

GTS Global United Technology Services Co., Ltd.

Report No.: GTS201906000005F01

# FCC Report (Bluetooth)

| Applicant:                          | Cooper Lighting LLC                                         |  |  |  |
|-------------------------------------|-------------------------------------------------------------|--|--|--|
| Address of Applicant:               | 1121 Hwy 74 S, Peachtree City, Georgia 30269, United States |  |  |  |
| Manufacturer/Factory:               | Cooper Lighting LLC                                         |  |  |  |
| Address of<br>Manufacturer/Factory: | 1121 Hwy 74 S, Peachtree City, Georgia 30269, United States |  |  |  |
| Equipment Under Test (E             | EUT)                                                        |  |  |  |
| Product Name:                       | LED Downlight                                               |  |  |  |
| Model No.:                          | DL-N9RbA09FR2-2590, RL56069BLE40AWH*-CA                     |  |  |  |
| FCC ID:                             | 2AKCY-RL56BLE                                               |  |  |  |
| Applicable standards:               | FCC CFR Title 47 Part 15 Subpart C Section 15.247           |  |  |  |
| Date of sample receipt:             | June 05, 2019                                               |  |  |  |
| Date of Test:                       | June 06-13, 2019                                            |  |  |  |
| Date of report issued:              | June 14, 2019                                               |  |  |  |
| Test Result :                       | PASS *                                                      |  |  |  |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.



#### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | June 14, 2019 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Prepared By:

Bill. yuan

Date:

June 14, 2019

June 14, 2019

Project Engineer

Check By:

Date: nson 15

Reviewer



### 3 Contents

|   |       |                                        | Page |
|---|-------|----------------------------------------|------|
| 1 | COV   | /ER PAGE                               | 1    |
| 2 | VER   | SION                                   | 2    |
| 3 | CON   | NTENTS                                 | 3    |
| 4 | TES   | ST SUMMARY                             | 4    |
| 5 | GEN   | NERAL INFORMATION                      | 5    |
|   | 5.1   | GENERAL DESCRIPTION OF EUT             | 5    |
|   | 5.2   | TEST MODE                              | -    |
|   | 5.3   | DESCRIPTION OF SUPPORT UNITS           |      |
|   | 5.4   | DEVIATION FROM STANDARDS               |      |
|   | 5.5   | ABNORMALITIES FROM STANDARD CONDITIONS |      |
|   | 5.6   | TEST FACILITY                          | 7    |
|   | 5.7   | TEST LOCATION                          | 7    |
| 6 | TES   | T INSTRUMENTS LIST                     | 8    |
| 7 | TES   | T RESULTS AND MEASUREMENT DATA         | 10   |
|   | 7.1   | ANTENNA REQUIREMENT                    | 10   |
|   | 7.2   | CONDUCTED EMISSIONS                    | 11   |
|   | 7.3   | CONDUCTED OUTPUT POWER                 | 14   |
|   | 7.4   | CHANNEL BANDWIDTH                      |      |
|   | 7.5   | Power Spectral Density                 |      |
|   | 7.6   | BAND EDGES                             |      |
|   | 7.6.1 |                                        |      |
|   | 7.6.2 |                                        |      |
|   | 7.7   | Spurious Emission                      |      |
|   | 7.7.  |                                        | -    |
|   | 7.7.2 | 2 Radiated Emission Method             | 25   |
| 8 | TES   | от SETUP PHOTO                         | 33   |
| 9 | EUT   | CONSTRUCTIONAL DETAILS                 | 33   |



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Frequency Range       | Measurement Uncertainty                           | Notes                                                                                                                 |
|-----------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 9kHz ~ 30MHz ±3.8039c |                                                   | (1)                                                                                                                   |
| 30MHz ~ 1000MHz       | $\pm$ 3.9679dB                                    | (1)                                                                                                                   |
| 1GHz ~ 26.5GHz        | ± 4.29dB                                          | (1)                                                                                                                   |
| 0.15MHz ~ 30MHz       | ± 3.44dB                                          | (1)                                                                                                                   |
| -                     | 9kHz ~ 30MHz<br>30MHz ~ 1000MHz<br>1GHz ~ 26.5GHz | 9kHz ~ 30MHz         ±3.8039dB           30MHz ~ 1000MHz         ± 3.9679dB           1GHz ~ 26.5GHz         ± 4.29dB |



# 5 General Information

# 5.1 General Description of EUT

| Product Name:                                                  | LED Downlight                                                                                                |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Model No.:                                                     | DL-N9RbA09FR2-2590, RL56069BLE40AWH*-CA                                                                      |
| Test Model No:                                                 | DL-N9RbA09FR2-2590                                                                                           |
| Remark: All above models are<br>The only difference is model n | identical in the same PCB layout, interior structure and electrical circuits.<br>ame for commercial purpose. |
| Test sample(s) ID:                                             | GTS201906000005-1                                                                                            |
| Sample(s) Status:                                              | Engineer sample                                                                                              |
| Serial No.:                                                    | LDXRL56069BLE40AWH                                                                                           |
| Hardware Version:                                              | V2.0                                                                                                         |
| Software Version:                                              | V4.1                                                                                                         |
| Operation Frequency:                                           | 2402MHz~2480MHz                                                                                              |
| Channel Numbers:                                               | 40                                                                                                           |
| Channel Separation:                                            | 2MHz                                                                                                         |
| Modulation Type:                                               | GFSK                                                                                                         |
| Antenna Type:                                                  | PCB Antenna                                                                                                  |
| Antenna Gain:                                                  | 2.51dBi(Declare by applicant)                                                                                |
| Power Supply:                                                  | AC 120V, 60Hz                                                                                                |



| Operation Frequency each of channel |           |         |           |         |           |         |           |  |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1                                   | 2402MHz   | 11      | 2422MHz   | 21      | 2442MHz   | 31      | 2462MHz   |  |
| 2                                   | 2404MHz   | 12      | 2424MHz   | 22      | 2444MHz   | 32      | 2464MHz   |  |
| •                                   |           | ·       | •         |         |           | •       | •         |  |
| 9                                   | 2418MHz   | 19      | 2438MHz   | 29      | 2458MHz   | 39      | 2478MHz   |  |
| 10                                  | 2420MHz   | 20      | 2440MHz   | 30      | 2460MHz   | 40      | 2480MHz   |  |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2440MHz   |
| The Highest channel | 2480MHz   |



### 5.2 Test mode

| Transmitting mode | Keep the EUT in continuously transmitting mode |
|-------------------|------------------------------------------------|
|-------------------|------------------------------------------------|

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

### 5.3 Description of Support Units

None.

#### 5.4 Deviation from Standards

None.

### 5.5 Abnormalities from Standard Conditions

None.

#### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

#### • Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

#### • NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

#### 5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960



# 6 Test Instruments list

| Rad  | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| ltem | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 27 2018          | June. 26 2019              |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 27 2018          | June. 26 2019              |  |  |
| 5    | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 27 2018          | June. 26 2019              |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 27 2018          | June. 26 2019              |  |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 27 2018          | June. 26 2019              |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 27 2018          | June. 26 2019              |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 27 2018          | June. 26 2019              |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 27 2018          | June. 26 2019              |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 27 2018          | June. 26 2019              |  |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 27 2018          | June. 26 2019              |  |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 27 2018          | June. 26 2019              |  |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 27 2018          | June. 26 2019              |  |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 27 2018          | June. 26 2019              |  |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 27 2018          | June. 26 2019              |  |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 27 2018          | June. 26 2019              |  |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 27 2018          | June. 26 2019              |  |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 27 2018          | June. 26 2019              |  |  |
| 21   | Breitband<br>hornantenne               | SCHWARZBECK                    | BBHA 9170                   | GTS579           | Oct. 20 2018           | Oct. 19 2019               |  |  |
| 22   | Amplifier                              | TDK                            | PA-02-02                    | GTS574           | Oct. 20 2018           | Oct. 19 2019               |  |  |
| 23   | Amplifier                              | TDK                            | PA-02-03                    | GTS576           | Oct. 20 2018           | Oct. 19 2019               |  |  |
| 24   | PSA Series Spectrum<br>Analyzer        | Rohde & Schwarz                | FSP                         | GTS578           | June. 27 2018          | June. 26 2019              |  |  |



| Conc | Conducted Emission       |                             |                      |                  |                        |                            |  |  |
|------|--------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|--|
| ltem | Test Equipment           | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | Shielding Room           | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.16 2014            | May.15 2019                |  |  |
| 2    | EMI Test Receiver        | R&S                         | ESCI 7               | GTS552           | June. 27 2018          | June. 26 2019              |  |  |
| 3    | Coaxial Switch           | ANRITSU CORP                | MP59B                | GTS225           | June. 27 2018          | June. 26 2019              |  |  |
| 4    | Artificial Mains Network | SCHWARZBECK<br>MESS         | NSLK8127             | GTS226           | June. 27 2018          | June. 26 2019              |  |  |
| 5    | Coaxial Cable            | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |  |
| 6    | EMI Test Software        | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |  |
| 7    | Thermo meter             | KTJ                         | TA328                | GTS233           | June. 27 2018          | June. 26 2019              |  |  |
| 8    | Absorbing clamp          | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 27 2018          | June. 26 2019              |  |  |

| RF C | RF Conducted Test:                                   |              |                  |            |                        |                            |  |  |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|--|
| ltem | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 27 2018          | June. 26 2019              |  |  |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |  |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 27 2018          | June. 26 2019              |  |  |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 27 2018          | June. 26 2019              |  |  |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 27 2018          | June. 26 2019              |  |  |
| 6    | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | June. 27 2018          | June. 26 2019              |  |  |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 27 2018          | June. 26 2019              |  |  |
| 8    | Programmable Constant<br>Temp & Humi<br>Test Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 27 2018          | June. 26 2019              |  |  |

| Gene | General used equipment:            |              |           |               |                        |                            |  |
|------|------------------------------------|--------------|-----------|---------------|------------------------|----------------------------|--|
| ltem | Test Equipment                     | Manufacturer | Model No. | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Humidity/ Temperature<br>Indicator | KTJ          | TA328     | GTS243        | June. 27 2018          | June. 26 2019              |  |
| 2    | Barometer                          | ChangChun    | DYM3      | GTS255        | June. 27 2018          | June. 26 2019              |  |



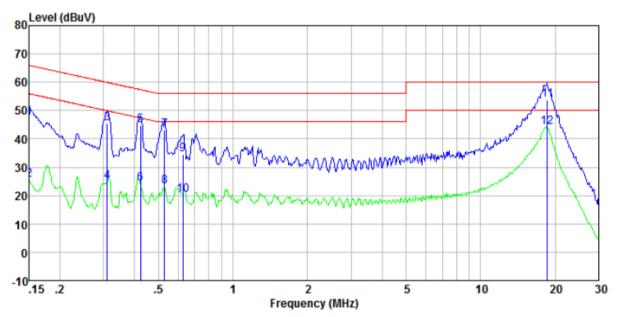
# 7 Test results and Measurement Data

### 7.1 Antenna requirement

| Standard requirement:                                      | FCC Part15 C Section 15.203 /247(c)                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.203 requirement:                                        |                                                                                                                                                                                                                                                                                                                    |
| responsible party shall be us antenna that uses a unique o | be designed to ensure that no antenna other than that furnished by the<br>sed with the device. The use of a permanently attached antenna or of an<br>coupling to the intentional radiator, the manufacturer may design the unit so<br>e replaced by the user, but the use of a standard antenna jack or electrical |
| 15.247(c) (1)(i) requirement                               | t:                                                                                                                                                                                                                                                                                                                 |
| operations may employ trans                                | 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.                                                                       |
| E.U.T Antenna:                                             |                                                                                                                                                                                                                                                                                                                    |
| The antenna is PCB antenna for details.                    | a, the best case gain of the antenna is 2.51dBi, reference to the appendix II                                                                                                                                                                                                                                      |



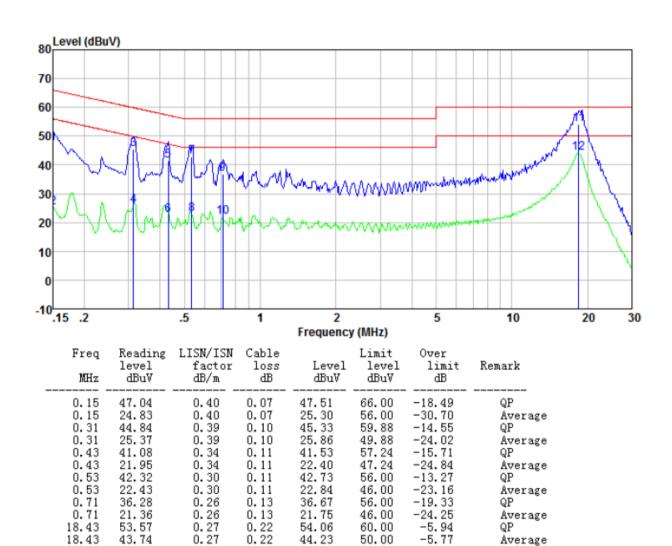
### 7.2 Conducted Emissions


| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                     |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                     |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                     |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                     |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weep time=auto                                   |                     |  |  |
| Limit:                | Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                     |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quasi-peak                                       | Average             |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 to 56*                                        | 56 to 46*           |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                               | 46                  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                               | 50                  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of the frequency.                              |                     |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                     |  |  |
|                       | AUX<br>Equipment E.U.T<br>Test table/Insulation plane<br>Remark:<br>E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization Network<br>Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filter AC pow                                    |                     |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a<br/>line impedance stabilization network (L.I.S.N.). This provides a<br/>50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through<br/>LISN that provides a 50ohm/50uH coupling impedance with 50ohm<br/>termination. (Please refer to the block diagram of the test setup and<br/>photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted<br/>interference. In order to find the maximum emission, the relative</li> </ol> |                                                  |                     |  |  |
| Test Instruments:     | positions of equipment and<br>according to ANSI C63.10:2<br>Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | all of the interface cab<br>2013 on conducted me | les must be changed |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                     |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                     |  |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                     |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                     |  |  |



#### Measurement data

### Report No.: GTS201906000005F01


| Mode:           | Transmitting mode | Test by: | Bill |
|-----------------|-------------------|----------|------|
| Temp./Hum.(%H): | 26℃/56%RH         | Probe:   | Line |



| Freq<br>MHz                                                                   | Reading<br>level<br>dBuV                                                                        | LISN/ISN<br>factor<br>dB/m                                                           | Cable<br>loss<br>dB                                          | Level<br>dBuV                                                                                   | Limit<br>level<br>dBuV                                                                                                 | Over<br>limit<br>dB                                                                                       | Remark                                                                                  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 0.15<br>0.15<br>0.31<br>0.42<br>0.42<br>0.53<br>0.53<br>0.63<br>0.63<br>18.62 | 46.98<br>24.92<br>44.85<br>24.32<br>44.32<br>23.66<br>42.78<br>22.63<br>34.13<br>19.76<br>53.41 | 0.40<br>0.40<br>0.39<br>0.34<br>0.34<br>0.34<br>0.31<br>0.31<br>0.28<br>0.28<br>0.27 | 0.07<br>0.07<br>0.10<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11 | 47.45<br>25.39<br>45.34<br>24.81<br>44.77<br>24.11<br>43.20<br>23.05<br>34.53<br>20.16<br>53.90 | $\begin{array}{c} 66.00\\ 56.00\\ 59.97\\ 49.97\\ 57.37\\ 47.37\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 60.00\\ \end{array}$ | -18.55<br>-30.61<br>-14.63<br>-25.16<br>-12.60<br>-23.26<br>-12.80<br>-22.95<br>-21.47<br>-25.84<br>-6.10 | QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP |
| 18.62                                                                         | 43.61                                                                                           | 0.27                                                                                 | 0.22                                                         | 44.10                                                                                           | 50.00                                                                                                                  | -5.90                                                                                                     | Average                                                                                 |



| Mode:           | Transmitting mode | Test by: | Bill    |
|-----------------|-------------------|----------|---------|
| Temp./Hum.(%H): | 26℃/56%RH         | Probe:   | Neutral |



Notes:

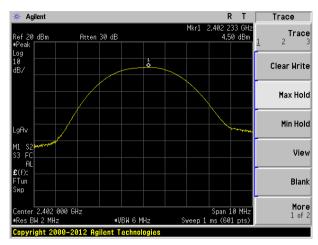
1. An initial pre-scan was performed on the line and neutral lines with peak detector.

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

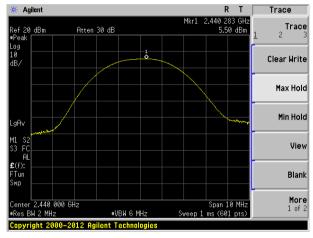


### 7.3 Conducted Output Power

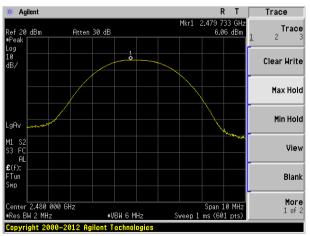
| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                          |  |
|-------------------|-----------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02                 |  |
| Limit:            | 30dBm                                                                       |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |
| Test results:     | Pass                                                                        |  |


#### **Measurement Data**

| Test channel | Peak Output Power (dBm) | Limit(dBm) | Result |
|--------------|-------------------------|------------|--------|
| Lowest       | 4.50                    |            |        |
| Middle       | 5.50                    | 30.00      | Pass   |
| Highest      | 6.06                    |            |        |




#### Test plot as follows:


### Report No.: GTS201906000005F01



Lowest channel



Middle channel



Highest channel



### 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                          |  |
|-------------------|-----------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02                 |  |
| Limit:            | >500KHz                                                                     |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |
| Test results:     | Pass                                                                        |  |

#### **Measurement Data**

| Test channel | Channel Bandwidth (MHz) | Limit(KHz) | Result |  |
|--------------|-------------------------|------------|--------|--|
| Lowest       | 0.680                   | >500       |        |  |
| Middle       | 0.680                   |            | Pass   |  |
| Highest      | 0.674                   |            |        |  |



#### Test plot as follows:

### Report No.: GTS201906000005F01

| * Agilent                                                       | R               | Т     | Trace                        |
|-----------------------------------------------------------------|-----------------|-------|------------------------------|
| Ch Freq 2.402 GHz<br>Occupied Bandwidth                         | Trig            | Free  | <b>Trace</b><br><u>1</u> 2 3 |
|                                                                 |                 |       | Clear Write                  |
| Ref 20 dBm Atten 30 dB<br>Peak<br>Log<br>10 9                   |                 |       | Max Hold                     |
| dB/                                                             |                 |       | Min Hold                     |
| Center 2.402 000 GHz                                            |                 | 3 MHz | View                         |
| •Res BW 100 kHz •VBW 300 kH<br>Occupied Bandwidth<br>1.0446 MHz | Occ BW % Pwr 99 |       | Blank                        |
| Transmit Freq Error 16.497 kHz<br>x dB Bandwidth 679.511 kHz    |                 |       | More<br>1 of 2               |
| Copyright 2000-2012 Agilent Technolog                           | ies             |       |                              |

Lowest channel

| Ch Freq 2.44 GHz Trig Free                                                                               | _ (                          |
|----------------------------------------------------------------------------------------------------------|------------------------------|
| Occupied Bandwidth                                                                                       | <b>Trace</b><br><u>1</u> 2 3 |
|                                                                                                          | Clear Write                  |
| Ref 20 dBm Atten 30 dB<br>=Peak<br>Log<br>10                                                             | Max Hold                     |
|                                                                                                          | Min Hold                     |
| Center 2.440 000 GHz Span 3 MHz<br>Res BH 100 KHz VBW 300 KHz Sweep 1 ms (601 pts)                       | View                         |
| Occupied Bandwidth         Occ BM 2 More Play           1.0416         MHz         × dB         -6.00 dB | Blank                        |
| Transmit Freq Error 12.972 kHz<br>x dB Bandwidth 680.090 kHz<br>Copyright 2000-2012 Agilent Technologies | More<br>1 of 2               |

Middle channel

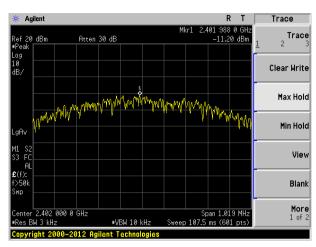


Highest channel

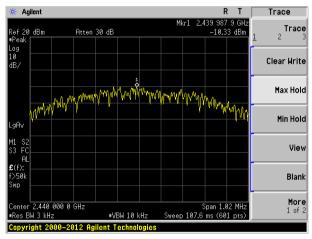


### 7.5 Power Spectral Density

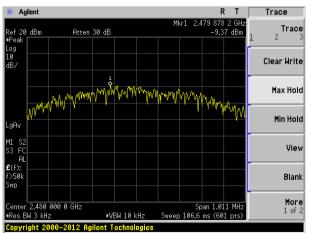
| Test Requirement: | FCC Part15 C Section 15.247 (e)                                             |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02                 |  |  |  |
| Limit:            | 8dBm/3kHz                                                                   |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |


#### **Measurement Data**

| Test channel | Power Spectral Density<br>(dBm/3kHz) | Limit(dBm/3kHz) | Result |  |
|--------------|--------------------------------------|-----------------|--------|--|
| Lowest       | -11.20                               |                 |        |  |
| Middle       | -10.33                               | 8.00            | Pass   |  |
| Highest      | -9.37                                |                 |        |  |




#### Test plot as follows:


#### Report No.: GTS201906000005F01



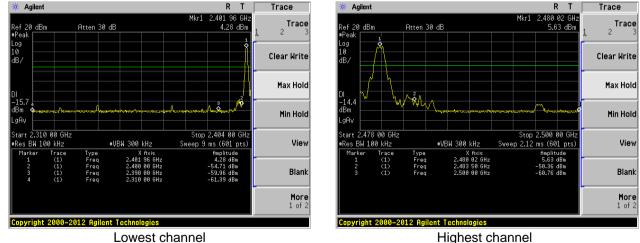
Lowest channel



Middle channel



Highest channel




### 7.6 Band edges

### 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

#### Test plot as follows:





### 7.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section 15.20                                                                                                                                                                                                                                                                                                                                                                | 9 and 15.205                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:          | ANSI C63.10:20                                                                                                                                                                                                                                                                                                                                                                                                                                    | )13                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test Frequency Range: | All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detector                                                                                                                                                                                                                                                                                                                                                                     | RBW                                                                                                                                                                                                                                                                                                                                                                 | VBW                                                                                                                                                                                                                                                                                                              | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak                                                                                                                                                                                                                                                                                                                                                                         | 1MHz                                                                                                                                                                                                                                                                                                                                                                | 3MHz                                                                                                                                                                                                                                                                                                             | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                       | Above TGHZ                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMS                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                                                                                                                | 3MHz                                                                                                                                                                                                                                                                                                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                            | ency                                                                                                                                                                                                                                                                                                                                                                         | Limit (dBuV/                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                  | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                           | GH <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Test setup:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0112                                                                                                                                                                                                                                                                                                                                                                         | 74.0                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                       | Tum Tables<br><150cm>                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     | Antenna-<br>14m>                                                                                                                                                                                                                                                                                                 | Tree and the second secon |  |  |  |
| Test Procedure:       | <ul> <li>determine the</li> <li>2. The EUT was<br/>antenna, whi<br/>tower.</li> <li>3. The antenna<br/>ground to de<br/>horizontal an<br/>measuremen</li> <li>4. For each sus<br/>and then the<br/>and the rota<br/>the maximun</li> <li>5. The test-rece<br/>Specified Ba</li> <li>6. If the emission<br/>limit specified<br/>the EUT wou<br/>10dB margin<br/>average met</li> <li>7. The radiation<br/>And found th<br/>worst case m</li> </ul> | t a 3 meter ca<br>e position of t<br>s set 3 meters<br>ch was moun<br>height is vari<br>termine the m<br>d vertical pola<br>t.<br>spected emiss<br>antenna was<br>table was turn<br>n reading.<br>eiver system v<br>ndwidth with l<br>on level of the<br>d, then testing<br>ld be reporter<br>would be re-<br>hod as specifi<br>n measureme<br>e X axis positioned is record | amber. The tak<br>he highest rac<br>s away from th<br>ted on the top<br>ed from one m<br>naximum value<br>arizations of th<br>sion, the EUT<br>tuned to heigh<br>ned from 0 deg<br>was set to Pea<br>Maximum Hole<br>EUT in peak<br>g could be stop<br>d. Otherwise th<br>tested one by<br>ied and then m<br>nts are perform<br>tioning which in<br>led in the repo | ble was rotate<br>diation.<br>The interference<br>of a variable<br>meter to four the<br>e of the field so<br>the antenna are<br>was arranged<br>hts from 1 me<br>grees to 360<br>ak Detect Fur<br>d Mode.<br>mode was 10<br>oped and the<br>he emissions<br>one using pe<br>eported in a final<br>med in X, Y, 2 | ed 360 degrees to<br>ce-receiving<br>e-height antenna<br>meters above the<br>strength. Both<br>re set to make the<br>d to its worst case<br>eter to 4 meters<br>degrees to find<br>nction and<br>OdB lower than the<br>peak values of<br>s that did not have<br>eak, quasi-peak or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                  | o.∠ IOF detail                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |



#### **Measurement Data**

Test channel:

| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2310.00            | 39.22                   | 27.59                       | 5.38                  | 30.18                    | 42.01             | 74.00                  | -31.99                | Horizontal   |
| 2400.00            | 53.48                   | 27.58                       | 5.40                  | 30.18                    | 56.28             | 74.00                  | -17.72                | Horizontal   |
| 2310.00            | 39.42                   | 27.59                       | 5.38                  | 30.18                    | 42.21             | 74.00                  | -31.79                | Vertical     |
| 2400.00            | 55.13                   | 27.58                       | 5.40                  | 30.18                    | 57.93             | 74.00                  | -16.07                | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |

Lowest

#### Average value

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2310.00            | 30.60                   | 27.59                       | 5.38                  | 30.18                    | 33.39             | 54.00                  | -20.61                | Horizontal   |
| 2400.00            | 38.62                   | 27.58                       | 5.40                  | 30.18                    | 41.42             | 54.00                  | -12.58                | Horizontal   |
| 2310.00            | 30.28                   | 27.59                       | 5.38                  | 30.18                    | 33.07             | 54.00                  | -20.93                | Vertical     |
| 2400.00            | 38.52                   | 27.58                       | 5.40                  | 30.18                    | 41.32             | 54.00                  | -12.68                | Vertical     |

### Test channel:

| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 40.89                   | 27.53                       | 5.47                  | 29.93                    | 43.96             | 74.00                  | -30.04                | Horizontal   |
| 2500.00            | 40.76                   | 27.55                       | 5.49                  | 29.93                    | 43.87             | 74.00                  | -30.13                | Horizontal   |
| 2483.50            | 41.12                   | 27.53                       | 5.47                  | 29.93                    | 44.19             | 74.00                  | -29.81                | Vertical     |
| 2500.00            | 41.41                   | 27.55                       | 5.49                  | 29.93                    | 44.52             | 74.00                  | -29.48                | Vertical     |

Highest

#### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 33.38                   | 27.53                       | 5.47                  | 29.93                    | 36.45             | 54.00                  | -17.55                | Horizontal   |
| 2500.00            | 31.91                   | 27.55                       | 5.49                  | 29.93                    | 35.02             | 54.00                  | -18.98                | Horizontal   |
| 2483.50            | 34.29                   | 27.53                       | 5.47                  | 29.93                    | 37.36             | 54.00                  | -16.64                | Vertical     |
| 2500.00            | 31.52                   | 27.55                       | 5.49                  | 29.93                    | 34.63             | 54.00                  | -19.37                | Vertical     |

#### Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

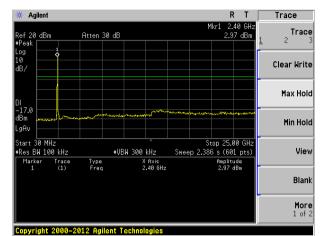
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest З. and highest frequencies) data was showed.



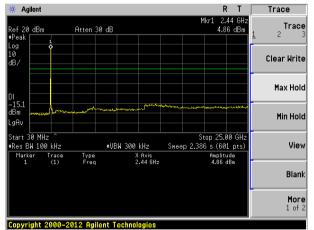
### 7.7 Spurious Emission

### 7.7.1 Conducted Emission Method


| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

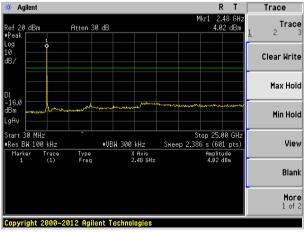


# Test plot as follows:


Lowest channel

### Report No.: GTS201906000005F01




30MHz~25GHz

#### Middle channel

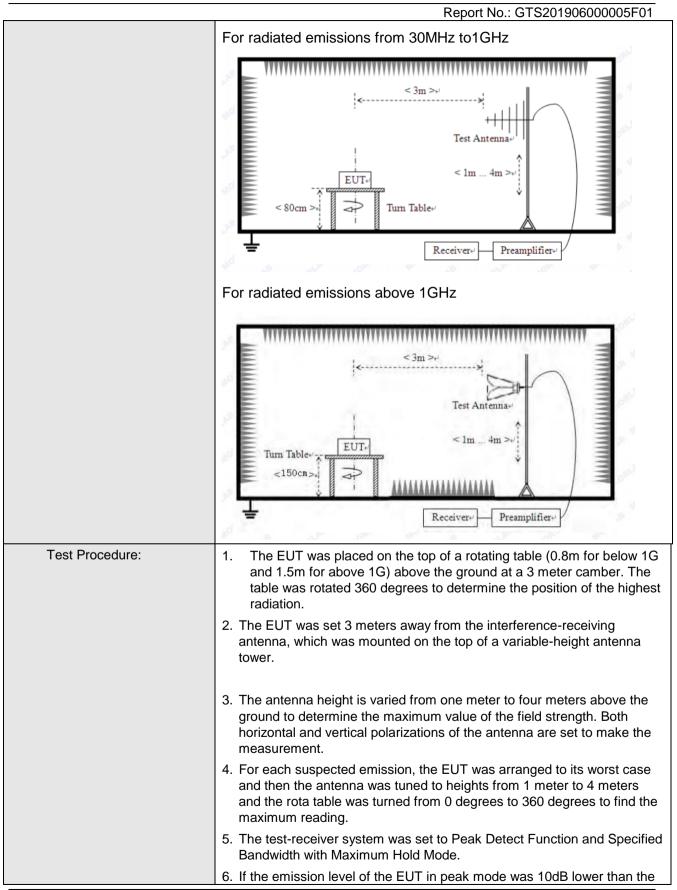


30MHz~25GHz

# Highest channel






Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 7.7.2 Radiated Emission Method

| FCC Part15 C Section     | on 15.209                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ANSI C63.10:2013         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 9kHz to 25GHz            |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Measurement Distance: 3m |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Frequency                | Detector                                                                                                                                                                                                                                                                                               | RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 9KHz-150KHz              | Quasi-peal                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 150KHz-30MHz             | Quasi-peal                                                                                                                                                                                                                                                                                             | 9K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 30MHz-1GHz               | Quasi-peal                                                                                                                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>K</b> Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300KH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Above 1GHz               | Peak                                                                                                                                                                                                                                                                                                   | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                          | Peak                                                                                                                                                                                                                                                                                                   | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Frequency                | Limit                                                                                                                                                                                                                                                                                                  | uV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Measurement<br>Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.009MHz-0.490M          | Hz 2400/                                                                                                                                                                                                                                                                                               | F(KHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 0.490MHz-1.705M          | Hz 24000/                                                                                                                                                                                                                                                                                              | F(KHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1.705MHz-30MH            | z 3                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 30MHz-88MHz              | 1                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 960MHz-1GHz              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Above 1GHz 500           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 5000                     |                                                                                                                                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| For radiated emiss       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                          | ANSI C63.10:2013<br>9kHz to 25GHz<br>Measurement Distar<br>Frequency<br>9KHz-150KHz<br>150KHz-30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Above 1GHz<br>0.009MHz-0.490M<br>0.490MHz-1.705M<br>1.705MHz-30MH<br>30MHz-88MHz<br>88MHz-216MHz<br>216MHz-960MH<br>960MHz-1GHz<br>Above 1GHz<br>For radiated emiss | FCC Part15 C Section 15.209         ANSI C63.10:2013         9KHz to 25GHz         Measurement Distance: 3m         Frequency Detector         9KHz-150KHz       Quasi-peak         150KHz-30MHz       Quasi-peak         30MHz-1GHz       Quasi-peak         Above 1GHz       Peak         Peak       Peak         0.009MHz-0.490MHz       2400/F         0.490MHz-1.705MHz       24000/F         0.490MHz-1.705MHz       24000/F         0.490MHz-1.705MHz       33         30MHz-88MHz       10         88MHz-216MHz       15         216MHz-960MHz       20         960MHz-1GHz       50         Above 1GHz       50         For radiated emissions from 9k       50         For radiated emissions from 9k | FCC Part15 C Section 15.209         ANSI C63.10:2013         9kHz to 25GHz         Measurement Distance: 3m         Frequency       Detector       RB         9KHz-150KHz       Quasi-peak       200         150KHz-30MHz       Quasi-peak       9KI         30MHz-1GHz       Quasi-peak       120         Above 1GHz       Peak       1M         Peak       1M         0.009MHz-0.490MHz       2400/F(KHz)         0.490MHz-1.705MHz       24000/F(KHz)         1.705MHz-30MHz       30         30MHz-188MHz       100         88MHz-216MHz       150         216MHz-960MHz       200         960MHz-1GHz       500         Above 1GHz       500         Above 1GHz       500         Soudo       5000 | FCC Part15 C Section 15.209         ANSI C63.10:2013         9kHz to 25GHz         Measurement Distance: 3m         Frequency       Detector       RBW         9KHz-150KHz       Quasi-peak       200Hz         150KHz-30MHz       Quasi-peak       120KHz         30MHz-1GHz       Quasi-peak       120KHz         Above 1GHz       Peak       1MHz         Frequency       Limit (uV/m)       V         0.009MHz-0.490MHz       2400/F(KHz)       0.490MHz-1.705MHz         0.490MHz-1.705MHz       24000/F(KHz)       0.490MHz-1.705MHz         1.705MHz-30MHz       30       30         30MHz-88MHz       100       88MHz-216MHz         1.705MHz-960MHz       200       960MHz-1GHz         500       Above 1GHz       500         Above 1GHz       500       Av         5000       F       For radiated emissions from 9kHz to 30MH | FCC Part15 C Section 15.209         ANSI C63.10:2013         9kHz to 25GHz         Measurement Distance: 3m         Frequency       Detector       RBW       VBW         9KHz-150KHz       Quasi-peak       200Hz       600Hz         150KHz-30MHz       Quasi-peak       9KHz       30KHz         30MHz-1GHz       Quasi-peak       120KHz       300KHz         Above 1GHz       Peak       1MHz       10Hz         Peak       1MHz       10Hz       10Hz         0.009MHz-0.490MHz       2400/F(KHz)       QP         0.490MHz-1.705MHz       24000/F(KHz)       QP         1.705MHz-30MHz       30       QP         30MHz-88MHz       100       QP         30MHz-88MHz       100       QP         30MHz-88MHz       100       QP         216MHz-960MHz       200       QP         960MHz-1GHz       500       Average         5000       Peak       Source       Source         Above 1GHz       500       Average         Source       Source         Above 1GHz       Sure         Sure |  |  |





Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

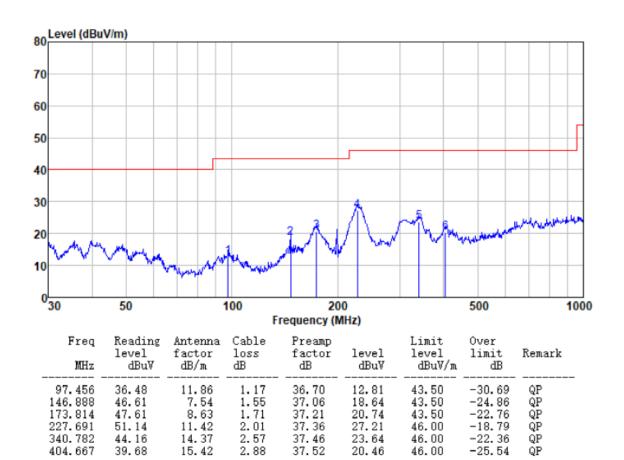


|                   | Report No.: GTS201906000005F01                                            |
|-------------------|---------------------------------------------------------------------------|
|                   | limit specified, then testing could be stopped and the peak values of the |
|                   | EUT would be reported. Otherwise the emissions that did not have 10dB     |
|                   | margin would be re-tested one by one using peak, quasi-peak or            |
|                   | average method as specified and then reported in a data sheet.            |
| Test Instruments: | Refer to section 6.0 for details                                          |
| Test mode:        | Refer to section 5.2 for details                                          |
| Test voltage:     | AC 120V, 60Hz                                                             |
| Test results:     | Pass                                                                      |

#### Measurement data:

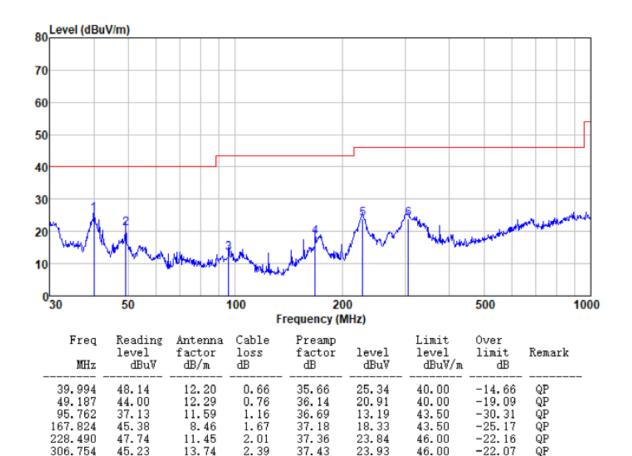
#### Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.




#### Below 1GHz

| Mode:           | Transmitting mode | Test by:      | Bill       |
|-----------------|-------------------|---------------|------------|
| Temp./Hum.(%H): | 26℃/56%RH         | Polarziation: | Horizontal |





| Mode:           | Transmitting mode | Test by:      | Bill     |
|-----------------|-------------------|---------------|----------|
| Temp./Hum.(%H): | 26℃/56%RH         | Polarziation: | Vertical |





#### Above 1GHz

### Report No.: GTS201906000005F01

| Test channel       | Test channel: Lowest    |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4804.00            | 35.55                   | 31.78                       | 8.60                  | 32.09                    | 43.84             | 74.00                  | -30.16                | Vertical     |
| 7206.00            | 30.67                   | 36.15                       | 11.65                 | 32.00                    | 46.47             | 74.00                  | -27.53                | Vertical     |
| 9608.00            | 30.43                   | 37.95                       | 14.14                 | 31.62                    | 50.90             | 74.00                  | -23.10                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4804.00            | 39.48                   | 31.78                       | 8.60                  | 32.09                    | 47.77             | 74.00                  | -26.23                | Horizontal   |
| 7206.00            | 32.27                   | 36.15                       | 11.65                 | 32.00                    | 48.07             | 74.00                  | -25.93                | Horizontal   |
| 9608.00            | 29.69                   | 37.95                       | 14.14                 | 31.62                    | 50.16             | 74.00                  | -23.84                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       | -                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4804.00            | 24.70                   | 31.78                       | 8.60                  | 32.09                    | 32.99             | 54.00                  | -21.01                | Vertical     |
| 7206.00            | 19.55                   | 36.15                       | 11.65                 | 32.00                    | 35.35             | 54.00                  | -18.65                | Vertical     |
| 9608.00            | 18.74                   | 37.95                       | 14.14                 | 31.62                    | 39.21             | 54.00                  | -14.79                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4804.00            | 28.73                   | 31.78                       | 8.60                  | 32.09                    | 37.02             | 54.00                  | -16.98                | Horizontal   |
| 7206.00            | 21.61                   | 36.15                       | 11.65                 | 32.00                    | 37.41             | 54.00                  | -16.59                | Horizontal   |
| 9608.00            | 18.32                   | 37.95                       | 14.14                 | 31.62                    | 38.79             | 54.00                  | -15.21                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel       | :                       |                             |                       | Mido                     | lle               |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4880.00            | 35.68                   | 31.85                       | 8.67                  | 32.12                    | 44.08             | 74.00                  | -29.92                | Vertical     |
| 7320.00            | 30.75                   | 36.37                       | 11.72                 | 31.89                    | 46.95             | 74.00                  | -27.05                | Vertical     |
| 9760.00            | 30.51                   | 38.35                       | 14.25                 | 31.62                    | 51.49             | 74.00                  | -22.51                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4880.00            | 39.63                   | 31.85                       | 8.67                  | 32.12                    | 48.03             | 74.00                  | -25.97                | Horizontal   |
| 7320.00            | 32.36                   | 36.37                       | 11.72                 | 31.89                    | 48.56             | 74.00                  | -25.44                | Horizontal   |
| 9760.00            | 29.78                   | 38.35                       | 14.25                 | 31.62                    | 50.76             | 74.00                  | -23.24                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     | 1                           | r                     | 1                        |                   |                        | r                     |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4880.00            | 24.80                   | 31.85                       | 8.67                  | 32.12                    | 33.20             | 54.00                  | -20.80                | Vertical     |
| 7320.00            | 19.62                   | 36.37                       | 11.72                 | 31.89                    | 35.82             | 54.00                  | -18.18                | Vertical     |
| 9760.00            | 18.80                   | 38.35                       | 14.25                 | 31.62                    | 39.78             | 54.00                  | -14.22                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4880.00            | 28.85                   | 31.85                       | 8.67                  | 32.12                    | 37.25             | 54.00                  | -16.75                | Horizontal   |
| 7320.00            | 21.69                   | 36.37                       | 11.72                 | 31.89                    | 37.89             | 54.00                  | -16.11                | Horizontal   |
| 9760.00            | 18.40                   | 38.35                       | 14.25                 | 31.62                    | 39.38             | 54.00                  | -14.62                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel       | nnel: Highest           |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4960.00            | 35.58                   | 31.93                       | 8.73                  | 32.16                    | 44.08             | 74.00                  | -29.92                | Vertical     |
| 7440.00            | 30.68                   | 36.59                       | 11.79                 | 31.78                    | 47.28             | 74.00                  | -26.72                | Vertical     |
| 9920.00            | 30.45                   | 38.81                       | 14.38                 | 31.88                    | 51.76             | 74.00                  | -22.24                | Vertical     |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4960.00            | 39.51                   | 31.93                       | 8.73                  | 32.16                    | 48.01             | 74.00                  | -25.99                | Horizontal   |
| 7440.00            | 32.29                   | 36.59                       | 11.79                 | 31.78                    | 48.89             | 74.00                  | -25.11                | Horizontal   |
| 9920.00            | 29.71                   | 38.81                       | 14.38                 | 31.88                    | 51.02             | 74.00                  | -22.98                | Horizontal   |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4960.00            | 24.75                   | 31.93                       | 8.73                  | 32.16                    | 33.25             | 54.00                  | -20.75                | Vertical     |
| 7440.00            | 19.59                   | 36.59                       | 11.79                 | 31.78                    | 36.19             | 54.00                  | -17.81                | Vertical     |
| 9920.00            | 18.77                   | 38.81                       | 14.38                 | 31.88                    | 40.08             | 54.00                  | -13.92                | Vertical     |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4960.00            | 28.79                   | 31.93                       | 8.73                  | 32.16                    | 37.29             | 54.00                  | -16.71                | Horizontal   |
| 7440.00            | 21.65                   | 36.59                       | 11.79                 | 31.78                    | 38.25             | 54.00                  | -15.75                | Horizontal   |
| 9920.00            | 18.36                   | 38.81                       | 14.38                 | 31.88                    | 39.67             | 54.00                  | -14.33                | Horizontal   |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 8 Test Setup Photo

Reference to the **appendix I** for details.

# 9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----