<br>000000 GHz<br>NFE                   |                                      | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | CISS AM JUI 02, 2019<br>TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P P<br>.718 4 GH;                                        |
| #Re<br>MSG<br>IIII K<br>IIII K<br>Cei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eysight Spec     | <b>100 kHz</b><br>ctrum Analyzer - Sw<br>RF 50 Ω                                            | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | CISS AM JUI 02, 2019<br>TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P P<br>.718 4 GH;                                        |
| #R<br>MSG<br>W<br>Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts<br>C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                    |
| #R(<br>MSG<br>W<br>Ce<br>10 c<br>Log<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | CISS AM JUI 02, 2019<br>TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P P<br>.718 4 GH;                                        |
| #R:<br>MSG<br>(X)<br>(X)<br>(Ce<br>10 c<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts<br>C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                    |
| #R(<br>MsG<br>W<br>Ce<br>10 c<br>Log<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts)<br>S:55 AM Jul 02, 2019<br>TRACE [1 2 3 4 5<br>TYPE M SWA<br>DET P P P P P<br>718 4 GH;<br>4.231 dBm         |
| #Re<br>MSG<br>IN<br>Ce<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts<br>S 55 AM Jul 02, 2019<br>TRACE 12 3 4 5<br>DET P P P P<br>718 4 GH2<br>4.231 dBn                            |
| #R(<br>MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts)<br>5:55 AM Jul 02, 2019<br>TRACE 12 34 5<br>DET P P P P<br>718 4 GH;<br>4.231 dBn                            |
| #R4<br>Msg<br>20<br>10 cg<br>9.22<br>-0.7<br>-10.3<br>-20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts)<br>S:55 AM Jul 02, 2019<br>TRACE [1 2 3 4 5<br>TYPE M SWA<br>DET P P P P P<br>718 4 GH;<br>4.231 dBm         |
| #R4<br>Msg<br>20<br>10 c<br>9.2<br>-0.7<br>-10.7<br>-10.7<br>-20.7<br>-20.7<br>-20.7<br>-20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC<br>000000 GHz<br>NFE<br>29 dB          | PNO: Fast                            | SENSE:INT |           | ALIGN AUTO<br>Avg Type:              | Log-Pwr          | 10:41<br>Mkr1 25                               | S (10000 pts)<br>S:55 AM Jul 02, 2019<br>TRACE [1 2 3 4 5<br>TYPE M SWA<br>DET P P P P P<br>718 4 GH;<br>4.231 dBm         |
| <b>#R</b> €<br>мsa<br><b>20 s</b><br>9.2<br>-0.7<br>-10.3<br>-20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC  <br>D00000 GH2<br>NFE<br>29 dB<br>1Bm | PNO: Fast<br>PRO: Fast<br>IFGain:Low | SENSE:INT | dB        | ALIGN AUTO Avg Type: Avg Hold:       | Log-Pwr<br>10/10 | 10:41 Mkr1 25 -5                               | s (10000 pts<br>555 an Julo2, 2019<br>TRACE 23 4 5<br>777E MAXWAY<br>per P P P P<br>718 4 GH2<br>4.231 dBm<br>DL1-1515.050 |
| #R(<br>Msg<br>20<br>10 c<br>9.2<br>-0.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-20.7<br>-20.7<br>-20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF 50 Ω<br>req 18.0000<br>Ref Offset 9.2                  | DC  <br>D00000 GH2<br>NFE<br>29 dB<br>1Bm | PNO: Fast                            | SENSE:INT | dB        | ALIGN AUTO Avg Type: Avg Hold:       | Log-Pwr<br>10/10 | 10:41<br>Mkr1 25                               | s (10000 pts<br>555 an Julo2, 2019<br>TRACE 23 4 5<br>777E MAXWAY<br>per P P P P<br>718 4 GH2<br>4.231 dBm<br>DL1-1515.050 |
| #RR<br>MSG<br>20<br>9.22<br>-0.71<br>-10.71<br>-20.7.71<br>-20.7.71<br>-20.7.71<br>-20.71<br>-20.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF   50 Ω<br>reg 18.0000<br>Ref Offset 9.2<br>Ref 19.29 c | DC  <br>D00000 GH2<br>NFE<br>29 dB<br>1Bm | PNO: Fast<br>PRO: Fast<br>IFGain:Low | SENSE:INT | dB        | ALIGN AUTO Avg Type: Avg Hold:       | Log-Pwr<br>10/10 | 10:41 Mkr1 25 -5                               | s (10000 pts<br>555 an Julo2, 2019<br>TRACE 23 4 5<br>777E MAXWAY<br>per P P P P<br>718 4 GH2<br>4.231 dBm<br>DL1-1515.050 |
| #Rt<br>MSG<br>0 k<br>10 g<br>9.22<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-0.71<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-10.7<br>-1 | es BW            | 100 kHz<br>ctrum Analyzer - Sw<br>ℝF   50 Ω<br>reg 18.0000<br>Ref Offset 9.2<br>Ref 19.29 c | DC  <br>D00000 GH2<br>NFE<br>29 dB<br>1Bm | PNO: Fast<br>PRO: Fast<br>IFGain:Low | SENSE:INT | dB        | ALIGN AUTO Avg Type: Avg Hold:       | Log-Pwr<br>10/10 | 10:44                                          | s (10000 pts<br>155 AN Julo2, 2019<br>TRACE 123 4 5<br>TRACE 123 4 5<br>DET P P P P<br>718 4 GH:<br>4.231 dBn              |

#### REPORT No.: 4788973569-1 Page 64 of 68





#### REPORT No.: 4788973569-1 Page 65 of 68

| /11. \ |  |
|--------|--|
|        |  |
|        |  |

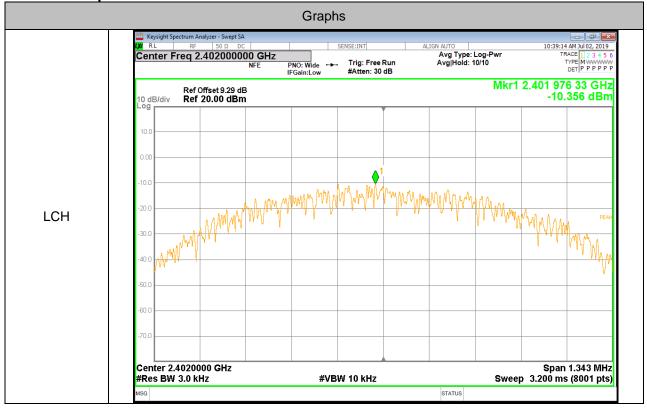
| LX/ R        |                               | um Analyzer - Swept                       |                                        | 1                                                      | SENSE:INT |                                 | IGN AUTO                                                                                                                                                                                                                             |       | 10:49:2        | 👝 💣 🗾                             |
|--------------|-------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------------------|-----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-----------------------------------|
|              |                               | q 18.00000                                |                                        | PNO: Fast                                              |           | Run                             | Avg Type:<br>Avg Hold: 1                                                                                                                                                                                                             |       | TF             | RACE 1 2 3 4 5<br>TYPE M          |
| 10 di<br>Log |                               | Ref Offset 9.29 (<br>Ref 19.29 dB         |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      | N     |                | 76 0 GH:<br>349 dBm               |
| 9.29         |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
| -0.71        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
| -10.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                | DL1 -14.43 dBn                    |
| -20.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
| -30.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
| -40.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
| -50.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       | The statements | 1<br>1<br>1<br>1<br>1<br>1<br>1   |
| -60.7        | addreydd ywd<br>arwygaellanau | Muhling papalagang<br>Kapitang Kamanganén | inner film<br>inner film<br>inner film | hala baharak hurturat kina<br>Malama phina phina phara |           | di palina balandari<br>Kanadari | n a tan ti pangan na ang ti<br>Pang kalan ng pangang pangang pangang pangang pangang pangang pangang pangang pang<br>Pang kalang pangang pan |       |                | I. Polet, 4.3 Miles of Philadelia |
| -70.7        |                               |                                           |                                        |                                                        |           |                                 |                                                                                                                                                                                                                                      |       |                |                                   |
|              | t 10.000<br>s BW 10           |                                           |                                        | #VB                                                    | W 300 kHz |                                 |                                                                                                                                                                                                                                      | Sweep |                | 26.000 GHz<br>(10000 pts          |
| MSG          |                               |                                           |                                        |                                                        |           |                                 | STATUS                                                                                                                                                                                                                               |       |                |                                   |

#### BLE\_HCH\_Graphs

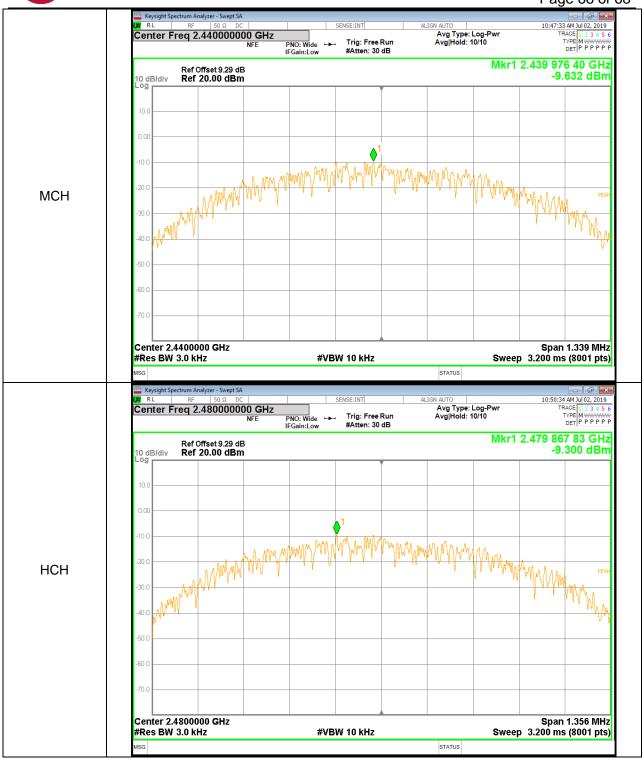


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

#### REPORT No.: 4788973569-1 Page 66 of 68


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | Analyzer - Swept SA                                                                                                                                    |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|----------------|--------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LXI F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                | SENSE:INT                               | Α              | LIGN AUTO                      |                                          | 10:51:1                                | .6 AM Jul 02, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nter Freq t                                                           | 5.015000000 G                                                                                                                                          |                                | 斗 Trig: Free F                          | Run            | Avg Type:<br>Avg Hold: 1       | Log-Pwr<br>10/10                         | Т                                      | RACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | NFE                                                                                                                                                    | PNO: Fast<br>IFGain:Low        | #Atten: 20                              |                | Avginola.                      |                                          |                                        | DETPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Def                                                                   |                                                                                                                                                        |                                |                                         |                |                                |                                          | Mkr2 7.4                               | 39 4 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | Offset 9.29 dB<br>19.29 dBm                                                                                                                            |                                |                                         |                |                                |                                          |                                        | .091 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        | . 1                            |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | (                                                                                                                                                      | °,                             |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        | DL1 -14.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                     |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -30.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                        |                                |                                         |                |                                | <b>2</b>                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                | mka                                     | 1              |                                |                                          |                                        | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | and the line of the local designed                                                                                                                     |                                |                                         |                | lantelate plast                | Hittina og stredlige<br>Alleren av state | an Maria Managara<br>Mangaran          | all disployed pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alapada da                           | A Design of the Property of the Pro-                                                                                                                   | nan malan                      | the stand of the                        | 1 days         | the state of the second second |                                          | hala a sumbra                          | and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A super Distance                                                      |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                     |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                        |                                |                                         |                |                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rt 30 MHz                                                             |                                                                                                                                                        |                                |                                         |                |                                |                                          | Stop                                   | 10.000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | Analyzer - Swept SA                                                                                                                                    |                                | VBW 300 kHz                             | A              | STATUS                         | Swee                                     | 10:51:2                                | 26 AM Jul 02, 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MSG<br>Ki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eysight Spectrum A                                                    | Analyzer - Swept SA                                                                                                                                    | GHz<br>PNO: Fast               | SENSE:INT                               | Run            |                                | Log-Pwr                                  | 10:51:2                                | (10000 pts<br>6 AM Jul 02, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSG<br>Ki<br>LXI F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eysight Spectrum A                                                    | Analyzer - Swept SA<br>50 Ω DC<br>18.0000000000 (                                                                                                      | GHz                            | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | 10:51:2<br>T                           | C AM Jul 02, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MSG<br>K<br>K<br>Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eysight Spectrum A<br>LL RF<br>Iter Freq 1<br>Ref                     | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P P P P<br>S81 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>KA<br>(X) F<br>Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eysight Spectrum A<br>LL RF<br>Iter Freq 1<br>Ref                     | Analyzer - Swept SA<br>  50 Ω DC  <br>18.0000000000<br>NFE                                                                                             | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P<br>081 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| мsg<br>(ж. к<br>Сег<br>10 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eysight Spectrum A<br>LL RF<br>Iter Freq 1<br>Ref                     | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P<br>S81 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG<br>K<br>(X) F<br>Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P<br>S81 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG<br>KX F<br>Cer<br>10 d<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P<br>081 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MSG<br>K<br>XIF<br>Cer<br>10 d<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P F<br>081 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>IM K<br>IM F<br>Cer<br>10 d<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P F<br>081 6 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>(X) F<br>Cer<br>10 d<br>2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   2.3.4 S<br>DET P P P P P<br>381 6 GH<br>.785 dBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| мsg<br>(X) F<br>Сег<br>10 d<br>10 d<br>-0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE   12 34 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG<br>K<br>K<br>K<br>K<br>F<br>Cer<br>10 d<br>Log<br>9.29<br>-0.71<br>-10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   2.3.4 S<br>DET P P P P P<br>381 6 GH<br>.785 dBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| мsg<br>ка<br>ка<br>ка<br>мзб<br>Гет<br>10 d<br>Log<br>9.29<br>-0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   1 2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>MSG<br>MSG<br>F<br>Cer<br>Cer<br>9.25<br>-0.71<br>-10.7<br>-20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   1 2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>(74) F<br>(74) F<br>(                                                                                                                                                                           | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE   12 34 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| мsg<br>К К<br>Сег<br>9.29<br>-0.71<br>-10.7<br>-20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   1 2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| мsg<br>Сег<br>10 g<br>9.29<br>-0.71<br>-10.7<br>-20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 2019<br>RACE   12 34 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG<br>K K<br>K F<br>Cer<br>10 d<br>10 d<br>9.29<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run            | LIGN AUTO                      | Log-Pwr<br>I0/10                         | <sup>10:51:2</sup> ⊤<br>T<br>Mkr1 25.6 | 26 AM Jul 02, 201<br>RACE   1 2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MsG<br>Cer<br>9,25<br>-0.71<br>-10.7<br>-20.7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eysight Spectrum A<br>LL RF<br><b>nter Freq ^</b><br>B/div <b>Ref</b> | Analyzer - Swept SA<br>50 Ω DC  <br>18.000000000 (<br>NFE<br>Offset 9.29 dB                                                                            | GHz<br>PNO: Fast               | SENSE:INT                               | Run<br>48<br>  |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 2019<br>12 A 45 JUL 24 55 JUL 25 J |
| usa<br>■ K K<br>20 F<br>10 d<br>20 g<br>9.25<br>-0.71<br>-10.7.7<br>-20.7<br>-40.7<br>-40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 (<br>NFE<br>Offset 9.29 dB<br>19.29 dBm                                                                 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 2019<br>RACE   1 2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSG<br>MSG<br>MF<br>Cer<br>10 d<br>10 d<br>9.29<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 (<br>NFE<br>Offset 9.29 dB<br>19.29 dBm                                                                 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT                               | Run<br>dB<br>, | LIGN AUTO                      | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 2019<br>RACE   1 2 3 4 5<br>TYPE   WWWW<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NsG<br>Cer<br>2007 F<br>2007<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7<br>-40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 (<br>NFE<br>Offset 9.29 dB<br>19.29 dBm                                                                 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 2019<br>RACE   1 2 3 4 5<br>TYPE   WWWW<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSG<br>Cer<br>10 d<br>9.25<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7<br>-50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 (<br>NFE<br>Offset 9.29 dB<br>19.29 dBm                                                                 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 2019<br>12 A 45 JUL 24 55 JUL 25 J |
| MSG<br>Cer<br>10 d<br>9.25<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7<br>-60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 (<br>NFE<br>Offset 9.29 dB<br>19.29 dBm                                                                 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 201<br>RACE   2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Msg<br>Cer<br>10 d<br>9.29<br>-0.71<br>-10.7<br>-20.7<br>-30.7<br>-40.7<br>-40.7<br>-60.7<br>-60.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eysight Spectrum A                                                    | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 0<br>NFE<br>Offset 9.29 dB<br>19.29 dB<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | GHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 201<br>RACE   2 3 4 5<br>DET P P P P P<br>381 6 GH<br>.785 dBr<br>DL1 -14.21 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG<br>Cer<br>10 d<br>10 | Ref                                                                   | Analyzer - Swept SA<br>50 Ω DC<br>18.000000000 C<br>NFE<br>Offset 9.29 dB<br>19.29 dBm<br>                                                             | SHz<br>PNO: Fast<br>IFGain:Low | SENSE:INT<br>Trig: Free F<br>#Atten: 20 | Run<br>dB<br>, |                                | Log-Pwr<br>10/10                         | 10:51:2<br>T<br>Mkr1 25.6<br>-53       | 26 AM Jul 02, 201<br>TRACE   12 34 5<br>DET P P P P P<br>S81 6 GH<br>.785 dBr<br>DL1 -14.21 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |




# Appendix D): Maximum Power Spectral Density

| Result Table |         |           |         |  |  |  |  |  |  |
|--------------|---------|-----------|---------|--|--|--|--|--|--|
| Mode         | Channel | PSD [dBm] | Verdict |  |  |  |  |  |  |
| BLE          | LCH     | -10.356   | PASS    |  |  |  |  |  |  |
| BLE          | MCH     | -9.632    | PASS    |  |  |  |  |  |  |
| BLE          | HCH     | -9.300    | PASS    |  |  |  |  |  |  |

Test Graphs



#### REPORT No.: 4788973569-1 Page 68 of 68



# **END OF REPORT**

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.