Report on the Testing of the Cooper Lighting LLC Insight's Ceiling Sensor

In accordance with: FCC 47 CFR part 15.247 ISED RSS-247 Issue 2, February 2017

Prepared for: Cooper Lighting LLC

NAFSC-1030, PO BOX 818044 Cleveland, OH 44181-8044 USA

Add value. Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: AT72179470.1C0

SIGNATURE

A Byrdox

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Divya Adusumilli	Senior Wireless Engineer TUV SUD America Inc.	Authorized Signatory	6/9/2022

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation Designation Number US1233

FCC Test Site Registration Number 967699

Innovation, Science, and Economic Development Canada Lab Code 23932

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with the standards listed above.

A2LA Cert. No. 2955.09

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.

ACCREDITATION

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 3005 Phone: 678-341-5900 www.tuv-sud-america.com

Contents

1	Report Summary	3
1.1	Report Modification Record	3
1.2	Introduction	3
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	Deviations from the Standard	
1.6	EUT Modification Record	
1.7	Test Location	
2	Test Details	11
2.1	Antenna Requirement	11
2.2	Power Line Conducted Emissions	
2.3	Fundamental Emission Output Power	
2.4	6dB / 99% Bandwidth	
2.5	Maximum Power Spectral Density in the Fundamental Emission	23
2.6	Band-Edge Compliance of RF Conducted Emissions	
2.7	RF Conducted Spurious Emissions	
2.8	Radiated Spurious Emissions into Restricted Frequency Bands	
2.9	Test Equipment Used	
3	Diagram of Test Set-ups	42
4	Accreditation, Disclaimers and Copyright	44

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Table 1.1-1 - Modification Record

Issue Description of Change		Date of Issue
0	First Issue	6/9/2022

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.247 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-247 for the tests documented herein.

Applicant Simi Kaur

Manufacturer Cooper Lighting LLC

Applicant's Email Address simi.kaur@cooperlighting.com

Model Name Insights Ceiling Sensor

Model Number ECS-Z-M05-LV

Serial Number 2214000368 0725-000026-002 (Radiated sample)

2215000417 0725-000026-002 (Conducted sample)

FCC ID 2AKCY-0580000038

ISED Certification Number 4706A-0580000038

Hardware Version(s) 0725-000052-00 (Upper PCBA)

0725-000053-00 (Lower PCBA)

Software Version(s) 4090-000214-00

Number of Samples Tested 2

Test Specification/Issue/Date US Code of Federal REgulation (CFR): Title 47, Part 15,

Subpart C: Radio Frequency Devices, Intentional

Radiators, 2021

ISED Canada Radio Standards Specification: RSS-247 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network

(LE-LAN) Devices, Issue 2, February 2017.

 Order Number
 72179470

 Date of Receipt of EUT
 4/28/2022

 Start of Test
 4/28/2022

Finish of Test

Related Document(s)

5/17/2022

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device

FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, April 2, 2019 US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2021. ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1 (March 2019), Amendment 2 (February 2021)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.247 and ISED Canada's RSS-247 is shown below.

Table 1.3-1: Test Result Summary

Test Parameter	Test Plan (Yes/No)	Test Result	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No
Antenna Requirement	Yes	Pass	15.203		11
6 dB Bandwidth	Yes	Pass	15.247(a)(2)	RSS-247 5.2(a)	18
99% Bandwidth	Yes	Pass		RSS-GEN 6.7	18
Fundamental Emission Output Power	Yes	Pass	15.247(b)(3)	RSS-247 5.4(d)	15
Band-Edge Compliance of RF Conducted Emissions	Yes	Pass	15.247(d)	RSS-247 5.5	26
RF Conducted Spurious Emissions	Yes	Pass	15.247(d)	RSS-247 5.5	28
Radiated Spurious Emissions into Restricted Frequency Bands	Yes	Pass	15.205, 15.209	RSS-GEN 8.9, 8.10	30
Power Spectral Density	Yes	Pass	15.247(e)	RSS-247 5.2(b)	23
AC Power Line Conducted Emissions	Yes	Pass	15.207	RSS-GEN 8.8	12

1.4 Product Information

1.4.1 Technical Description

Insights Ceiling Sensor which consists of camera, PIR, daylight, LED and IR sensor. Sensor communicate via Zigbee (U601) and has 2^{nd} radio for BLE (U602)

Table 1.4.1-1 - Wireless Technical Information

Detail	Description
FCC ID	2AKCY-0580000038
IC ID	4706A-0580000038
Transceiver Model #	ECS-Z-M05-LV
Frequency Range (MHz)	2402 – 2480 MHz
Modulation Format	GFSK
Number of Channels	40
Channel Spacing	2 MHz
Data Rates	1 MB/s
Operating voltage	24 VDC
Antenna Type / Gain:	Isolated Magnetic Dipole / 2.6dBi

A full description and detailed product specification details are available from the manufacturer.

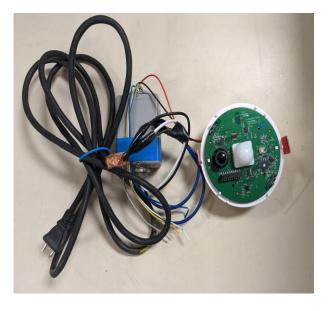


Photo 1.4.1-1 - Front view of the conducted EUT

Photo 1.4.1-2 – Back view of the conducted EUT

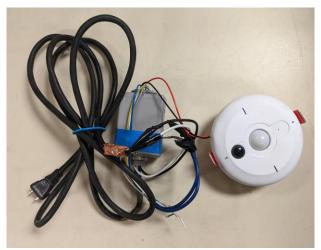


Photo 1.4.1-3 – Front view of the Radiated EUT

Photo 1.4.1-4 - Back view of the Radiated EUT

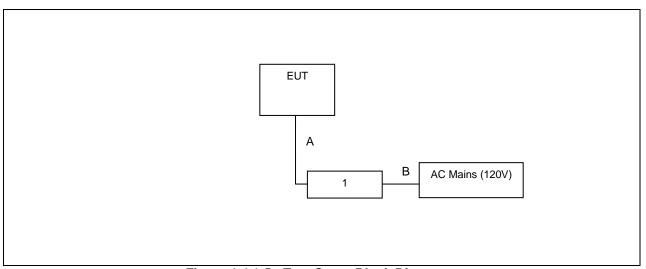


Figure 1.4.1-5: Test Setup Block Diagram

Table 1.4.1-2 - Cable Descriptions

Item	Cable/Port	Length	Shield
А	DC Power cable	20 cm	No
В	AC Power Cord	100 cm	No

Table 1.4.1-3 - Support Equipment Descriptions

Item	Make/Model	Description
1	EATON/SP20-RD4 SWITCHPACK	LED Electronic Driver Power Supply

1.4.2 Modes of Operation

ECS-Z-M05-LV model provides 1 modes of operation using BLE classifications as outlined below.

Mode of Operation	Frequency Range (MHz)	Number of Channels	Stack / Mode	Data Rates Supported	Classification
1	2402 – 2480	40	GFSK	1 Mbps	BLE

1.4.3 Monitoring of Performance

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was the X-orientation. See test setup photos for more information. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

For RF Conducted measurements, the EUT (standalone module) was connected to the test equipment with a temporary antenna port to SMA connector.

Power setting during test: 3 dBm

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	Initial State		

The equipment was tested as provided without any modifications.

1.7 Test Location

TÜV SÜD conducted the following tests at our Alpharetta, GA test laboratory.

Test Name	Name of Engineer(s)	Accreditation
Antenna Requirement	Divya Adusumilli	A2LA
AC Power Line Conducted Emissions	Divya Adusumilli	A2LA
Fundamental Emission Output Power	Divya Adusumilli	A2LA
6dB / 99% Bandwidth	Divya Adusumilli	A2LA
Band-Edge Compliance of RF Conducted Emissions	Divya Adusumilli	A2LA
RF Conducted Spurious Emissions	Divya Adusumilli	A2LA
Radiated Spurious Emissions into Restricted Frequency Bands	Paul Villarreal	A2LA
Power Spectral Density	Divya Adusumilli	A2LA

Office address: TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005, USA

2 Test Details

2.1 Antenna Requirement

2.1.1 Specification Reference

FCC Section: 15.203, 15.204

2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.1.3 Date of Test

4/29/2022

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

2.1.6 Test Results

The EUT utilizes Isolated Magnetic Dipole antenna with gain of 2.6 dBi which is internal to the enclosure and affixed to the PCB, therefore satisfying the requirements of Section 15.203.

2.2 Power Line Conducted Emissions

2.2.1 Specification Reference

FCC Section: 15.207

ISED Canada: RSS-Gen 8.8

2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.2.3 Date of Test

4/29/2022

2.2.4 Test Method

ANSI C63.10 section 6 was the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

2.2.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

2.2.6 Test Results

Table 2.2.6-1: Conducted EMI Results-Avg - Line 1

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
0.58	60	36.3	26.7	9.655	23.7	PASS
0.71	60	22.3	12.7	9.663	37.7	PASS
0.8	60	21.9	12.2	9.668	38.1	PASS
1.77	60	23.8	14	9.742	36.2	PASS
1.9	60	23.3	13.5	9.758	36.7	PASS
2.23	60	19.7	9.9	9.779	40.3	PASS

Table 2.2.6-2: Conducted EMI Results-QP - Line 1

Frequency (MHz)	QP Limit	QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
0.58	73	39.7	30.1	9.655	33.3	PASS
0.71	73	29.9	20.3	9.663	43.1	PASS
0.8	73	29.6	19.9	9.668	43.4	PASS
1.77	73	29.7	20	9.742	43.3	PASS
1.9	73	29.3	19.5	9.758	43.7	PASS
2.23	73	27.8	18	9.779	45.2	PASS

Table 2.2.6-3: Conducted EMI Results-Avg – Line 2

Frequency (MHz)	Avg Limit	Avg Level Corrected	Avg Level	Correction Fact.	Avg Margin	Result
0.5	60	27.8	18.2	9.63	32.2	PASS
0.5	60	27.8	18.2	9.63	32.2	PASS
0.58	60	38.6	28.9	9.635	21.4	PASS
0.87	60	22.3	12.6	9.652	37.7	PASS
1.08	60	25	15.3	9.669	35	PASS
1.8	60	24.8	15.1	9.744	35.2	PASS

Table 2.2.6-4: Conducted EMI Results-QP - Line 2

Frequency (MHz)	QP Limit	QP Level Corrected	QP Level	Correction Fact.	QP Margin	Result
0.5	73	31.7	22.1	9.63	41.3	PASS
0.5	73	31.7	22	9.63	41.3	PASS
0.58	73	41.9	32.3	9.635	31.1	PASS
0.87	73	26	16.3	9.652	47	PASS
1.08	73	28.1	18.4	9.669	44.9	PASS
1.8	73	28	18.2	9.744	45	PASS

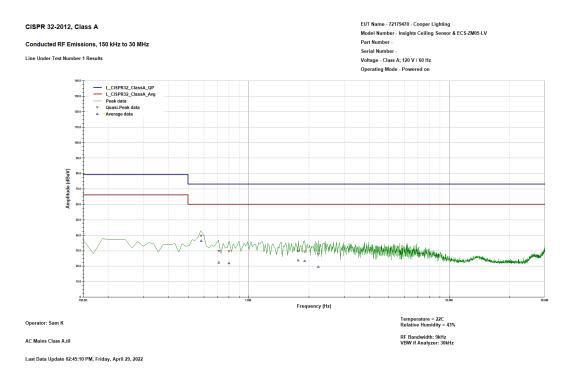


Figure 2.2.6-1: Conducted Emission Plot - Line 1

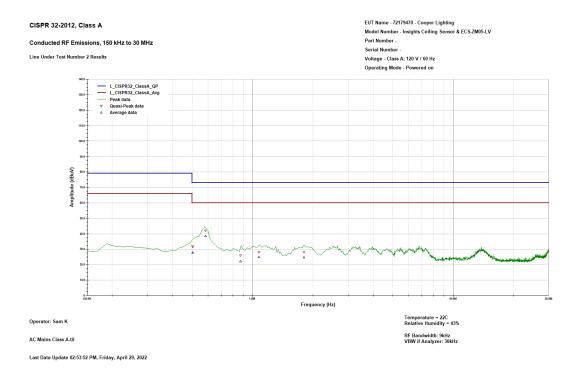


Figure 2.2.6-2: Conducted Emission Plot – Nuetral

2.3 Fundamental Emission Output Power

2.3.1 Specification Reference

FCC Sections: 15.247(b)(3) ISED Canada: RSS-247 5.4(d)

2.3.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.3.3 Date of Test

4/28/2022

2.3.4 Test Method

The maximum peak conducted output power was measured in accordance with ANSI C63.10 Subclause 11.9.1.1 utilizing the RBW ≥ DTS Bandwidth method. The RF output of the equipment under test was directly connected to the input of the analyzer applying suitable attenuation.

2.3.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

2.3.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

Table 2.3.6-1: RF Output Power

Frequency [MHz]	Peak Output Power (dBm)	Data Rate
2402	3.1	1 Mbps
2440	2.8	1 Mbps
2480	2.4	1 Mbps

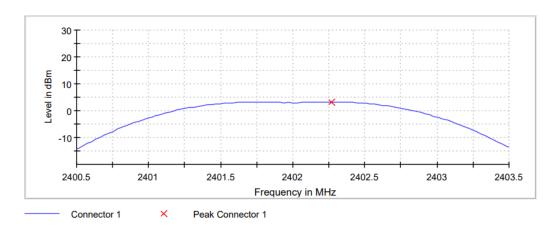


Figure 2.3.6-1: Output Power - LCH

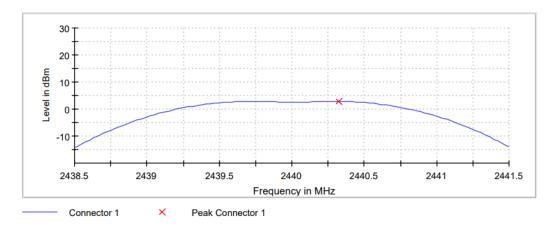


Figure 2.3.6-2: Output Power - MCH

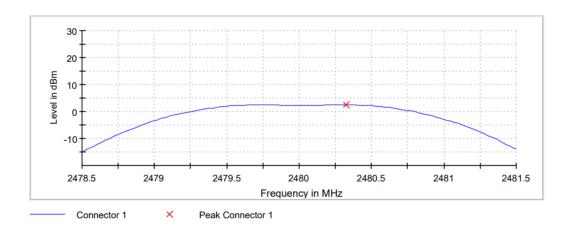


Figure 2.3.6-3: Output Power - HCH

Table 2.3.6-2: Sample Measurement Settings

Setting	Instrument Value	Target Value
Start Frequency	2.40050 GHz	2.40050 GHz
Stop Frequency	2.40350 GHz	2.40350 GHz
Span	3.000 MHz	3.000 MHz
RBW	1.000 MHz	>= 872.289 kHz
VBW	3.000 MHz	>= 3.000 MHz
Sweep Points	101	~ 101
Sweep time	1.907 us	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	Max Peak	Max Peak
Sweep Count	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweep type	FFT	AUTO
Preamp	off	off
Stable mode	Trace	Trace
Stable value	0.50 dB	0.50 dB
Run	4 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.01 dB	0.50 dB

2.4 6dB / 99% Bandwidth

2.4.1 Specification Reference

FCC Sections: 15.247(a)(2)

ISED Canada: RSS-247 5.2(a), RSS-GEN 6.7

2.4.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.4.3 Date of Test

4/28/2022

2.4.4 Test Method

The 6dB bandwidth was measured in accordance with the ANSI C63.10 Section 11.8. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to ≥ 3 times the RBW. The trace was set to max hold with a peak detector active. The marker-delta function of the spectrum analyzer was utilized to determine the 6 dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. The resolution bandwidth was set to 1% to 5% of the occupied bandwidth. The video bandwidth was set to 3 times the resolution bandwidth. A peak detector was used.

2.4.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

2.4.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

Table 2.4.6-1: 6dB / 99% Bandwidth

Frequency [MHz]	6dB Bandwidth (kHz)	99% Bandwidth (MHz)	Data Rate
2402	871.288	1.120	1 Mbps
2440	871.288	1.120	1 Mbps
2480	831.684	1.120	1 Mbps

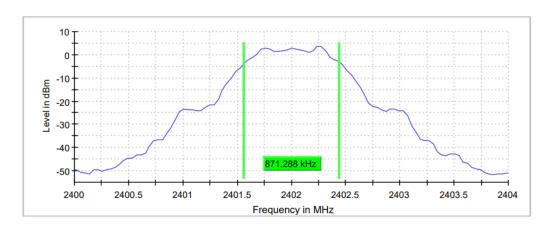


Figure 2.4.6-1: 6 dB BW - LCH

Figure 2.4.6-2: 6 dB BW - MCH

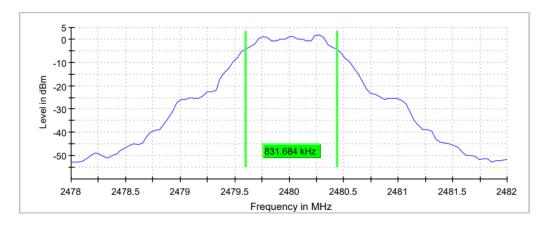


Figure 2.4.6-3: 6 dB BW - HCH

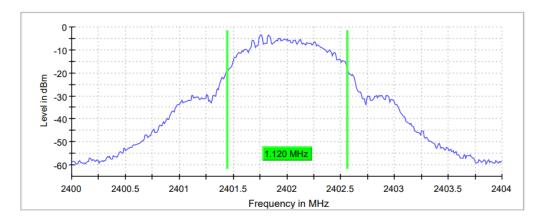


Figure 2.4.6-4: 99% BW - LCH

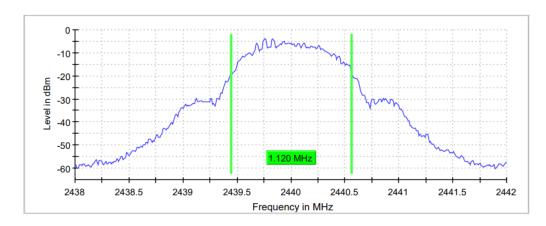


Figure 2.4.6-5: 99% BW - MCH

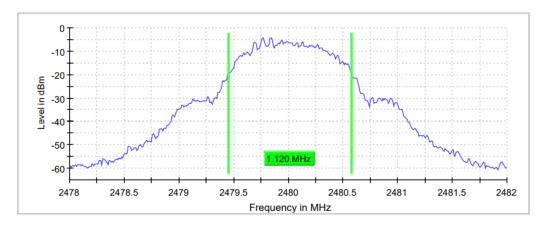


Figure 2.4.6-6: 99% BW - HCH

Table 2.4.6-2: Sample Measurement Setting (6dB BW)

Setting	Instrument Value	Target Value
Start Frequency	2.40000 GHz	2.40000 GHz
Stop Frequency	2.40400 GHz	2.40400 GHz
Span	4.000 MHz	4.000 MHz
RBW	100.000 kHz	~ 100.000 kHz
VBW	300.000 kHz	~ 300.000 kHz
Sweep Points	101	~ 80
Sweep time	18.938 µs	AUTO
Reference Level	0.000 dBm	0.000 dBm
Attenuation	15.000 dB	AUTO
Detector	Max Peak	Max Peak
Sweep Count	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweep type	FFT	AUTO
Preamp	off	off
Stable mode	Trace	Trace
Stable value	0.50 dB	0.50 dB
Run	7 / max. 150	max. 150
Stable	5/5	5
Max Stable Difference	0.20 dB	0.50 dB

Table 2.4.6-3: Sample Measurement Setting (99% BW)

Setting	Instrument Value	Target Value
Start Frequency	2.40000 GHz	2.40000 GHz
Stop Frequency	2.40400 GHz	2.40400 GHz
Span	4.000 MHz	4.000 MHz
RBW	20.000 kHz	>= 20.000 kHz
VBW	100.000 kHz	>= 60.000 kHz
Sweep Points	400	~ 400
Sweep time	94.824 µs	AUTO
Reference Level	0.000 dBm	0.000 dBm
Attenuation	20.000 dB	AUTO
Detector	Max Peak	Max Peak
Sweep Count	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweep type	FFT	AUTO
Preamp	off	off
Stable mode	Trace	Trace
Stable value	0.30 dB	0.30 dB
Run	6 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.10 dB	0.30 dB

2.5 Maximum Power Spectral Density in the Fundamental Emission

2.5.1 Specification Reference

FCC Sections: 15.247(e) ISED Canada: RSS-247 5.2(b)

2.5.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.5.3 Date of Test

4/28/2022

2.5.4 Test Method

The power spectral density was measured in accordance with the ANSI C63.10 Section 11.10.2 The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 10 kHz. The Video Bandwidth (VBW) was set to 30 kHz. Span was set to 1.5 times the channel bandwidth. The trace was set to max hold with the peak detector active.

2.5.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C Relative Humidity 53.8 % Atmospheric Pressure 972.2 mbar

2.5.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

Table 2.5.6-1: RF Power Spectral Density

ranio ziolo il la il olioli operation ziolioli,					
Frequency [MHz]	PSD (dBm)	Data Rate			
2402	-7.823	1 Mbps			
2440	-8.155	1 Mbps			
2480	-8.549	1 Mbps			

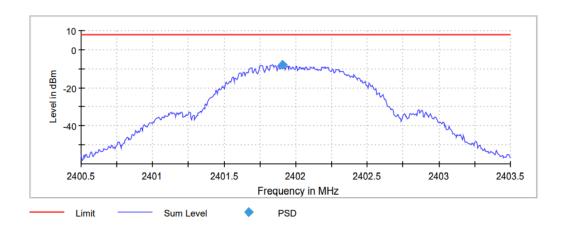
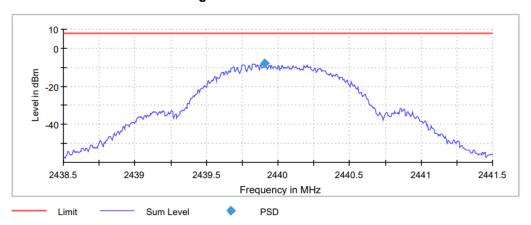



Figure 2.5.6-1: PSD - LCH

Figure 2.5.6-2: PSD – MCH

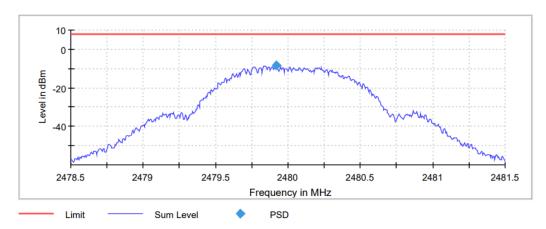


Figure 2.5.6-3: PSD - HCH

Table 2.5.6-2: Sample Measurement Settings (PSD)

Setting	Instrument Value	Target Value
Start Frequency	2.40050 GHz	2.40050 GHz
Stop Frequency	2.40350 GHz	2.40350 GHz
Span	3.000 MHz	3.000 MHz
RBW	10.000 kHz	<= 10.000 kHz
VBW	30.000 kHz	>= 30.000 kHz
Sweep Points	600	~ 600
Sweep time	3.000 ms	AUTO
Reference Level	0.000 dBm	0.000 dBm
Attenuation	20.000 dB	AUTO
Detector	MaxPeak	MaxPeak
Sweep Count	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweep type	Sweep	Sweep
Preamp	off	off
Stable mode	Trace	Trace
Stable value	0.50 dB	0.50 dB
Run	3 / max. 150	max. 150
Stable	2/2	2
Max Stable Difference	0.11 dB	0.50 dB

2.6 Band-Edge Compliance of RF Conducted Emissions

2.6.1 Specification Reference

FCC Sections: 15.247(d) ISED Canada: RSS-247 5.5

2.6.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.6.3 Date of Test

4/28/2022

2.6.4 Test Method

The unwanted emissions into non-restricted bands were measured conducted in accordance with ANSI C63.10 Section 11.11. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to $100 \, \text{kHz}$. The Video Bandwidth (VBW) was set to $200 \, \text{kHz}$. The resulting spectrum analyzer peak level was used to determine the reference level with respect to the $20 \, \text{dBc}$ limit at the band edges. Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C Relative Humidity 53.8 % Atmospheric Pressure 972.2 mbar

2.6.5 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

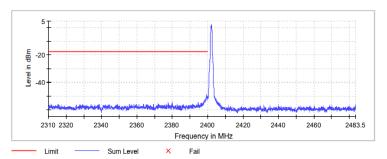


Figure 2.6.6-1: Lower Band-edge

Table 2.6.6-1: Lower Band-edge- Low Channel

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.425000	-49.4	31.8	-17.6	PASS
2399.475000	-49.9	32.3	-17.6	PASS
2399.375000	-50.6	33.0	-17.6	PASS
2399.825000	-50.7	33.1	-17.6	PASS
2399.975000	-50.9	33.3	-17.6	PASS
2399.725000	-50.9	33.3	-17.6	PASS
2399.775000	-50.9	33.3	-17.6	PASS
2399.225000	-51.1	33.5	-17.6	PASS
2399.275000	-51.2	33.6	-17.6	PASS
2399.325000	-51.2	33.6	-17.6	PASS
2399.925000	-51.2	33.6	-17.6	PASS
2399.575000	-51.3	33.7	-17.6	PASS
2399.875000	-51.4	33.8	-17.6	PASS
2399.525000	-51.4	33.8	-17.6	PASS
2399.675000	-51.5	33.9	-17.6	PASS

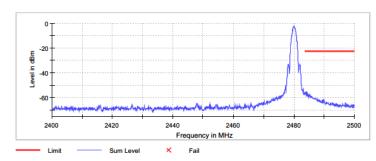


Figure 2.6.6-2: Upper Band-edge

Table 2.6.6-2: Upper Band-edge – High Channel

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2483.675000	-52.5	34.1	-18.4	PASS
2483.625000	-52.6	34.2	-18.4	PASS
2483.525000	-53.2	34.8	-18.4	PASS
2483.575000	-53.3	34.9	-18.4	PASS
2483.725000	-53.4	35.0	-18.4	PASS
2487.075000	-54.1	35.7	-18.4	PASS
2487.025000	-54.2	35.8	-18.4	PASS
2484.275000	-54.2	35.9	-18.4	PASS
2483.775000	-54.3	35.9	-18.4	PASS
2484.225000	-54.4	36.0	-18.4	PASS
2484.175000	-54.5	36.1	-18.4	PASS
2485.575000	-54.7	36.3	-18.4	PASS
2485.475000	-54.7	36.3	-18.4	PASS
2487.975000	-54.8	36.4	-18.4	PASS
2483.825000	-54.8	36.4	-18.4	PASS

2.7 RF Conducted Spurious Emissions

2.7.1 Specification Reference

FCC Sections: 15.247(d) ISED Canada: RSS-247 5.5

2.7.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.7.3 Date of Test

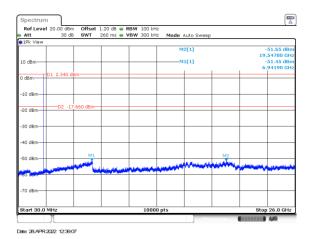
4/28/2022

2.7.4 Test Method

The unwanted emissions into non-restricted bands were measured conducted in accordance with ANSI C63.10 Section 11.11. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 300 kHz. The resulting spectrum analyzer peak level was used to determine the reference level with respect to the 20 dBc limit at the band edges. The spectrum span was then adjusted for the measurement of spurious emissions from 30MHz to 26GHz, 10 times the highest fundamental frequency.

2.7.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.


Ambient Temperature 22.3 °C Relative Humidity 53.8 % Atmospheric Pressure 972.2 mbar

2.7.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

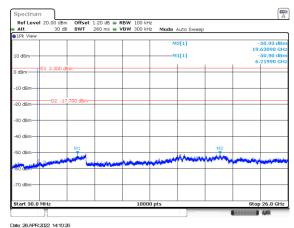


Figure 2.7.6-1: 30MHz - 26GHz - LCH

Figure 2.7.6-2: 30MHz - 26GHz - MCH

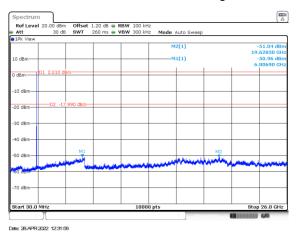


Figure 2.7.6-3: 30MHz - 26GHz - HCH

2.8 Radiated Spurious Emissions into Restricted Frequency Bands

2.8.1 Specification Reference

FCC Sections: 15.205, 15.209. ISED Canada RSS – Gen 8.9/8.10

2.8.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.8.3 Date of Test

4/28/2022 to 3/17/2022

2.8.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 26 GHz, 10 times the highest fundamental frequency of 2.4 GHz. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 150 kHz, quasipeak measurements were made using a resolution bandwidth RBW of 300 Hz and a video bandwidth VBW of 1 kHz and frequencies between 150 kHz and 30MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 10 kHz and a video bandwidth VBW of 30 kHz. For frequencies between 30 MHz and 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 100 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW of 1 MHz and VBW of 3 MHz

2.8.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature 22.3 °C
Relative Humidity 53.8 %
Atmospheric Pressure 972.2 mbar

2.8.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

Table 2.8.6-1: Radiated Spurious Emissions Tabulated Data

	Table 2.8.6-1: Radiated Spurious Emissions Tabulated Data						
Frequency (MHz)		_evel dBuV)	Antenna Polarity		Limit (dBuV/m)		Margin (dB)
(pk	Qpk/Avg	(H/V)	pk	Qpk/Avg	pk	Qpk/Avg
			LCH -	2402	MHz		
136.6		32.248	Н		43.5		11.25
245.78		32.729	Н		46		13.27
2425.7	47.861	32.928	Н	74	54	26.14	21.07
2445	50.55	32.896	Н	74	54	23.45	21.10
2479.975	49.952	34.725	Н	74	54	24.05	19.28
5223.1	53.7	36.746	Н	74	54	20.30	17.25
5786.8	53.189	37.902	Н	74	54	20.81	16.10
5810.975	52.888	38.182	Н	74	54	21.11	15.82
9979.825	58.334	44.79	Н	74	54	15.67	9.21
9979.925	58.551	44.802	Н	74	54	15.45	9.20
12009.775	52.426	38.479	Н	74	54	21.57	15.52
25978.9	64.784	50.739	Н	74	54	9.22	3.26
116.039		29.248	V		43.5		14.25
2426	51.087	32.873	V	74	54	22.91	21.13
2465.1	47.407	33.119	V	74	54	26.59	20.88
5218.05	53.012	36.785	V	74	54	20.99	17.22
5262.2	51.166	37.028	V	74	54	22.83	16.97
5786.025	68.911	38.172	V	74	54	5.09	15.83
9892.675	58.338	44.595	٧	74	54	15.66	9.41
12009.75	52.528	38.448	V	74	54	21.47	15.55
25886.675	64.197	50.783	V	74	54	9.80	3.22
			MCH -	2440	MHz		
243.499		33.872	Н		46		12.13
2408.125	47.454	32.823	Н	74	54	26.55	21.18
4879.95	50.733	36.011	Н	74	54	23.27	17.99
7320.15	54.573	40.515	Н	74	54	19.43	13.49
9759.8	58.46	45.305	Н	74	54	15.54	8.70
12199.9	52.534	38.316	Н	74	54	21.47	15.68
25827.75	64.633	50.51	Н	74	54	9.37	3.49
115.554		29.169	V		43.5		14.33
2464.1	47.907	33.009	V	74	54	26.09	20.99
4880.25	50.154	36.301	V	74	54	23.85	17.70
7320.225	54.115	40.519	V	74	54	19.89	13.48
9759.925	58.943	45.309	V	74	54	15.06	8.69

1	1 1		l	l		1	l I		
12200.05	52.064	38.305	V	74	54	21.94	15.70		
25972.225	64.441	50.624	V	74	54	9.56	3.38		
	HCH - 2480 MHz								
137.036		33.506	Н		43.5		9.99		
1855.25	45.71	31.584	Н	74	54	28.29	22.42		
2402.15	52	32.75	Н	74	54	22.00	21.25		
2433.025	47.68	32.812	Н	74	54	26.32	21.19		
4960.025	51.098	36.488	Н	74	54	22.90	17.51		
7439.875	55.335	41.006	Н	74	54	18.67	12.99		
9919.8	57.855	44.449	Н	74	54	16.15	9.55		
17208.175	60.995	47.245	Н	74	54	13.01	6.76		
25874.35	64.715	50.61	Н	74	54	9.29	3.39		
1856.375	45.919	31.522	V	74	54	28.08	22.48		
2402.25	47.111	32.838	V	74	54	26.89	21.16		
4959.925	50.694	36.847	V	74	54	23.31	17.15		
7440.15	54.747	41.023	V	74	54	19.25	12.98		
9919.9	58.178	44.446	V	74	54	15.82	9.55		
16645.55	60.754	46.921	V	74	54	13.25	7.08		
25791.35	64.211	50.431	V	74	54	9.79	3.57		

Table 2.8.6-2: Radiated Band-Edge Tabulated Data

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(1411 12)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
2402 MHz - Lower Band Edge										
2390	46.90	32.90	Ι	0.08	46.98	32.98	74.0	54.0	27.0	21.0
2480 MHz - Upper Band Edge										
2483.5	54.70	39.90	Ι	0.36	55.06	40.26	74.0	54.0	18.9	13.7

Note: Only Worst Case Polarization was evaluated and reported.

Sample Calculation:

 $R_C = R_U + CF_T$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

Ru = Uncorrected Reading
Rc = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation

AG = Amplifier Gain
DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: $54.70 + 0.36 = 55.06 dB\mu V/m$ Margin: $74 dB\mu V/m - 55.06 dB\mu V/m = 18.9 dB$

Example Calculation: Average

Corrected Level: $39.90 + 0.36 - 0 = 40.26 dB\mu V$

Margin: $54dB\mu V - 40.26dB\mu V = 13.7dB$

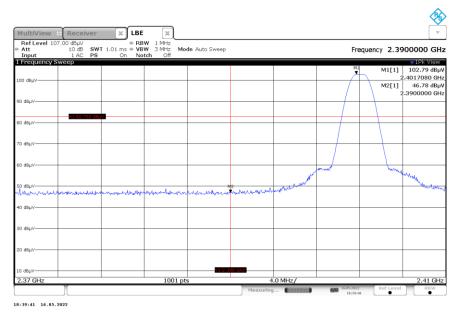


Figure 2.8.6-1: Radiated Lower Band-edge - LCH

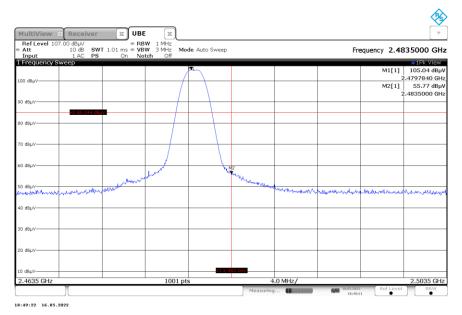


Figure 2.8.6-2: Radiated Upper Band-edge - HCH

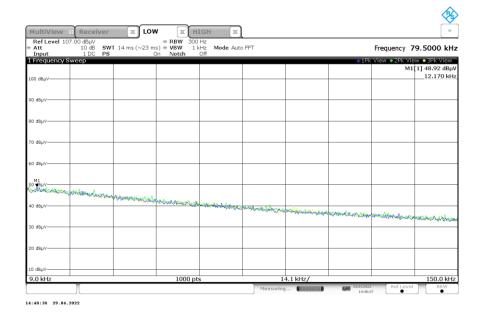


Figure 2.8.6-3: Reference plot for Radiated Spurious Emissions – 9 kHz – 150 kHz

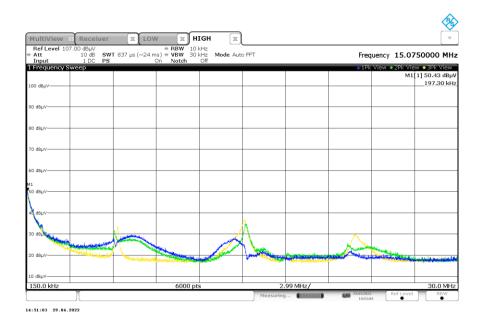


Figure 2.8.6-4: Reference plot for Radiated Spurious Emissions – 150 kHz – 30MHz Note: Emissions above the noise floor are ambient not associated with the EUT.

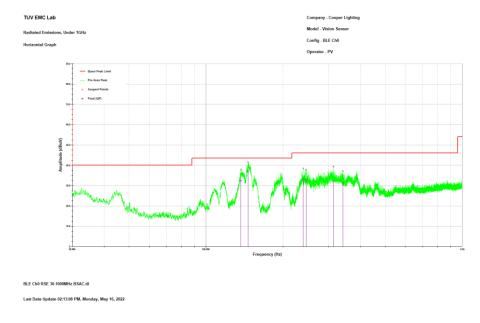


Figure 2.8.6-5: Reference plot for Radiated Spurious Emissions – 30 MHz – 1 GHz – H Polarity Note: Frequencies that falls under restricted band are only evaluated and reported.

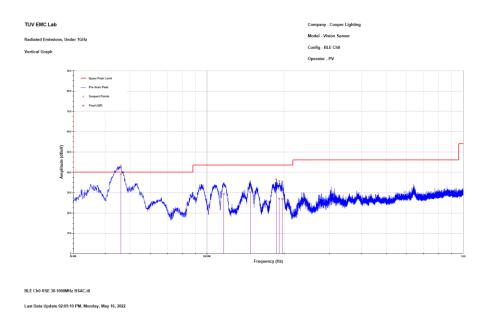


Figure 2.8.6-6: Reference plot for Radiated Spurious Emissions – 30 MHz – 1 GHz – V Polarity

Note: Frequencies that falls under restricted band are only evaluated and reported.

Emission above the limit line is ambient noise not associated with the radio of the EUT.

Figure 2.8.6-7: Reference plot for Radiated Spurious Emissions – 1 GHz – 3 GHz – H Polarity

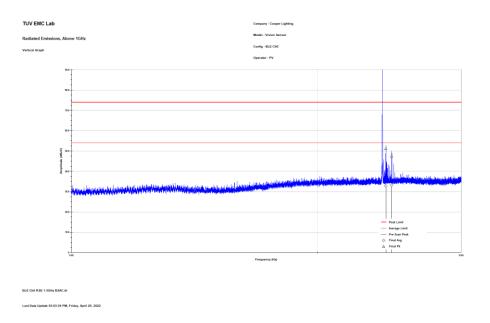


Figure 2.8.6-8: Reference plot for Radiated Spurious Emissions – 1 GHz – 3 GHz – V Polarity

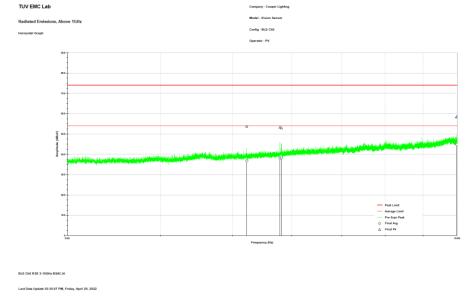


Figure 2.8.6-9: Reference plot for Radiated Spurious Emissions – 3 GHz – 10 GHz – H Polarity

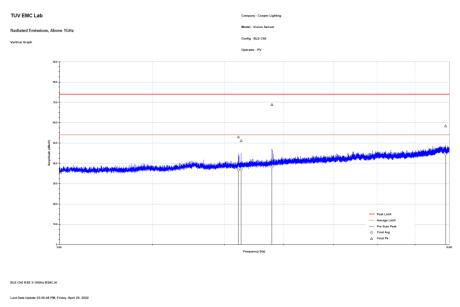


Figure 2.8.6-10: Reference plot for Radiated Spurious Emissions – 3 GHz – 10 GHz – V Polarity

Figure 2.8.6-11: Reference plot for Radiated Spurious Emissions – 10 GHz – 18 GHz – H Polarity

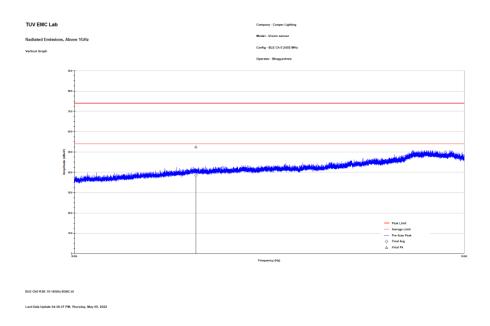


Figure 2.8.6-12: Reference plot for Radiated Spurious Emissions – 10 GHz – 18 GHz – V polarity

Figure 2.8.6-13: Reference plot for Radiated Spurious Emissions – 18 GHz – 26 GHz – H Polarity

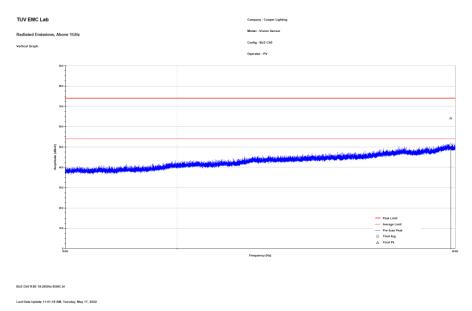


Figure 2.8.6-14: Reference plot for Radiated Spurious Emissions – 18 GHz – 26 GHz – V Polarity

2.9 Test Equipment Used

Table 2.9-1 - Equipment List

Table 2.9-1 -Equipment List								
Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date		
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	6/8/2021	6/8/2023		
AEMC0884	ETS Lindgren	3117	Double ridged horn antenna	240106	5/6/2021	5/6/2022		
DEMC3161	Ametek CTS Germany GmbH	CBL 6112D	Bilog Antenna; Attenuator	51323	3/19/2021	3/19/2023		
213	TEC	PA 102	Amplifier	44927	7/30/2021	7/30/2022		
338	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A01111	6/22/2021	6/22/2023		
882	Rohde & Schwarz	ESW44	Test Receiver	111961	6/24/2021	6/24/2022		
836	ETS Lindgren	SAC Cable Set	SAC Cable Set includes 620, 837, 838	N/A	5/11/2021	7/11/2022		
335	Suhner	SF-102A	Cable (40GHz)	882/2A	6/24/2021	6/24/2022		
345	Suhner Sucoflex	102A	Cable (42GHz)	1077/2A	6/24/2021	6/24/2022		
334	Rohde & Schwarz	3160-09	HF 18-26.5GHz Antenna	49404	4/25/2020	4/25/2022		
334	Rohde & Schwarz	3160-09	HF 18-26.5GHz Antenna	49404	4/25/2022	5/25/2024		
432	Microwave Circuits	H3G020G4	High pass Filter	264066	6/9/2021	6/9/2022		
827	Rohde & Schwarz	RF Cable set	TS8997 Rack cable set	N/A	12/20/2021	12/20/2022		
622	Rohde & Schwarz	FSV40 (v3.40)	FSV Signal Analyzer 10Hz to 40GHz	101338	9/22/2021	9/22/2022		
267	Hewlett Packard	N1911A	Power Meter	MY45100129	7/27/2021	7/27/2023		
3010	Rohde & Schwarz	ENV216	Two-Line V-Network	3010	6/23/2021	6/23/2022		
872	Agilent	E7402A	EMC Spectrum Analyzer	US40240258	6/22/2021	6/22/2022		
871	Belden	RF Cable	RF Cable (CE Cable)	871	4/1/2022	4/1/2023		
144	Omega	RH411	Temp / Humidity Meter	H0103373	12/16/2020	12/16/2022		

N/A - Not Applicable

3 Diagram of Test Set-ups

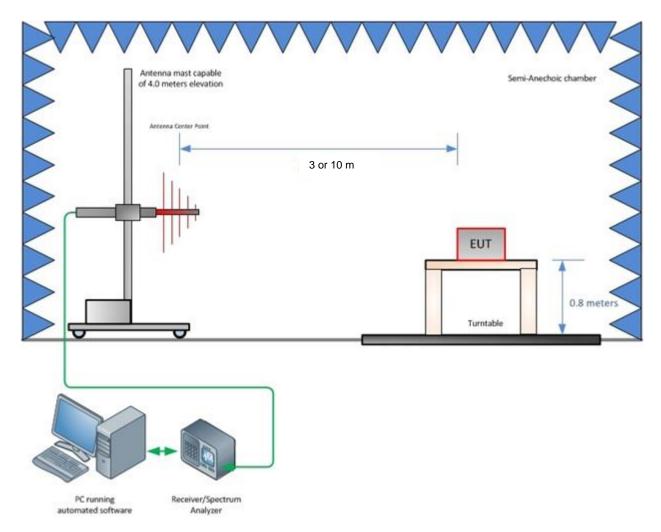


Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

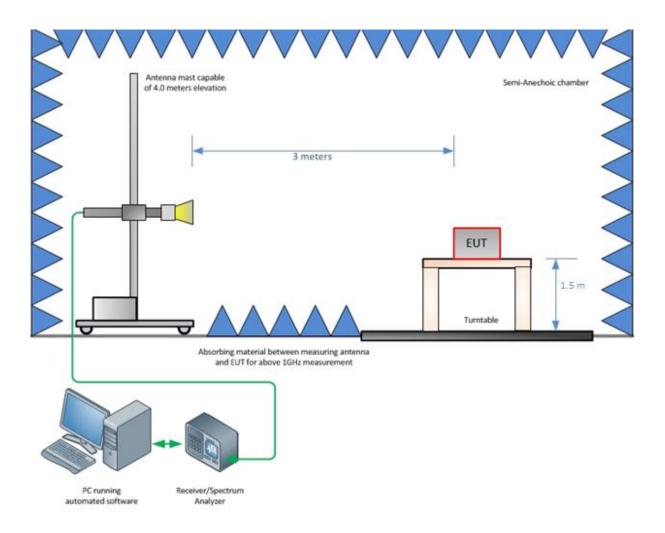


Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

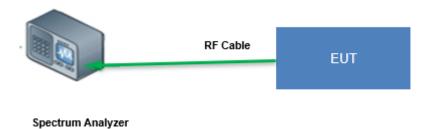


Figure 3-3 – Conducted Test Setup: Antenna Port measurement

4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

STATEMENT OF MEASUREMENT UNCERTAINTY - Emissions

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Table 4-1: Estimation of Measurement Uncertainty

Parameter	U _{lab}
Occupied Channel Bandwidth	± 0.009 %
RF Conducted Output Power	± 0.349 dB
Power Spectral Density	± 0.372 dB
Antenna Port Conducted Emissions	± 1.264 dB
Radiated Emissions ≤ 1 GHz	± 5.814 dB
Radiated Emissions > 1 GHz	± 4.318 dB
Temperature	± 0.860 °C
Radio Frequency	± 2.832 x 10 ⁻⁸
AC Power Line Conducted Emissions	± 3.360 dB

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications